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Abstract

We address the problem of automatic classification of ageeiand semantic relations between words, and partlgdtasse that hold
between nouns. Lexical relations such as synonymy, hypgyfiyyponymy, constitute the fundamental types of semanedimtions.
Associative relations are harder to define, since they dechilong list of diverse relations, e.g., “Cause-Effeciiistrument-Agency”.
Motivated by findings from the literature of psycholingigst and corpus linguistics, we propose features that takeraage of
general linguistic properties. For evaluation we mergaddtdatasets assembled and validated by cognitive st¢gent#sproposed
priming coefficient that measures the degree of asymmetiheénorder of appearance of the words in text achieves thedieest
sification results, followed by context-based similaritgtnics. The web-based features achieve classificatiomangcthat exceedss%.

Keywords: associative relations, semantic relations, priming

1. Introduction other words, which is more of an associative relation-

_ o ship (e.g., postman — letter). Other technologies might
We address the problem of automatic classification of asy,qq relationships in a differentway: spoken dialogue sys-

sociative and semantic relations between words, and pafams often have an ontology of semantically related con-

ticularly those that hold between nouns. Lexical relationsteptS (which one can attempt to learn from corpus data
such as synonymy, hypernymy/hyponymy, constitute thepageliis et al., 2004)); query expansion techniques for

fundamental types of semantic relations (Cruse, 1986}¢5mation retrieval have also utilized semantically re-

Associative relations are harder to define, since they inj;aq concepts (Fang, 2008). On the other hand, infor-
clude along list of diverse relations, e.g., "Cause-Effect 5ion extraction tasks may benefit from knowing asso-

“Instrument-Agency”. From the perspective of cogni- sjasive relationships between words, since the contextual
tive scientists, associative relatedness is triggereth®y t ;- ¢ormation leading to a decision to extract some piece

co-occurrence of words (McNamara, 2005), while the ¢ information is more likely to be associative in nature.
definition of semantic relatedness is controversial. They propose an automated computational approach that
boundary between semantic and associative relations {gscriminates between associative and semantic rela-
not always clear, since highly associated words tend {jons  Text-based lexical and hit-based features are ex-
be semantically related, e.g., (cat,dog). tracted from the web in order to classify given pairs of
Previous research efforts have investigated semantic r%oncepts as semantic or associative. These features do
lations, such as the identification of synonyms, (losif andnhot rely on manually selected syntactic patterns, such as
Potamianos, 2010), hyponyms, (Caraballo, 1999). AlsoHearst's patterns for the identification of “is-a” relation
the identification of other relations has attracted the reand semantic role labeling, but are rather motivated by
search interest, e.g., the Task 8 of SemEval'10 dealt witlyeneral cognitive and linguistic principles. Specifically
the classification of various relations (HendriCkX et al.,We propose two novel features: (a) the degree of pr|m|ng
2010). To our knowledge there have been very few comy¢co-occurrence asymmetry) as a function of the distance
putational efforts for the discrimination between associa petween the two words in text, and (b) the rate of change
tive and semantic relations, e.g., (Turney, 2008). of context-based lexical similarity as a function of the
Such classification can be beneficial for a wide range otontext window size. Evaluation proceeds on a dataset
language technologies. For example, in statistical laneontaining238 associative and semantic relations, which
guage modeling, class-based language models (Brown étey were appropriately assembled by cognitive scien-
al., 1992) have long been used to extend the coverage oits in order to exclude any fuzzy relations.

the model — words in classes should typically be seman-

tically related (i.e., sister hyponyms of the same hyper- 2. Related Work

nym). However, trigger models (Lau et al., 1993) try to Semantic similarity metrics can be divided into two
find words that change the probability distribution overbroad categories: (i) metrics that rely on knowledge re-
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sources, and (ii) corpus- or web-based metrics that do ndlutual information (I): (as defined in (Bollegala et al.,
require any external knowledge source. A representa2007)) computes the similarity between andw; by

tive example of the first category are metrics that exploitcalculating the mutual dependence of the random vari-
the WordNet ontology (Miller, 1990). For computing the ablesi¥; andW; that represent the number of documents
similarity between words these metrics incorporate feaindexed byw; andw;, respectively. It is defined as the
tures such as the length of paths between the two wordsoint-wise mutual information betweé#; andW:
(Resnik, 1995; Jiang and Conrath, 1997) or the infor-

mation content of their least subsumer, estimated from a \D:xug,wjl
corpus (Wu and Palmer, 1994; Leacock and Chodorow, I(w;,w;) = log ‘Dw“ﬁ (3)
1998). WordNet glosses are also used as features in (Pat- D[ |D|‘7

wardhan and Pedersen., 2006). A study that reviews in

depth the major WordNet-based metrics is provided inAccording to this info-theoretic measure, if two vari-
(Budanitsky and Hirst, 2006). Corpus-based metrics usuables are independent, the knowledge of the one variable
ally extract contextual features from text for computing does not provide any information about the other, and
semantic similarity. Web-based methods employ searckheir mutual information equals ta

engines to estimate the frequency of word co-occurrenc&oogle-based Semantic Relatedness (@)he Normal-
(Vitanyi, 2005; Gracia et al., 2006; Turney, 2001) or con-ized Google Distance is a dissimilarity metric proposed
struct corpora (Bollegala et al., 2007; losif and Potami-in (Vitanyi, 2005; Cilibrasi and Vitanyi, 2007). It is de-
anos, 2010). The identification and extraction of otherfined as:

types of relations has been mainly studied through the
use of linguistic patterns. Lexico-syntactic patternsever
applied in the influential work of Hearst (Hearst, 1992),
for the identification of hyponymy, followed by numer-
ous similar approaches, e.g., (Caraballo, 1999). Patterrwhere L = {log|D;w;|, log|D;w,|}. This metric is
based approaches were also employed for the meronymynbounded, assigning dissimilarity scores that range

max{L} —log | D; w;, w; |
FE(w; ) — 4
(i, w5) log |D| —min{L} ~ @)

relation (Girju et al., 2003). from 0 to co. The Normalized Google Distance was
_ _ adopted in (Gracia et al., 2006) in order to propose a
3. A Review of Web-based Metrics bounded (in0, 1]) metric, called Google-based Seman-

In this section, we review two types of web-based metricdic Relatedness, defined as:
(losif and Potamianos, 2010): web-page counts (hits)
for computing relatedness between words, and contex- G(wi, w;) = e 2Blwiwa), ®)
tual features for computing semantic similarity.
3.2. Context-based metrics

3.1. Hit-based metrics . .
Th derlvi i ¢ hit-based metrics is th The fundamental assumption behind context-based met-
€ underlying assumption ot hit-based metrics 1s atrics is thatsimilarity of context implies similarity of

two words that co-exist in the same document are re-

meaning(Harris, 1954). A contextual window of size
lated. ~ Sets of documentsD} returned by a search 2H + 1 words is centered on the word of interastand

Engln; with query \_ch[Ldsw"" '('ji’“;?;f”. are tngtited lexical features are extracted. For every instance of
y_ {Dswi, .., wign}; the car 'r;a'yd.'?f noted by e corpus théf words left and right ofv; formulate
ﬁ ’tﬁ’iis’ W(‘);E_’”” |- We investigate four different metrics ;o510 vector;. For a given value off the context-

based semantic similarity between two wordsandw;,

Jaccard coefficient (J): computes the relatedness be- is computed as the cosine of their feature vectors:

tweenw; andw; by employing the overlap of document

sets in which they appear, i.e., oy
y app SH(wj,,wj) _ ﬁ (6)
(3 Uj

_ | D; wi, w; |
| D; wi |+ [ D w; | — | D; wi, wy |

J(wi, wy) 1)

The elements of feature vectors are weighted according
The Jaccard coefficient takes values betweefiotal 0 tWo schemes: 1) Binary (B), and 2) Log of Term Fre-
dissimilarity) andl (absolute similarity). guency (LTF). B assignsto a feature if it appears within

Dice coefficient (C): a variation of the Jaccard coeffi- the context ofw;, otherwise(. According to the LTF
cient, also takes values [f, 1]. Itis defined as: scheme, the weight assigned to a contextual feature is a

function of the logarithm of its frequency, normalized by
2 | D;w;, wj| the logarithm of the frequency af;. For more details

Clwi, w)) = | Dsw;| + | Dyw; | @) consult (losif and Potamianos, 2010).
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4. Associative and semantic features the priming coefficient, we propose to use the normal-
In this section, we propose two novel features for dis-ized hit-based metrics defined in Section 3.1. We intro-

criminating between associative and semantic relation§UC€ & variation of hit-based metrics that computes sepa-
using information automatically extracted from the web."tely forward and backward co-occurrence counts, con-

Syntactic patterns are also investigated as features. ~ ditioned on the distancé between words. For a word
pair (w;, w;), the forward relatedned?; ,,, is defined as

4.1. Hit-based priming coefficient
Hit-based metrics (summarized in Section 3.1.) employ

co-occurrence counts without taking into account: (i) thecomputed only for forward co-occurrence counts with
order of appearance of each word, and (ii) the distanc@jstanced that is equal ton words. FunctionA(.) de-

(i.e., the number of words that intervene) between ocnotes any of the hit-based metric defined in Section 3.1.
currences of the two words. NeXt, we motivate the Us%im”ar'y, backward relatedness is defined as:

of these features for classifying associative and semantic

relations. Rém(wi, w;) = Alwj, w;;d = m). (8)
The use of word order is motivated by findings in cogni- _ _

tive science and psycholinguistics, about the asymmetryotal relatednes&? is defined as the sum of the forward
of the priming phenomenon with respect to word pairs.and backward relatedness

In psycholinguistics, the notion of priming refers to the " 4

cognitive processing that takes place when two words in A (wi wj) = Rf,m(wi» wj) + Ry (wi, wj)  (9)

a certain order are presentued_to ? human subject_. In thﬁ)r metric A, word pair
framework, the first worgh (“prime”) serves as a stimu-

R“{m(wi,wj) = A(w;, wj;d = m), @)

(w;, w;) and distance equal .

” . . . Finally, the priming coefficient’#} is defined as the nor-
lus that facilitates (or primes) the cognitive processing o malized absolute difference between forward and back-
the second word (“target”) (McNamara, 2005). The se- ward relatedness

lection of prime and target is determined experimentally

for each word pair based on human response time, where _
response time is assumed to be inversely proportional to W(wi, wj) =
the strength of priming (or relatedness). Once the prime

and target are defined, their usual orgett) is knownas  The priming coefficient is equal t© when the forward
“forward”, while the reverse ordet (p) is called “back-  and backward co-occurrence counts are equal (no prim-
ward”. It has been found that the difference betweening) and1 when a word pair only appears with the for-
forward and backward priming is statistically significant ward (or backward) order (very strong priming).

for many related word pairs, e.g., responses to the pair

(‘light’,'bulb’) were reported to be quicker than the re- 4.2. Slope of text-based similarity

sponses to the pair (‘bulb’,‘light’) (McNamara, 2005; In Section 3.2., a context-based metric was defined that
Koriat, 1981). Similar observations regarding the asym-as been used in the literature for estimating the strength
metry of order of appearance within co-occurrence weref semantic relations between words. In general, the
also reported in the NLP literature (Church and Hanksstrength of both semantic and associative relations covers
1990). However, data related to this phenomenon have wide range from weak to strong; as a result, the relation
been analyzed without further exploration of the cogni-strength by itself is a poor discriminator of the semantic
tive aspects of the problem. VS associative class.

Our goal is to define a “priming coefficient”, i.e., a sin- Based on observations in psycholinguistics (Ferrand
gle metric that characterizes the degree of asymmetry iand New, 2003) and computational linguistics (Hearst,
the forward and backward co-occurrence counts. Sinc&992), words that are semantically similar, especially
priming is sensitive to ordering, we compute“forward” synonyms and words that belong to the same semantic
and “backward” co-occurrence counts (as a function ofclass, can be identified by lexico-syntactic patterns from
the distance between words) for each word pair. Wetheir immediate vicinity. For this case, context-based se-
expect that word pairgp(t) with strong priming should mantic similarity metrics are also shown to better corre-
appear much more often in the forward rather than thdate with human judgements when small contextual win-
backward order. We expect priming to be a good discrim-dows are used to compute similarity (losif and Potami-
inator between associative and semantic relations as psgnos, 2010). Associative relations often imply a shared
cholinguistics have suggested that priming effects can bpragmatic context that is also evident from lexical sim-
of different magnitude for these different relations (Rlau ilarity in the not-so-immediate vicinity. Thus, the rel-
1995; Ferrand and New, 2003). evance of lexical features extracted from context is ex-
Instead of using raw co-occurrence counts to estimatpected to be a function of the contextual window size.

‘ R?,m(wi? w]) - Rém(wl’ w.]) |
R‘f“m(wi, wj)+Rém(wz, ’LUj)

(10)
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According to the above considerations, we assume thaif a standardized dataset of adequate size is a barrier
the migration from syntactic to pragmatic features by in-to computational approaches that require fair amounts
creasing the size off, will affect differently the context of data for training and testing. In this work, we have
similarity of associative and semantic relations. For thismerged datasets taken from three different studies from
purpose, we compute the difference of semantic similarthe literature of psycholinguistics (Chiarello et al., 099

ity scores across different sizes Bf. In particular, we Perea and Gotor, 1997; Ferrand and New, 2003) for a
focus on window sizes that differ exactly by one (first- total of 238 relations, equally split betweehl9 asso-
order differences). Consider two words andw;. The  ciative and119 semantic relations (Table 1). All three
difference of their similarity scores with respect to win-
dow sizes H, and H,, is computed as:

| Dataset No| # of semantic rel.| # of associative rel]

1 42 42
She (w, wy) = M (wy, wy) — 7 (wy, wy),  (12) > 5 s
I 3 2 2
for H, — H, = 1. The similaritiesS= (w;,w;) and 9 0
Total | 119 | 119 |

SHy(w,;,w;) are computed according to (6). |

L Table 1: Experimental datasets.
4.3. Linguistic patterns

We also examine whether specific syntactic patterns caf@t@sets were designed for psycholinguistic experiments
discriminate between associative and semantic relation§elated to priming, and contain only “pure” associative
By manual inspection of our data we have summarized@nd semantic relations, avoiding word pairs that lie in the
the most common patterns for associative ([A1],[A2]) Poundaries of the two relations. Well-established lists of

and semantic ([S1],[S2]) relations, respectively: free association norms, e.g., (Palermo and J_enkins, 1964;
[A1] Complex Noun Phrases (NPs): Nelson et al., 1998), were used for the selection of “pure

) associatively related pairs. Such lists are constructed by
\[,fl\;fjée”glnlg%;“i[év ]CD ;”Sﬁlr‘gg méi]r]éctﬁl.g#omocs:iffgce collecting the responses of human subjects when stimL_JIi
waves or from pressure fluctuations.” words are presented to them and the.y are asked to give
: the very first word they recall. Regarding “pure” seman-
[A2] Terms co-occurring in argument positions: tic relations,_the rt_ale\_/ant _pairs were selected acc_:ording
[NPiermi[VP[N Pierma]l], €.9., “..why dogi- to the following criteria: (i) the words of each pair are
raffes have longnecks..” members of the same semantic category and they have
high similarity score, and (ii) they are not included in
[S1] The two terms in coordinative constructions: lists of free association norms. The similarity score in-
[N Piermi] AND|OR [N Pierm2], €.0., ‘Beet and  corporated by the first criterion typically is estimated by
radish roots are similar in shape, but beets are usu<collecting similarity ratings given by subjects.
ally larger than radishes.” The semantically related pairs in datasets 1 and 3 consist

[S2] The two terms in extended coordinative Construc_exclusively of words that belong to the same semantic

: . : g category, i.e., hyponyms of the same hypernym. The se-

tions, involving one additional NP between the . . . .
T mantically rel irsin 2 consist of words with

NPS Of intereStiN Py mijzerms] + [V P] AND|OR antically related pairs in dataset 2 consist of words wit

; various degrees of synonymy. Some indicative examples
[N Picrmijterma)s €.9., “... professionaarpet, up- 9 ynonymy P

holstery and rug cleaners in the Chicago ... ”

| Dataset No| Semantic rel. | Associative rel.]
Overall, associative noun pairs are expected to surface as 1 brass—iron onion—tears
arguments of the same phrase: in pattern A1 one NP is 1 velvet—linen hammer—nail
contained into the other, while in pattern A2 both NPs 1 bacon—steak pilot—plane
are manifested in the argument positions of the same VP 2 boat—ship board—wood
(subject and object of the verb). Semantically related 2 work—labor nucleus—centel
noun pairs form NPs that are structurally independent of 2 fume—steam hour—clock
each other; when they co-occur in close proximity they 3 Clarinet—fiute drill=hole
are usually connected with conjunctions. 3 pancake—waffld  cow—milk

3 rug—carpet suitcase—trip

5. Experimental Dataset
There are relatively few datasets containing rated as-

sociative or semantic relations between word pairs oof the relations included in the experimental datasets are
presented in Table 2.

terms, most of them containing fewer thighpairs. Lack
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6. Experimental procedure In Fig. 1(a), the classification accuracy is shown for:
We compute hit-based metrics and text-based metric§) total relatedness\;, (w;, w;), computed according to

through web search engines as described below: (9) (solid line), and (ii) priming coefficient;, (w;, w;),
computed according to (10) (dotted line). Classification
6.1. Hit-based metrics accuracy is plotted as a function of, the distance be-

The number of word co-occurrences is estimated by Yaiween words. It is clear that total relatedness achieves
hoo! search APIthat returns the number of web hits Very poor accuracy that lies close to chance. The poor
given a particular query. We wish to compute the num-Performance at: = 0 is an indication that the asymme-
ber of hits for the word paifw;, w;) under the following ~ try of priming at the bigram level can not discriminate
constraints (iyv; precedess;, and (ii) their distance, de- associative and semantic relations. The priming coeffi-

fined in Section 4.1. as the number of intervening words¢ient obtains good accuracy arousfiys for most values
is equal tom, i.e., m = 2. This is achieved by the ©f m, excluding the valuen = 1. The discriminative

query “w; * x w;” for m = 2. The “*” symbol is a ability of the priming coefficient improves for distance
special search metacharacter, matching any word (Bolalues around 6 or 7 (although the differences in perfor-
legala et al., 2010). Using this query formulation, we mance are not statistically significant). In Table 3, the
retrieve the number of hits for both forward and back-

ward ordering of the words up to a particular distance Hit-based Accuracy

m. Once the number of hits is retrieved, the total related- metrics | Total related.| Priming coef.

nessA? (w;, w;) is computed according to (9), for each J 53.2% 86.5%

of the hit-based metricd. Similarly, the priming coef- C 52.7% 86.5%

ficient U2 (w;, w;) is computed according to (10). For I 56.5% 85.7%

each word pairAZ (w;, w;) and W24 (w;,w;) are com- G 62.9% 86.5%
gg;e%rujggr:zg gf;g; ia(iec.i .rie;réf ={/C LG} Table 3: Classification accuracy for total relatedness and

priming coefficient.

6.2. Text-based metrics classification precision is summarized for a number of
For the computation of text-based semantic similarityhit-based metrics for the total relatedness and priming
between the words of associative and semantic relagoefficient. These results were obtained by joining the
tions, we need to build a corpus from the web. Forindividual features for distances = 0,...,10 into a
each word paifw;, w;), we downloadl000 snippets of  single vector. Again, significantly higher results, up to
web documents using the Yahoo! Search API. The wel6.5%, are achieved by the priming coefficient. There is
search is performed according to the conjunctive querno significant difference among the hit-based metrics.
“w; AND w;", ensuring that both words co-occur in the In Fig. 1(b), the classification accuracy as a function
same snippet, for reasons explained in (losif and Potamiof the window sizeH is shown for: (i) context-based
anos, 2010). Once the snippets are retrieved, we consimilarity S (w;,w;) computed according to (6) (solid
pute for each word pair: (i) the semantic similarity SCOre,jing), and (ii) similarity sIopeSI’}{“ (wi,w;) computed

S (w;,w;), according to (6), and (ii) the difference of according to (11) (dotted line). ‘For both of them, the
similarities across different window SiZ&Sﬁ; (wi,w;),  binary B weighting scheme was used. Context-based
according to (11). The similarities are computed usihg  similarity S (w;,w;) is shown to be a relatively poor
andLTF weighting schemes (Section 3.2.) for contextualdiscriminator of associative vs semantic relations, and

window sizesH =1, ..., 10. the achieved accuracy remains Ia&¥%% — 62%, for all
_ values of H. The similarity slopesSy;* (w;,w;) met-
7. Evaluation Results ric also performs poorly with the exception of win-

In this section, we present results for associative vs sedow H = 2; performance forS#=2(w;,w;) exceeds
mantic relation classification using the dataset describe@0% accuracy. Classification accuracies for both met-
in Section 5. We used the support vector machine classkics S (w;, w;), St (w;, w;) and for bothB and LTF

fier provided by Wek similar results were obtained us- weighting schemes are presented in Table 4. Results
ing naive Bayes classifier (not reported here due to laclkare computed for the joined feature vector containing
of space). The evaluation was performed according to aalues computed for contextual window sizés =

10-fold validation procedure. The evaluation results arel, ..., 10. For comparison, we have also included the

reported in terms of classification accuracy. accuracy for three WordNet-based similarity metrics,

namely Leacock-Chodorow (Leacock and Chodorow,

http://developer.yahoo.com/search/ 1998), Resnik (Resnik, 1995), and Vector (Patwardhan
2http:/iwww.cs.waikato.ac.nz/mliweka/ and Pedersen., 2006). These metrics were computed us-
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Figure 1. Classification accuracy for: (a) total relatedngg, (w;,w;), and priming coefficien®v?/, (w;,w;) as a
function of distancen for the JaccardJ) hit-based metric, (b) semantic similarigf’ (w;, w;) and slopesgj (Wi, wj)
metrics as a function of the window siZ€, using the binaryB weighting scheme. Histograms for associative and
semantic pairs: (c) priming coefficielt! (w;, w;), (d) similarity slopeSH=2(w;, w;).

| Metrics of semantic similarityl Accuracy | ciative and semantic word pairs. In Fig. 1(c), we show
S™ (w;, w;), B scheme 62.6% the histogram for the priming coefficient? (w;, w;).
ST (w;, w;), LTF scheme 62.6% The priming coefficient for the associative relations tends
ng (w;,w;), B scheme 71.8% to be lower than tha@ of semantic rglations, especially
ST+ (w,, w,), LTF scheme | 64.3% for larger vglzuzes of dlstanoe_L. The hlstog_ram_s of the
u values ofSy; =7 (w;, w;) metric are shown in Fig. 1(d).
WN: Leacock-Chodorow | 71.0% Both histograms have positive means, i.e., context-based
WN: Resnik 75.8% semantic similarity increases when going from window
WN: Vector 54.2% size one to size two. However, the increase for associa-
Table 4: Accuracy for context-based similarity, similgrit UVe refations is higher.
slope and WordNet-based (WN) similarity metrics. We have also combined the best performing features:

(i) ¥¢ priming coefficient using thé&' hit-based metric,
ing the WordNet::Similarity package, developed by Ped-and (ii) SII}' (w;, w;) text-based metric using scheme,
ersen and it is freely available through CPANThe by simply ytaking the union of their feature sets. This
SH (w;,w;) similarity metrics achieve relatively low ac- combination achieved slightly higher accuracy of 87.8%.
curacy, belows3%. WordNet-based metrics display di- Finally, we reportresults separately on dataset 2 that con-
verse performance ranging frofa.2% for the Vector tains synonyms as semantic pairs, and compare the re-
metric t0 75.6% for the Resnik metric. The accuracy sults with datasets 1 and 3. The results are presented in
achieved by the slopﬁg; (w;,w;) metricisuptdr1.8%  Table 5. Note that the accuracy drops for dataset 2 (syn-
for the B weighting scheme. onyms) for both the priming coefficient and, especially,
To further investigate the behaviour of the best perform+the similarity slope. This is an indication that synonyms
ing features, we have plotted their histograms for assomight be harder to separate from associative pairs; how-
ever, due to the limited size of dataset2® @ssoc. and
3http://search.cpan.org/ 29 sem. relations) no general conclusions can be drawn.
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| Features | Setl,3| Set2 | Allsets | mantically related their contextual similarity is higher

UC (wi,w;) | 87.7% [ 82.8% | 86.5% for immediate rather than for distant context (small vs.
ST (w; w;) | 761% | 56.9% | 71.8% large contextual windows); for associative relations con-
Botuh features 87.8% text similarity is less affected by window size. The prim-

ing coefficient is shown to be a good feature for discrim-
Table 5: Accuracy for datasets 1, 3 vs dataset2.  jnating between the two classes, achieving classification
accuracy up to 86%. The slope of the contextual similar-
Also, some preliminary results on the classification be-ty achieves good classification results, ugr&¥ accu-
tween semantic and associative relations using linguisracy. Overall, we have shown that it is feasible to classify
tic patterns (on the same web corpus) are providedassociative and semantic relations without using lexical
The most accurate pattern for associative relations is Abr syntactic patterns, but rather general linguistic prope
(complex NPs) achieving classification accuracy of 66%ties measured through lexical corpus statistics, e.gerord
For semantic relations the S1 pattern with coordinativeof appearance, co-occurrence, distance, contextual simi-
constructions performs better, although its performancéarity. We make availablé a resource containing more
is below 60%. When all four patterns were used classifithan 9.000 priming coefficients, computed for the pairs
cation accuracy of up to 73.5% is achieved. of the experimental datasets.
Last, in order to further validate our best performing fea-Further research is needed with larger datasets to ver-
ture, ¥&, we used some types of relations taken fromify the universality of these claims. Also special cases
the field of semantic role labeling, assuming that theyof associative and semantic relations should be investi-
can serve as associative ones. Regarding semantic relgated and the relative performance of the proposed fea-
tions we retained the relations of dataset 1. In particulartures should be evaluated. The proposed features could
we considered four distinct types of relations taken frombe also relevant for investigating the differences between
the SemEval2010-Task 8, “Multi-Way Classification of various types of semantic relationships, as well as for
Semantic Relations Between Pairs of Nominals” (Hen-studying the priming phenomenon across different lan-
drickx et al., 2010): (i) “Cause—Effect”, (ii) “Instrument  guages within the proposed computational framework.
Agency”, (iii) “Component—-Whole”, and (iv) “Member—
Collection”. For each type of the above relations, we 9. Acknowledgements
created a distinct dataset including the semantic relationElias losif and Maria Giannoudaki were partially funded
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