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Abstract
We address the problem of automatic classification of associative and semantic relations between words, and particularly those that hold
between nouns. Lexical relations such as synonymy, hypernymy/hyponymy, constitute the fundamental types of semanticrelations.
Associative relations are harder to define, since they include a long list of diverse relations, e.g., “Cause-Effect”, “Instrument-Agency”.
Motivated by findings from the literature of psycholinguistics and corpus linguistics, we propose features that take advantage of
general linguistic properties. For evaluation we merged three datasets assembled and validated by cognitive scientists. A proposed
priming coefficient that measures the degree of asymmetry inthe order of appearance of the words in text achieves the bestclas-
sification results, followed by context-based similarity metrics. The web-based features achieve classification accuracy that exceeds85%.
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1. Introduction

We address the problem of automatic classification of as-
sociative and semantic relations between words, and par-
ticularly those that hold between nouns. Lexical relations
such as synonymy, hypernymy/hyponymy, constitute the
fundamental types of semantic relations (Cruse, 1986).
Associative relations are harder to define, since they in-
clude a long list of diverse relations, e.g., “Cause-Effect”,
“Instrument-Agency”. From the perspective of cogni-
tive scientists, associative relatedness is triggered by the
co-occurrence of words (McNamara, 2005), while the
definition of semantic relatedness is controversial. The
boundary between semantic and associative relations is
not always clear, since highly associated words tend to
be semantically related, e.g., (cat,dog).
Previous research efforts have investigated semantic re-
lations, such as the identification of synonyms, (Iosif and
Potamianos, 2010), hyponyms, (Caraballo, 1999). Also,
the identification of other relations has attracted the re-
search interest, e.g., the Task 8 of SemEval’10 dealt with
the classification of various relations (Hendrickx et al.,
2010). To our knowledge there have been very few com-
putational efforts for the discrimination between associa-
tive and semantic relations, e.g., (Turney, 2008).
Such classification can be beneficial for a wide range of
language technologies. For example, in statistical lan-
guage modeling, class-based language models (Brown et
al., 1992) have long been used to extend the coverage of
the model – words in classes should typically be seman-
tically related (i.e., sister hyponyms of the same hyper-
nym). However, trigger models (Lau et al., 1993) try to
find words that change the probability distribution over

other words, which is more of an associative relation-
ship (e.g., postman – letter). Other technologies might
use relationships in a different way: spoken dialogue sys-
tems often have an ontology of semantically related con-
cepts (which one can attempt to learn from corpus data
(Pargellis et al., 2004)); query expansion techniques for
information retrieval have also utilized semantically re-
lated concepts (Fang, 2008). On the other hand, infor-
mation extraction tasks may benefit from knowing asso-
ciative relationships between words, since the contextual
information leading to a decision to extract some piece
of information is more likely to be associative in nature.
We propose an automated computational approach that
discriminates between associative and semantic rela-
tions. Text-based lexical and hit-based features are ex-
tracted from the web in order to classify given pairs of
concepts as semantic or associative. These features do
not rely on manually selected syntactic patterns, such as
Hearst’s patterns for the identification of “is-a” relations
and semantic role labeling, but are rather motivated by
general cognitive and linguistic principles. Specifically,
we propose two novel features: (a) the degree of priming
(co-occurrence asymmetry) as a function of the distance
between the two words in text, and (b) the rate of change
of context-based lexical similarity as a function of the
context window size. Evaluation proceeds on a dataset
containing238 associative and semantic relations, which
they were appropriately assembled by cognitive scien-
tists in order to exclude any fuzzy relations.

2. Related Work
Semantic similarity metrics can be divided into two
broad categories: (i) metrics that rely on knowledge re-

2991



sources, and (ii) corpus- or web-based metrics that do not
require any external knowledge source. A representa-
tive example of the first category are metrics that exploit
the WordNet ontology (Miller, 1990). For computing the
similarity between words these metrics incorporate fea-
tures such as the length of paths between the two words
(Resnik, 1995; Jiang and Conrath, 1997) or the infor-
mation content of their least subsumer, estimated from a
corpus (Wu and Palmer, 1994; Leacock and Chodorow,
1998). WordNet glosses are also used as features in (Pat-
wardhan and Pedersen., 2006). A study that reviews in
depth the major WordNet-based metrics is provided in
(Budanitsky and Hirst, 2006). Corpus-based metrics usu-
ally extract contextual features from text for computing
semantic similarity. Web-based methods employ search
engines to estimate the frequency of word co-occurrence
(Vitanyi, 2005; Gracia et al., 2006; Turney, 2001) or con-
struct corpora (Bollegala et al., 2007; Iosif and Potami-
anos, 2010). The identification and extraction of other
types of relations has been mainly studied through the
use of linguistic patterns. Lexico-syntactic patterns were
applied in the influential work of Hearst (Hearst, 1992),
for the identification of hyponymy, followed by numer-
ous similar approaches, e.g., (Caraballo, 1999). Pattern-
based approaches were also employed for the meronymy
relation (Girju et al., 2003).

3. A Review of Web-based Metrics
In this section, we review two types of web-based metrics
(Iosif and Potamianos, 2010): web-page counts (hits)
for computing relatedness between words, and contex-
tual features for computing semantic similarity.

3.1. Hit-based metrics

The underlying assumption of hit-based metrics is that
two words that co-exist in the same document are re-
lated. Sets of documents{D} returned by a search
engine with query wordswi, . . . , wi+n are notated
by {D; wi, . . . , wi+n}; the cardinality is noted by|
D; wi, . . . , wi+n |. We investigate four different metrics
in this work:
Jaccard coefficient (J): computes the relatedness be-
tweenwi andwj by employing the overlap of document
sets in which they appear, i.e.,

J(wi, wj) =
|D; wi, wj |

|D; wi |+ |D; wj |−|D; wi, wj |
(1)

The Jaccard coefficient takes values between0 (total
dissimilarity) and1 (absolute similarity).
Dice coefficient (C): a variation of the Jaccard coeffi-
cient, also takes values in[0, 1]. It is defined as:

C(wi, wj) =
2 |D; wi, wj |

|D; wi | + |D; wj |
. (2)

Mutual information (I): (as defined in (Bollegala et al.,
2007)) computes the similarity betweenwi and wj by
calculating the mutual dependence of the random vari-
ablesWi andWj that represent the number of documents
indexed bywi andwj , respectively. It is defined as the
point-wise mutual information betweenWi andWj :

I(wi, wj) = log

|D;wi,wj|
|D|

|D;wi|
|D|

|D;wj|
|D|

(3)

According to this info-theoretic measure, if two vari-
ables are independent, the knowledge of the one variable
does not provide any information about the other, and
their mutual information equals to0.

Google-based Semantic Relatedness (G):The Normal-
ized Google Distance is a dissimilarity metric proposed
in (Vitanyi, 2005; Cilibrasi and Vitanyi, 2007). It is de-
fined as:

E(wi, wj) =
max{L} − log |D; wi, wj |

log |D | −min{L}
, (4)

whereL = {log |D; wi |, log |D; wj |}. This metric is
unbounded, assigning dissimilarity scores that range
from 0 to ∞. The Normalized Google Distance was
adopted in (Gracia et al., 2006) in order to propose a
bounded (in[0, 1]) metric, called Google-based Seman-
tic Relatedness, defined as:

G(wi, wj) = e−2E(wi,wj). (5)

3.2. Context-based metrics

The fundamental assumption behind context-based met-
rics is that similarity of context implies similarity of
meaning(Harris, 1954). A contextual window of size
2H + 1 words is centered on the word of interestwi and
lexical features are extracted. For every instance ofwi

in the corpus theH words left and right ofwi formulate
a feature vectorvi. For a given value ofH the context-
based semantic similarity between two words,wi andwj ,
is computed as the cosine of their feature vectors:

SH(wi, wj) =
vi.vj

|| vi || || vj ||
. (6)

The elements of feature vectors are weighted according
to two schemes: 1) Binary (B), and 2) Log of Term Fre-
quency (LTF). B assigns1 to a feature if it appears within
the context ofwi, otherwise0. According to the LTF
scheme, the weight assigned to a contextual feature is a
function of the logarithm of its frequency, normalized by
the logarithm of the frequency ofwi. For more details
consult (Iosif and Potamianos, 2010).
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4. Associative and semantic features
In this section, we propose two novel features for dis-
criminating between associative and semantic relations
using information automatically extracted from the web.
Syntactic patterns are also investigated as features.

4.1. Hit-based priming coefficient

Hit-based metrics (summarized in Section 3.1.) employ
co-occurrence counts without taking into account: (i) the
order of appearance of each word, and (ii) the distance
(i.e., the number of words that intervene) between oc-
currences of the two words. Next, we motivate the use
of these features for classifying associative and semantic
relations.
The use of word order is motivated by findings in cogni-
tive science and psycholinguistics, about the asymmetry
of the priming phenomenon with respect to word pairs.
In psycholinguistics, the notion of priming refers to the
cognitive processing that takes place when two words in
a certain order are presented to a human subject. In this
framework, the first wordp (“prime”) serves as a stimu-
lus that facilitates (or primes) the cognitive processing of
the second wordt (“target”) (McNamara, 2005). The se-
lection of prime and target is determined experimentally
for each word pair based on human response time, where
response time is assumed to be inversely proportional to
the strength of priming (or relatedness). Once the prime
and target are defined, their usual order (p, t) is known as
“forward”, while the reverse order (t, p) is called “back-
ward”. It has been found that the difference between
forward and backward priming is statistically significant
for many related word pairs, e.g., responses to the pair
(‘light’,‘bulb’) were reported to be quicker than the re-
sponses to the pair (‘bulb’,‘light’) (McNamara, 2005;
Koriat, 1981). Similar observations regarding the asym-
metry of order of appearance within co-occurrence were
also reported in the NLP literature (Church and Hanks,
1990). However, data related to this phenomenon have
been analyzed without further exploration of the cogni-
tive aspects of the problem.
Our goal is to define a “priming coefficient”, i.e., a sin-
gle metric that characterizes the degree of asymmetry in
the forward and backward co-occurrence counts. Since
priming is sensitive to ordering, we compute“forward”
and “backward” co-occurrence counts (as a function of
the distance between words) for each word pair. We
expect that word pairs (p,t) with strong priming should
appear much more often in the forward rather than the
backward order. We expect priming to be a good discrim-
inator between associative and semantic relations as psy-
cholinguistics have suggested that priming effects can be
of different magnitude for these different relations (Plaut,
1995; Ferrand and New, 2003).
Instead of using raw co-occurrence counts to estimate

the priming coefficient, we propose to use the normal-
ized hit-based metrics defined in Section 3.1. We intro-
duce a variation of hit-based metrics that computes sepa-
rately forward and backward co-occurrence counts, con-
ditioned on the distanced between words. For a word
pair (wi, wj), the forward relatednessRf,m is defined as

RA
f,m(wi, wj) = A(wi, wj ; d = m), (7)

computed only for forward co-occurrence counts with
distanced that is equal tom words. FunctionA(.) de-
notes any of the hit-based metric defined in Section 3.1.
Similarly, backward relatedness is defined as:

RA
b,m(wi, wj) = A(wj , wi; d = m). (8)

Total relatednessΛA
m is defined as the sum of the forward

and backward relatedness

ΛA
m(wi, wj) = RA

f,m(wi, wj) + RA
b,m(wi, wj) (9)

for metricA, word pair(wi, wj) and distance equal tom.
Finally, the priming coefficientΨA

m is defined as the nor-
malized absolute difference between forward and back-
ward relatedness

ΨA
m(wi, wj)=

|RA
f,m(wi, wj)−RA

b,m(wi, wj) |

RA
f,m(wi, wj)+RA

b,m(wi, wj)
. (10)

The priming coefficient is equal to0 when the forward
and backward co-occurrence counts are equal (no prim-
ing) and1 when a word pair only appears with the for-
ward (or backward) order (very strong priming).

4.2. Slope of text-based similarity

In Section 3.2., a context-based metric was defined that
has been used in the literature for estimating the strength
of semantic relations between words. In general, the
strength of both semantic and associative relations covers
a wide range from weak to strong; as a result, the relation
strength by itself is a poor discriminator of the semantic
vs associative class.
Based on observations in psycholinguistics (Ferrand
and New, 2003) and computational linguistics (Hearst,
1992), words that are semantically similar, especially
synonyms and words that belong to the same semantic
class, can be identified by lexico-syntactic patterns from
their immediate vicinity. For this case, context-based se-
mantic similarity metrics are also shown to better corre-
late with human judgements when small contextual win-
dows are used to compute similarity (Iosif and Potami-
anos, 2010). Associative relations often imply a shared
pragmatic context that is also evident from lexical sim-
ilarity in the not-so-immediate vicinity. Thus, the rel-
evance of lexical features extracted from context is ex-
pected to be a function of the contextual window size.

2993



According to the above considerations, we assume that
the migration from syntactic to pragmatic features by in-
creasing the size ofH , will affect differently the context
similarity of associative and semantic relations. For this
purpose, we compute the difference of semantic similar-
ity scores across different sizes ofH . In particular, we
focus on window sizes that differ exactly by one (first-
order differences). Consider two wordswi andwj . The
difference of their similarity scores with respect to win-
dow sizes,Hx andHy, is computed as:

SHx

Hy
(wi, wj) = SHx(wi, wj) − SHy(wi, wj), (11)

for Hx − Hy = 1. The similaritiesSHx(wi, wj) and
SHy(wi, wj) are computed according to (6).

4.3. Linguistic patterns

We also examine whether specific syntactic patterns can
discriminate between associative and semantic relations.
By manual inspection of our data we have summarized
the most common patterns for associative ([A1],[A2])
and semantic ([S1],[S2]) relations, respectively:

[A1] Complex Noun Phrases (NPs):
[NPterm1|term2[NPterm1|term2]], e.g., “Ocean
wave energy is captured directly from surface
waves or from pressure fluctuations.”

[A2] Terms co-occurring in argument positions:
[NPterm1[V P [NPterm2]]], e.g., “...why do gi-
raffes have longnecks...”

[S1] The two terms in coordinative constructions:
[NPterm1] AND|OR [NPterm2], e.g., “Beet and
radish roots are similar in shape, but beets are usu-
ally larger than radishes.”

[S2] The two terms in extended coordinative construc-
tions, involving one additional NP between the
NPs of interest:[NPterm1|term2] , [NP ] AND|OR
[NPterm1|term2], e.g., “... professionalcarpet, up-
holstery and rug cleaners in the Chicago ... ”

Overall, associative noun pairs are expected to surface as
arguments of the same phrase: in pattern A1 one NP is
contained into the other, while in pattern A2 both NPs
are manifested in the argument positions of the same VP
(subject and object of the verb). Semantically related
noun pairs form NPs that are structurally independent of
each other; when they co-occur in close proximity they
are usually connected with conjunctions.

5. Experimental Dataset
There are relatively few datasets containing rated as-
sociative or semantic relations between word pairs or
terms, most of them containing fewer than50 pairs. Lack

of a standardized dataset of adequate size is a barrier
to computational approaches that require fair amounts
of data for training and testing. In this work, we have
merged datasets taken from three different studies from
the literature of psycholinguistics (Chiarello et al., 1990;
Perea and Gotor, 1997; Ferrand and New, 2003) for a
total of 238 relations, equally split between119 asso-
ciative and119 semantic relations (Table 1). All three

Dataset No # of semantic rel. # of associative rel.

1 42 42
2 48 48
3 29 29

Total 119 119

Table 1: Experimental datasets.

datasets were designed for psycholinguistic experiments
related to priming, and contain only “pure” associative
and semantic relations, avoiding word pairs that lie in the
boundaries of the two relations. Well-established lists of
free association norms, e.g., (Palermo and Jenkins, 1964;
Nelson et al., 1998), were used for the selection of “pure”
associatively related pairs. Such lists are constructed by
collecting the responses of human subjects when stimuli
words are presented to them and they are asked to give
the very first word they recall. Regarding “pure” seman-
tic relations, the relevant pairs were selected according
to the following criteria: (i) the words of each pair are
members of the same semantic category and they have
high similarity score, and (ii) they are not included in
lists of free association norms. The similarity score in-
corporated by the first criterion typically is estimated by
collecting similarity ratings given by subjects.
The semantically related pairs in datasets 1 and 3 consist
exclusively of words that belong to the same semantic
category, i.e., hyponyms of the same hypernym. The se-
mantically related pairs in dataset 2 consist of words with
various degrees of synonymy. Some indicative examples

Dataset No Semantic rel. Associative rel.

1 brass–iron onion–tears
1 velvet–linen hammer–nail
1 bacon–steak pilot–plane
2 boat–ship board–wood
2 work–labor nucleus–center
2 fume–steam hour–clock
3 clarinet–flute drill–hole
3 pancake–waffle cow–milk
3 rug–carpet suitcase–trip

Table 2: Examples of dataset relations.

of the relations included in the experimental datasets are
presented in Table 2.
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6. Experimental procedure
We compute hit-based metrics and text-based metrics
through web search engines as described below:

6.1. Hit-based metrics

The number of word co-occurrences is estimated by Ya-
hoo! search API1 that returns the number of web hits
given a particular query. We wish to compute the num-
ber of hits for the word pair(wi, wj) under the following
constraints (i)wi precedeswj , and (ii) their distance, de-
fined in Section 4.1. as the number of intervening words,
is equal tom, i.e., m = 2. This is achieved by the
query “wi ⋆ ⋆ wj” for m = 2. The “⋆” symbol is a
special search metacharacter, matching any word (Bol-
legala et al., 2010). Using this query formulation, we
retrieve the number of hits for both forward and back-
ward ordering of the words up to a particular distance
m. Once the number of hits is retrieved, the total related-
nessΛA

m(wi, wj) is computed according to (9), for each
of the hit-based metricsA. Similarly, the priming coef-
ficient ΨA

m(wi, wj) is computed according to (10). For
each word pair,ΛA

m(wi, wj) andΨA
m(wi, wj) are com-

puted, using the four hit-based metricsA = {J, C, I, G}
and for distance valuesm = 0, . . . , 10.

6.2. Text-based metrics

For the computation of text-based semantic similarity
between the words of associative and semantic rela-
tions, we need to build a corpus from the web. For
each word pair(wi, wj), we download1000 snippets of
web documents using the Yahoo! Search API. The web
search is performed according to the conjunctive query
“wi AND wj”, ensuring that both words co-occur in the
same snippet, for reasons explained in (Iosif and Potami-
anos, 2010). Once the snippets are retrieved, we com-
pute for each word pair: (i) the semantic similarity score,
SH(wi, wj), according to (6), and (ii) the difference of
similarities across different window sizes,SHx

Hy
(wi, wj),

according to (11). The similarities are computed usingB

andLTF weighting schemes (Section 3.2.) for contextual
window sizesH = 1, . . . , 10.

7. Evaluation Results
In this section, we present results for associative vs se-
mantic relation classification using the dataset described
in Section 5. We used the support vector machine classi-
fier provided by Weka2; similar results were obtained us-
ing naive Bayes classifier (not reported here due to lack
of space). The evaluation was performed according to a
10-fold validation procedure. The evaluation results are
reported in terms of classification accuracy.

1http://developer.yahoo.com/search/
2http://www.cs.waikato.ac.nz/ml/weka/

In Fig. 1(a), the classification accuracy is shown for:
(i) total relatedness,ΛJ

m(wi, wj), computed according to
(9) (solid line), and (ii) priming coefficient,ΨJ

m(wi, wj),
computed according to (10) (dotted line). Classification
accuracy is plotted as a function ofm, the distance be-
tween words. It is clear that total relatedness achieves
very poor accuracy that lies close to chance. The poor
performance atm = 0 is an indication that the asymme-
try of priming at the bigram level can not discriminate
associative and semantic relations. The priming coeffi-
cient obtains good accuracy around80% for most values
of m, excluding the valuem = 1. The discriminative
ability of the priming coefficient improves for distance
values around 6 or 7 (although the differences in perfor-
mance are not statistically significant). In Table 3, the

Hit-based Accuracy
metrics Total related. Priming coef.

J 53.2% 86.5%
C 52.7% 86.5%
I 56.5% 85.7%
G 62.9% 86.5%

Table 3: Classification accuracy for total relatedness and
priming coefficient.

classification precision is summarized for a number of
hit-based metrics for the total relatedness and priming
coefficient. These results were obtained by joining the
individual features for distancesm = 0, . . . , 10 into a
single vector. Again, significantly higher results, up to
86.5%, are achieved by the priming coefficient. There is
no significant difference among the hit-based metrics.
In Fig. 1(b), the classification accuracy as a function
of the window sizeH is shown for: (i) context-based
similarity SH(wi, wj) computed according to (6) (solid
line), and (ii) similarity slopeSHx

Hy
(wi, wj) computed

according to (11) (dotted line). For both of them, the
binary B weighting scheme was used. Context-based
similarity SH(wi, wj) is shown to be a relatively poor
discriminator of associative vs semantic relations, and
the achieved accuracy remains low,55% − 62%, for all
values ofH . The similarity slopeSHx

Hy
(wi, wj) met-

ric also performs poorly with the exception of win-
dow H = 2; performance forSH=2

H=1 (wi, wj) exceeds
70% accuracy. Classification accuracies for both met-
rics SH(wi, wj), SHx

Hy
(wi, wj) and for bothB andLTF

weighting schemes are presented in Table 4. Results
are computed for the joined feature vector containing
values computed for contextual window sizesH =
1, . . . , 10. For comparison, we have also included the
accuracy for three WordNet-based similarity metrics,
namely Leacock-Chodorow (Leacock and Chodorow,
1998), Resnik (Resnik, 1995), and Vector (Patwardhan
and Pedersen., 2006). These metrics were computed us-
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Figure 1: Classification accuracy for: (a) total relatedness ΛJ
m(wi, wj), and priming coefficientΨJ

m(wi, wj) as a
function of distancem for the Jaccard (J) hit-based metric, (b) semantic similaritySH(wi, wj) and slopeSHx

Hy
(wi, wj)

metrics as a function of the window sizeH , using the binaryB weighting scheme. Histograms for associative and
semantic pairs: (c) priming coefficientΨJ

5 (wi, wj), (d) similarity slopeSH=2
H=1 (wi, wj).

Metrics of semantic similarity Accuracy

SH(wi, wj), B scheme 62.6%
SH(wi, wj), LTF scheme 62.6%

SHx

Hy
(wi, wj), B scheme 71.8%

SHx

Hy
(wi, wj), LTF scheme 64.3%

WN: Leacock-Chodorow 71.0%
WN: Resnik 75.6%
WN: Vector 54.2%

Table 4: Accuracy for context-based similarity, similarity
slope and WordNet-based (WN) similarity metrics.

ing the WordNet::Similarity package, developed by Ped-
ersen and it is freely available through CPAN3. The
SH(wi, wj) similarity metrics achieve relatively low ac-
curacy, below63%. WordNet-based metrics display di-
verse performance ranging from54.2% for the Vector
metric to 75.6% for the Resnik metric. The accuracy
achieved by the slopeSHx

Hy
(wi, wj) metric is up to71.8%

for theB weighting scheme.
To further investigate the behaviour of the best perform-
ing features, we have plotted their histograms for asso-

3http://search.cpan.org/

ciative and semantic word pairs. In Fig. 1(c), we show
the histogram for the priming coefficientΨJ

5 (wi, wj).
The priming coefficient for the associative relations tends
to be lower than that of semantic relations, especially
for larger values of distancem. The histograms of the
values ofSH=2

H=1 (wi, wj) metric are shown in Fig. 1(d).
Both histograms have positive means, i.e., context-based
semantic similarity increases when going from window
size one to size two. However, the increase for associa-
tive relations is higher.

We have also combined the best performing features:
(i) ΨG

m priming coefficient using theG hit-based metric,
and (ii)SHx

Hy
(wi, wj) text-based metric usingB scheme,

by simply taking the union of their feature sets. This
combination achieved slightly higher accuracy of 87.8%.
Finally, we report results separately on dataset 2 that con-
tains synonyms as semantic pairs, and compare the re-
sults with datasets 1 and 3. The results are presented in
Table 5. Note that the accuracy drops for dataset 2 (syn-
onyms) for both the priming coefficient and, especially,
the similarity slope. This is an indication that synonyms
might be harder to separate from associative pairs; how-
ever, due to the limited size of dataset 2 (29 assoc. and
29 sem. relations) no general conclusions can be drawn.
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Features Set 1, 3 Set 2 All sets

ΨG
m(wi, wj) 87.7% 82.8% 86.5%

SHx

Hy
(wi, wj) 76.1% 56.9% 71.8%

Both features 87.8%

Table 5: Accuracy for datasets 1, 3 vs dataset 2.

Also, some preliminary results on the classification be-
tween semantic and associative relations using linguis-
tic patterns (on the same web corpus) are provided.
The most accurate pattern for associative relations is A1
(complex NPs) achieving classification accuracy of 66%.
For semantic relations the S1 pattern with coordinative
constructions performs better, although its performance
is below 60%. When all four patterns were used classifi-
cation accuracy of up to 73.5% is achieved.
Last, in order to further validate our best performing fea-
ture, ΨG

m, we used some types of relations taken from
the field of semantic role labeling, assuming that they
can serve as associative ones. Regarding semantic rela-
tions we retained the relations of dataset 1. In particular,
we considered four distinct types of relations taken from
the SemEval2010–Task 8, “Multi-Way Classification of
Semantic Relations Between Pairs of Nominals” (Hen-
drickx et al., 2010): (i) “Cause–Effect”, (ii) “Instrument–
Agency”, (iii) “Component–Whole”, and (iv) “Member–
Collection”. For each type of the above relations, we
created a distinct dataset including the semantic relations
of dataset 1 and an equal number of randomly selected
examples. For each dataset we evaluated the proposed
priming coefficient regarding the classification of seman-
tic and associative relations. For all datasets the classi-
fication accuracy is very similar and exceeds80%, even
for medium values of distance (m = 3). These results
provide an additional confirmation regarding the good
performance of the proposed feature, while they are con-
sistent with the results obtained for the datasets assem-
bled by cognitive scientists.

8. Conclusions
Motivated by findings in the psycholinguistics and com-
putational linguistics literature, we investigated the prob-
lem of automatically classifying relations between words
into either associative or semantic, using information ex-
tracted from the web. Two new features were proposed
designed specifically for this classification task, namely,
the priming coefficient measuring the asymmetry in the
order of appearance of the word pair and the first-order
difference (slope) of the context-based semantic similar-
ity with respect to the contextual window size. For as-
sociative relations the priming coefficient takes signif-
icantly smaller values as the distance between the two
words increases, while for semantic relations priming is
less affected by word distance. For words that are se-

mantically related their contextual similarity is higher
for immediate rather than for distant context (small vs.
large contextual windows); for associative relations con-
text similarity is less affected by window size. The prim-
ing coefficient is shown to be a good feature for discrim-
inating between the two classes, achieving classification
accuracy up to 86%. The slope of the contextual similar-
ity achieves good classification results, up to72% accu-
racy. Overall, we have shown that it is feasible to classify
associative and semantic relations without using lexical
or syntactic patterns, but rather general linguistic proper-
ties measured through lexical corpus statistics, e.g., order
of appearance, co-occurrence, distance, contextual simi-
larity. We make available4 a resource containing more
than9.000 priming coefficients, computed for the pairs
of the experimental datasets.
Further research is needed with larger datasets to ver-
ify the universality of these claims. Also special cases
of associative and semantic relations should be investi-
gated and the relative performance of the proposed fea-
tures should be evaluated. The proposed features could
be also relevant for investigating the differences between
various types of semantic relationships, as well as for
studying the priming phenomenon across different lan-
guages within the proposed computational framework.
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