Arabic Word Generation and Modelling for Spell Cheding

Khaled Shaalarp,Younes Samiht, Mohammed Attia®,
Pavel Pecin&, and Josef van Genabitht
oThe British University in Dubai, UAE

khaled.shaalan@buid.ac.ae
FHeinrich-Heine-Universitat, Germany
samih@phil.uni-duesseldorf.de
¢ Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic
pecina@ufal.mff.cuni.cz
tSchool of Computing, Dublin City University, Irel
{mattia,joseff@computing.dcu.ie

Abstract

Arabic is a language known for its rich and compiesrphology. Although many research projects haeeided on the problem of
Arabic morphological analysis using different teiciues and approaches, very few have addresseddhe of generation of fully
inflected words for the purpose of text authoridgailable open-source spell checking resourcesAi@bic are too small and
inadequate. Ayaspell, for example, the officialowse used with OpenOffice applications, containky 800,000 fully inflected
words. We try to bridge this critical gap by cregtian adequate, open-source and large-coveragelisbfdr Arabic containing
9,000,000 fully inflected surface words. Furthereydrom a large list of valid forms and invalid fies we create a character-based
tri-gram language model to approximate knowledgeualpermissible character clusters in Arabic, éngat novel method for
detecting spelling errors. Testing of this languagelel gives a precision of 98.2% at a recall d%0We take our research a step
further by creating a context-independent spelliogrection tool using a finite-state automaton theasures the edit distance
between input words and candidate corrections,Nbsy Channel Model, and knowledge-based rules. §ystem performs
significantly better than Hunspell in choosing best solution, but it is still below the MS Spellecker.

Keywords: Arabic, spelling error detection and correctidnijté state morphological generation, characteetidanguage model,
Arabic open-source spell checker

of 1,000,000,000 words. We automatically matchttz

1. Introduction word lists against the Microsoft Spell Checker {ire
With the advent of the era of free and open-source©ffice 2010 suite) to determine how many words are
software, the need for language resources has ecomaccepted and how many are rejected. We note heatha
even stronger. Very few researchers and develdpers this stage, the acceptance and rejection decisipridS
tried to develop a free alternative to the propigt Spell .Checker are takeper se ywthout any further
Microsoft Arabic spell checker. One example is the checking. The results are shown in Table 1.
Arabic Spelt open-source project (designed for Aspell),

; ; ; No. of MS MS
which relies on the Buckwalter morphological analys .
and generates about 900,000 inflected words. Amothe Words Accepted | Rejected
example is the Ayaspéiord list, which is the official AraComLey 12.951.04 | 8.783.85 | 4.167.18

resource used in OpenOffice applications. Deve®pér Arabic-Spell for 938 97 673 87! 265 10
this word list created their own morphological gexter, Aspell (using ’ Y ’

and their word list contains about 300,000 infldcte | gyckwalter

words. In this paper we use the term ‘word’ to geate 1 billion-word 2,662,781 | 1,202,48 | 1460,44
fully inflected surface word forms, while the term| corpus
‘lemma’ is used to indicate the uninflected basenfof (Gigaword and
the word without affixes or clitics. Al-Jazeera

Ayaspell for 292,46. 230,50t 61,95¢
We create a very large word list for Arabic using| Hunspel
AraComLex®, an open-source finite-state large-scalg Total* 15,147,19 | 9,306,13 | 5,841,06.

morphological transducer (as presented in Sectipn 2) _))
which generates about 13 million words, of which 9 Table 1: Arabic word lists matched against Microsof
million are found to be valid forms. For the sakk o *S_FI’_ey ?he_(l:lkert dd due to th | of dunties
comparison, we also use a word list created fraorpus otals will nota ue fo the removal ot dup

! http://sourceforge.net/projects/arabic-spell/fiabic-spell 4 http://arabic-wordlist.sourceforge.net/
2 http://ayaspell.sourceforge.net/ ® http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
® http://aracomlex.sourceforge.net/ catalogld=LDC2009T3

719

Proclitics Prefix Sten | Suffix Enclitic
Conjunction Complementize Tense/mood - | Verk | Tense/mood - | Object
guestion articl number/gend: number/gend: pronour
Conjunctions 4, | Jli ‘to’ Imperfective tens Imperfective tens/| First persor
wa ‘and’ ors fa (5) (10) (2)
‘then’
Question worc| g sa ‘will’ Perfective tens| Stem | Perfective tens| Seconc
i ’a‘is it true (1) (12) person (E
that’ Jla ‘then’ Imperative (2 Imperative (5 Third persor

5)

Table 2 Possible concatenations in Arabic verbs

By comparing our list to other languages, we fimalt tfor
English there are, among other word lists, A&I®hich
contains 281,921 words, and SCOWL containing
708,125; for French, there is a word list that contains
338,989 words. The largest word list we find onwleb is

a Polish word list for Aspell containing 3,024,85Zhis
makes our word list one of the largest for any huma
language so far. Finnish and Turkish are agglutieat

3 shows how we use language modelling to prediad va
words versus invalid words. Section 4 shows how
finite-state edit distance (modified with knowledgased
rules) is used to provide spelling corrections dorors.
Finally Section 5 gives the conclusion.

2. Finite-State Word Generation
Arabic morphology is well-known for being rich and

languages with rich morphology that can lead to an complex Beesley and Karttunen, 2003; Watson, 2002;

exposition in the number of words, similar to Aglbut
word lists for these two languages are not avalablus
yet. We take the combined and filtered list of 338

Kiraz, 2001; Haji¢ et al., 2005). Arabic morphology has a
multi-tiered structure and applies non-concateeativ
morphotactics. Words in Arabic are originally forine

words as our spell checking word list and name it thyough the amalgamation of roots and patternshagn

“AraComLex Extended”.

A complete and conclusive word list of Arabic isnalst
impossible to obtain due to the high morphological
productivity of the language and the many constsain
which even experienced linguists might not be able
explicitly formulate. Therefore, we use a charatiased
tri-gram language model trained on the total MSeated
list in Table 1 to detect permitted vs. disallowgdsters

of characters. The result of our experiment (intisac

3.2) gives a precision of 97% at a recall of 10086 f Root oo
detecting valid and invalid word forms. drs
POS [V v N N
Having detected possible errors, the next steppsdvide Pattern| RiaRaR# | RigRiRaaR:a | RiARIR; | muRiaRz-iRs
an ordered list of candidate corrections. We dephzy lemma | darasa | darrasa dAris | mudar~is
study’ teach student’ | ‘teacher

full list of correct Arabic words in a finite-staé@itomaton
to propose candidate corrections for misspelleddsor
within a specified edit distance from the correcrds. In
order to rank the candidate corrections, a wordkthas
language model (trained on Gigaword corpus daizges
to assign scores to each correction. We also uspidaye
specific knowledge to help choose the best cowadéti a
given context.

The remainder of this paper is structured as falow
Section 2 illustrates the complexity of Arabic mioofogy
and show how the word list is created from the
AraComLex finite-state morphological generator. tiec

6 http://sourceforge.net/projects/wordlist/files/Ai5
Rev%204/agid-4.zip/download

7 http://sourceforge.net/projects/wordlist/files(SWL/
Rev%207.1/scowl-7.1.zip/download

8 http://www.winedt.org/Dict/

720

in Table 3. A root is a sequence of three consenant!
the pattern is a template of vowels with slots iwtach
the consonants of the root are inserted. This pood
insertion is called interdigitation (Beesley andrtianen,
2003). The resulting lemmas then pass throughiessef
affixations (to express morpho-syntactic featurasyl
clitic attachments (as conjunctions and preposstidar
example, are mostly joined to adjacent words intimg)
until they finally appear as surface forms.

Table 3. Root and Pattern Interdigitation

Due to the richness and complexity of Arabic
morphology, there is no corpus, no matter how lattzt
contains all possible word forms. Given a word maic,
one can change its form by adding or removing yet
another prefix, suffix, proclitic or enclitic. This why a
morphological generator is essential in creating an
adequate list of possible words.

As an example, possible concatenations and inflestin
Arabic verbs are shown in Table 2. All affixes atitics

are optional, and they can be connected togethex in
series of concatenations. The maximum number of
concatenations (of bound morphemes representingaff
and clitics) with Arabic verb lemmas is five.
Unconstrained concatenations for verbs can prodsce
many as 33,696 forms for a single verb lemma. &l re

constrained examples, some verbs, sucbfégakara ‘to

thank’, generate 2,552 valid forms. This considkrab
amount of form variation is a good indication okth

productive power of Arabic morphology.

Attia et al. (2011) build a large-scale open-source
finite-state morphological transducer for Arabic,
AraComlLex, that contains 30,587 lemmas. There are a
number of advantages of this finite-state technology that
makes it especially attractive in dealing with human
language morphologies (Wintner, 2008). Among these
advantages are the ability to handle concatenative and

non-concatenative morphotactics, compactness, high
speed, and efficiency.
No. of | Coverage | Accuracy | f-measure
Words
AraComLex | 12,951,042 | 0.9697 0.9803 0.9899
Arabic-Spell | 938,977 0.6553 0.6586 0.7917
for Aspell
1 billion- 2,662,780 | 0.9982 0.9845 0.9921
word corpus
Ayaspell for | 292,464 0.5529 0.5681 0.7190
Hunspell
AraComLex | 9,306,138 | 0.9840 0.9998 0.9999
Extended

Table 4: Comparison of coverage, accuracy and f-measure
of AraComLex Extended against other resources

Another main advantage of finite-state morphology is that
it is bidirectional, which makes it suitable for both
analysis and generation. We use this generation feature to
produce all the possible words within this morphology.
AraComLex generates 12,951,042 words. When
automatically validated wusing MS Spell Checker
4,167,186 forms are rejected, leaving 8,783,858 as
accepted forms, that is 68% of the data. At the current
stage, we just accept MS decisions without questions, yet
more validation is needed to check how accurate the MS
Spell Checker is in accepting and rejecting forms. The
word list that we have created will be available as an
open-source resource under GPLv3 license.

In order to test the the various components in this research
project, we create a test set of 400,000 words collected
from documents from Arabic news websites, and we
make sure that these documents are not included in the
Gigaword corpus. Words in the test set are automatically
marked by MS Spell Checker as either ‘correct’ or
‘incorrect’. We test the coverage, accuracy, and f-measure
of AraComLex Extended against this test set and compare
it to the other available resources, as shown in Table 4.
AraComLex Extended has the best scores in accuracy and
f-measure, and second best in coverage after the corpus.

3. Error Detection
We use two methods, the direct method, that is matching
against a word list, and a language modelling method in
case such a word list is not available.

721

3.1 Direct Detection

The direct way for detecting spelling errors is to match
words in an input text against a list of correct words. Such
a word list in Arabic can run into several millions as
shown earlier. This is why it is more efficient to use finite
state automata to store words in a more compact manner.
Input string can then be composed against the valid word
list paths and spelling errors will merely be the difference
between the two word lists (Hassan et al., 2008).

3.2 Detection through language modelling
Language modelling has been used frequently for the
purpose of spelling correction (Magdy and Darwish,
2006; Brill, Eric and Moore, 2000; Choudhury et al.
2007). However, here we build a language model in order
to help in the validation and classification of Arabic
words either in the existing word list or in new forms that
can be encountered at future stages. Arabic is challenging
for language modelling due to the high graphemic
similarity of Arabic words. This is shown by Ben
Othmane Zribi et al. (2003) who conducted an experiment
using four editing operations (addition, substitution,
deletion and interchanging two adjacent letters),
calculating the number of correct forms among the
number of automatically built forms (or lexically
neighbouring words) resulting from these editing
operations. They found that the average number of
neighbouring forms for Arabic is 26.5, which is
significantly higher than that for French, 3.5 and English,
3.0.

——
98 |

97 |

9% |

95 - s - . . s s - s

0 10 20 30 40 50 60 70 80 90 100

Figure 1: New Results of the LM classifier
identifying valid and invalid Arabic word forms

We build a character-based tri-gram language model
using SRILM? in order to classify generated words as
valid and invalid. We split each word into characters, and
create two language models: one for the total list of words
accepted as valid (9,306,138 words), and one for the total
list rejected as invalid (5,841,061 words) through MS
Spell Checker filtering as shown in Table 1 above. The
maximum word length attested in the data is found to be

® http://www.speech.sri.com/projects/srilm/

19 characters. We test the model against our &tsbfs
400,000 words. Figure 1 shows a precision-recallecof

the classifier. The curve represents precision racdll
scores of the detection of spelling errors basedhen
difference between the perplexity obtained by tbeept
model and the perplexity of the reject model. The
downward movement of the curve indicates that the
model is working quite reasonably giving a precisaf
98.2% at a recall of 100%. The model also achieves
precision of around 98,8% at a recall of 40%. We ca
identify 30% of all errors with a precision of 99%e.
with 1% false alarms only.

4. Spelling Correction

Having detected an error in spelling, the next stem
propose a list of corrections. We deploy finitetsta
automata to propose candidate corrections within a
specified edit distance measured by Levenshteitabie
(Levenshtein, 1966) from the misspelled word (Gdtaz
1996). Our implementation covers the edit distance
primitive operations of substitution, deletion and
insertion, in addition to the non-primitive opedaati of
transposition db — ba). After choosing candidate
corrections, we use the Noisy Channel Model (Sactio
4.2.2) trained on our corpus of one-billion wordsd
knowledge-based rules to assign scores to the aatedi
corrections and choose the best correction indeperaf

the context. In Section 4.2, we explain the ranking
procedures and compare the results against theoidiftr
Spell Checker in Office 2010 and Hunsell-ar (using
Ayaspell) used in OpenOffice.

4.1 Related work

Hassan et al. (2008) applied an edit distance isgell
correction approach to an Arabic dictionary of 322,
entries and tested it on words of lengths from 330
characters. Here we apply a similar approach tddtzs
word list of 9.3 million words, and we also apptya all
allowable word lengths from 2 to 19 characters. We

complement our approach by using knowledge-based

rules focused on the most common types of errass. F
example, Arabic writers are frequently confusedualbioe
placement ohamzahwhich can hav8 different forms (

¢ -3—is—1—35—1—)). Alif magsouraandyaa (s - <)
are often confused at the end of words, as oneenfi thas
two dots beneath and the other does not; the same with taa
marboutahandhaa (- - «), where one of them has two
dots above and the other does not.

Hassan et al. (2008) reported 89% auto-correctiofirét
order choice) accuracy, but they conducted the dast
only 556 words. Moreover, they did not indicate the
source of these errors and whether they are aetuals
extracted from real texts or whether they werdieidily
introduced. In this paper we test our first ordanking
(having the best correction first, also called ¢aut
correction) approaches on 1,799 naturally-occurirgg,
not machine-generated) spelling errors that araiodd

for testing.

We tried using Foma (Hulden, 2009) to generate the
finite-state automata, but although it worked njicsith
smaller datasets, it failed to read the full li§9& million
words apparently due to its huge size. The Xero®KF
successfully built a finite-state network for thénale
Arabic word list, and is used in the experimenfsoréad
below. The spelling-correction tool can be accessed
this temporary link’.

4.2 Correction Procedure and Evaluation

Ranking is an important feature of a spelling cleeckn
optimized ranking algorithm would yield a reduced
number of suggestions. Here we experiment with two
methods of ranking spellchecking candidates. Osulte
(Section 4.2.3) show that augmenting edit disteauoe
the Noisy Channel Model with knowledge-based rules
improved the accuracy of ranking by 6.8% absolute.

Our first approach consists of assigning weightetdaon
the edit distance between the misspelled word as&d af
correction candidates. We train the Noisy Channel
probability model on our one-billion word corpus
(Gigaword and Al-Jazeera). This model is used $oare
candidates so that two candidates might receiverdiit
weights for the same number of edits. Our second
approach differs from the first only in the edistdince
scoring mechanism. Unlike the first edit distanebgere
costs assignment is based on arbitrary letter ehang
augment the edit distance scoring mechanism witgsru
following the error patterns in the Arabic language
(Shaalan et al. 2003), so that letters belongirtecsame
groups will be assigned lower edit costs.

Here we present a step-by-step explanation of the
procedure we followed in spelling error correction.

1. All the misspelled words are extracted from a
test corpus of 400,000 words. The number of
misspelled tokens automatically identified by the
MS Spell Checker is 6,279.

After removing duplicates from the 6,279
misspelled tokens, the number dropped to 3,012
types.
The 3,012 types were manually reviewed to
create a gold standard correction for each
misspelled word. Sometimes, the word was not
actually misspelled, but was not known to the
spell checker. The count of real spelling errors
(true negatives) that have manual corrections is
1,799 types. There are 1,213 incorrectly detected
by MS Spell checker as errors (false negatives).
Manual analysis of this list of false negatives is
reported in Table 5.
a. We evaluate MS first order choice of
correction candidates for the 1,799
spelling errors against our manually

from a news corpus of 400,000 words especiallyaekéd

722

10 http://user.phil-fak.uni-duesseldorf.de/~samih/argihp

annotated gold standard, resulting in
80.54% accuracy.

We also evaluate Hunspell-Ayaspell
first order choice for the 1,799 spelling
errors, resulting in 45.64% accuracy.

spelling the errors (1,799) using edit distance 1
and 2.
For the misspelled words with candidates, we

form of an edit distance finite-state transducer. |
generates all possible words that are within edifadce
land 2 from the entries included in the word I3flézer,
1996; Hulden, 2009). It is basically a character-based
generator as it replaces each character with asipte

We generate a group of candidates for each ofcharacters in the alphabet as well as deletingriimg),

and transposing neighbouring characters. This is a
brute-force process that ends up with a huge Ifst o
candidates that need to be reduced and scoredltdio f

want to rank the candidates so that the bestout unnecessary words, only words that are fourithién

correction goes high up in the list. For this

word list (by the transducer) are passed to theescbhis

purpose we use two approaches: the first uses thes done by composing two automaéa . o. ed wherelex
Noisy Channel Model alone, and the second usesstands for the lexical items in the word list aadis the

the Noisy Channel Model with knowledge-based
language-specific heuristics.

Count
493

Examples

4 &Y1 African
4auall craftsmanship
4Ll comforting
oyl Biden

Sk McCain
Al Malcolm
4)l digitalizing
ida i)
democratization
il
personalized
<la gl lobbies
L5 sa3luY)
Islamophobia
<l 5 taboos
Cantll destroyed
Cwilss tales
Jiaale nobody
ke yoo

4 shans ll

A g

JsJkd sinful

as k) critical
&eaall soaked

Table 5: Analysis of false negatives in the tespus.

Type
Normal Words

Proper Nouns 364

Newly coined 222

Newly borrowed 38

Colloquial 39

Unknown 34

Classical 23

Figure 2 shows a diagram of the procedure for ranki
spelling error candidates. The finite state transdtakes
input and matches it against our list of 9.3 milliwords.

If a word is not found, it is considered as coritajna
spelling error and is passed to the ‘suggestioh lis
generator’ which uses the Edit Distance algoritton t
generate all words within distance 1 and 2 fromiipait
word. This is then passed to the candidate listresco
which uses the Noisy Channel Model (trained on the
corpus) and Edit Distance augmented with

language-specific rules. We post-process the output

before displaying suggestions. This process isaéxet
in more detail in the following sections.

4.2.1 Candidate Generation
We integrated a candidate generator in our systethe

723

words generated by the edit distance generator.

—>
Input
v /—/
[[\
Finite-State “ Arabic word “ ‘
No Transducer | list
\ \\ /
-V
Y
A
Yes
4
Suggestion list [«
v
Candidates Noisy channel
) |«
list scorer model
v
Candidates ranker
augmented edit
distance and /7' A\
language specific / “‘/ \
rules “ Gigaword ‘w “
corpus \‘ |
] \ ‘\\’/,"
Post-processing

v

o)

Display
\suggestions

Figure 2. Flow chart of spelling error correction

4.2.2 Scoring the Candidates
Our scoring mechanism is based on the Noisy Channel

Model (Kernigan, 1990). The posterior probabilitf o ()00 {=osas) {gaah (30 {50
each plausible candidate is evaluated according to {lUiod, {oaca), {Bh) {&g) {3 {3}
Bayes' formula which is equivalent to: {55 {c.c}

argmax.p(w|c) = p(w|c)p(c)/p(w) For example, substituting letters within the sameup
only costs 0.5 instead of 1.0 . This extensiorhtliasic

wherep(c) is the language model or a prior probability of edit distance improved accuracy of the ranking @tigm
the correctionc; p(w|c) is the error model or the by 3.1% (Table 6). The ranking results of Approache
probability that the worev was misspelled when the user and 2 are reported in Table 6 showing accurackdomg
meantc, p(w) is a normalizing constantygmax, is the the gold correction in the first, top 5 and top 10
scoring mechanism that computes all plausible wabdfe candidates.
the correctiorc and maximizes its probability given the
original word w. These probabilities are trained onr Approaches 1 and 2 have been concerned with the

one-billion word corpus. re-ranking of candidates. We supplement Approaefit?
a post-processing step that simplistically hantiesset
4.2.3 Final Ranking of unknown words (227 words) for which no candidate

First Approach. At this stage, every word is reordered by have been generated at all. Inspecting the lish&hown
the scores previously computed by the Noisy Channelwords, we found that 63% of them are two or moredso
Model and a normalized minimum edit-distance sd tha that are joined together, such gslxl kil “scientific
corrections that exceed a pre-defined threshold aredevelopment” e “Abdul-Dayem”, 2 5 s “and does
discarded. In this way, our program vyields a reduce notwant”, and=x~ “what happens”. We deal with those

number of corrections. words through regular expression replace rules lwhic
separates 7 words and particles that are commounlydf

Technically speaking, the problem of threshold mi&éin in the joint word forms. These words are:

can be empirically solved if it is understood innte of

allowable errors (Davis and de Salles, 2007). Igetie {2, b o, Vs, Y, L, W)

maximum number of allowable erroksfor a stringS is

defined as shown in the following equation: This simple process corrects 102 words from a total
105 words affected. This step vyields significant

k=(1.0-9). 8 improvement on the system’s accuracy raising ittap

75% (Table 7). In future research we need to agval
more structure strategy to deal with unknown words,
maybe through language modelling or machine legtnin

A Frequency distribution analysis of word lengthghe
corpus is used to give an approximate calculatiothe
individual word matching threshold. The separatidi8

million words from the corpus has revealed that 86 ' . .
We compare our first order selection (or auto-cuiios)
words have between 4 and 9 characters. As a result . . .
o - tesults against both the Microsoft Spell Checkedffice
defining a threshold of 6=0.87 means to allow for a : .
. : 2010 and the OpenOffice Hunspell-ar using the Aglisp
maximum of one error in a 3 to 9 letters word, aredrors : L7
Arabic spell checker. Our test results show a ficanit
for a 10 to 15 letter word. . ;
improvement over Hunspell, yet our results aréstilow

First Top 5 Top 10 the accuracy of MS Spell Checker, as shown in Téble

Approach 1: 68.2% | 79.3% | 85.1%

oo . Spell Checker First order ranking
Edit distance 1 & Noisy MS Spell Checker 80.54%
Channel Hunspell using Ayaspell 45.64%
Approach 2: 71.3% | 82.1% | 92.4% P g Ayasp 0270

Approach 1: Edit distance & | 68.20%

Edit distance 1 & Noisy Noisy Channel

Channel & heuristics

Approach 2: Adding heuristic$ 71.3%
to Edit distance
Approach 2 with 75%
post-processing
Table 7: First order ranking for 1,799 misspellenras

Table 6: Comparing Approaches 1 and 2

Second Approach.In the second approach, we adopt a
slightly different but well established method toprove
the ranking results. The ranking mechanism we hiaeel

so far is based on the Noisy Channel Model asichale .
minimum edit where the cost assignment is based on 5. Conclusion

arbitrary letter change. We primed the edit distanc Arabic is a challenging language due its rich amahglex
scoring mechanism with different rules followingeth ~morphology. Our research contributes to the opemeso
error patterns for Arabic as defined by Shaalarmlet ~community by creating a large and adequate wotddis
(2003) so that substituting letters belonging te same Arabic to be integrated in text authoring tools. W a

groups are evaluated at reduced edit costs (Mift886). tri-gram language model of the allowable vs. unadble
sequences of Arabic characters, which can helghén t

724

validation of existing word lists and making degision Kernigan, M., Church, K., Gale W. (1990). A Spdilin
new unseen words. We also create a hybrid spelling Correction Program Based on a Noisy Channel

correction methodology that significantly outperfer Model. AT & T Laboratories, 600 Mountain Ave.,
Hunspell in first order ranking of candidates. Murray Hill, NJ.
Kiraz, G. A. (2001). Computational Nonlinear
Acknowledgements Morphology: With Emphasis on Semitic Languages
This research is funded by the Irish Research Obfaorc Cambridge University Press.

Science Engineering and Technology (IRCSET), th&UA Levenshtein, V. 1. (1966). Binary codes capable of
National Research Foundation (NRF) (Grant No. correcting deletions, insertions, and reversals. In
0514/2011), the Czech Science Foundation (grant no. Soviet Physics Doklady, pp. 707-710. .

P103/12/G084), and the Science Foundation IrelandMagdy, Walid and Kareem Darwish. (2006). Arabic OCR

(Grant No. 07/CE/I1142) as part of the Centre f@xN error correction using character segment correction
Generation Localisation (www.cngl.ie) at Dublin it language modeling, and shallow morphology. EMNLP
University. '06 Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing.
References Mitton, Roger (1996)English spelling and the computer.

Harlow, Essex: Longman Group

Oflazer, K. (1996) Error-tolerant finite-state reoition
with applications to morphological analysis and
spelling correction. Computational Linguistics 2R(1
73-90

gWatson, J. (2002)The Phonology and Morphology of
Arabic, New York: Oxford University Press.

Wintner, Shuly. (2008). Strengths and weaknesses of
finite-state technology: a case study in morphalali
grammar development Natural Language Engineering
14(4):457-469, October 2008.

Attia, Mohammed, Pavel Pecina, Lamia Tounsi, Artoni
Toral, Josef van Genabith. (2011). An Open-Source
Finite State Morphological Transducer for Modern
Standard Arabic. International Workshop on Finite
State Methods and Natural Language Processin
(FSMNLP). Blois, France.

Beesley, K. R., and Karttunen, L. (200B)inite State
Morphology CSLI studies in computational
linguistics. Stanford, Calif.;: CSLI.

Ben Othmane Zribi C. and Ben Ahmed M., Efficient
Automatic Correction of Misspelled Arabic Words
Based on Contextual Informatiohgecture Notes in
Computer Scienge (Springer, 2003), Vol. 2773,
pp.770-777.

Brill, Eric and Robert C. Moore. 2000. An improvedor
model for noisy channel spelling correction. ACD '0
Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics.

Choudhury, Monojit, Rahul Saraf, Vijit Jain, Anintes
Mukherjee, Sudeshna Sarkar and Anupam Basu. 2007.
Investigation and modeling of the structure of iregxt
language. International Journal on Document
Analysis and Recognitionvolume 10, Numbers 3-4,
157-174, DOI: 10.1007/s10032-007-0054-0

Davis, Clodoveu A., Emerson de Salles. (2007).
Approximate String Matching for Geographic Names
and Personal Names. In Proceedings of Geolnfo'2007.
pp.49-60.

Haji¢, J., Smrz, O., Buckwalter, T., and Jin, H. (2005).
Feature-Based Tagger of Approximations of
Functional Arabic Morphology. In: The 4th Workshop
on Treebanks and Linguistic Theories (TLT 2005),
Barcelona, Spain.

Hassan, Ahmed, Sara Noeman and Hany Hassan. (2008).
Language Independent Text Correction using Finite
State Automata. IJCNLP. Hyderabad, India

Hulden, Mans. (2009). Fast Approximate String Matgh
with Finite Automata. Proceedings of SEPLN.

Hulden, Mans. (2009). Foma: a Finite-state comaitea
library. EACL '09 Proceedings of the 12th Confernc
of the European Chapter of the Association for
Computational Linguistics. Association for
Computational Linguistics Stroudsburg, PA, USA

725

