
Translog-II: a Program for Recording User Activity Data
for Empirical Reading and Writing Research

Michael Carl
Copenhagen Business School,

Dalgas Have 15, 2000 Frederiksberg, Denmark
E-mail: mc.isv@cbs.dk

Abstract
This paper presents a novel implementation of Translog-II. Translog-II is a Windows-oriented program to record and
study reading and writing processes on a computer. In our research, it is an instrument to acquire objective, digital data of
human translation processes. As their predecessors, Translog 2000 and Translog 2006, also Translog-II consists of two
main components: Translog-II Supervisor and Translog-II User, which are used to create a project file, to run a text
production experiments (a user reads, writes or translates a text) and to replay the session. Translog produces a log files
which contains all user activity data of the reading, writing, or translation session, and which can be evaluated by external
tools. While there is a large body of translation process research based on Translog, this paper gives an overview of the
Translog-II functions and its data visualization options.

Keywords: Translation Process Research, Keyboard logging, Eyetracking

1.Introduction

Human translation process research analyses the
translation behaviour of translators such as properties of
reading and text production rhythms, mental memory and
search strategies, types of textual units that translators
focus on, etc. It investigates the temporal and contextual
structure of those activities and describes inter- and intra
personal variation in terms of translation competence and
translation performance. In order to acquire objective data
about human translation processes, the program Translog
has been designed. Translog can be used to study
translation processes, hence the name Translog, but it can
be equally used for other kinds of computer-based reading
or writing. Since it's first conception in 1995, Translog has
gone through several re-implementations. Right from its
beginnings, Translog had two main components, originally
called Writelog and Translog, (Schou et al 2009) the
former component was designed for recording writing
processes in time, while the latter component served for
playback. These components are now referred to as the
Translog-User and the Translog-Supervisor which are two
interdependent programs. A major extension was
introduced in the context of the EU project Eye-to-IT in
2006 when a new version Translog-2006 could connect to
eye-tracker through the GWM module (Sparkov, 2008) so
as to record both, keyboard and gaze behaviour in time.
Translog-2006 was a complete re-implementation in C#,
supporting Unicode and XML. However, the
communication with the eye tracker through GWM1

turned out to be too inflexible and so a further
development of Translog-II now communicates directly
with the eyetracker. This paper describes the purpose and
usage of the Translog-II software.
Similar programs such as ScriptLog
(http://www.scriptlog.net/demo.asp), and InpuLog

1 which were Borland C++ implementations communicating
with Translog through COM `

(http://www.inputlog.net/download.html) are mainly
intended for logging and analyzing writing processes,
while Translog is specially designed for the acquisition of
data for translation process research, and is widely used in
the translation process research community. Schou et al
(2009) count more than 80 publications making use of
Translog, for translation process research of linguistic
phenomena, (e.g. the translation of metaphors, cognates,
idioms, etc.) as well as translator behaviour and cognitive
processes (e.g. translator's awareness, memory constraints,
(self)revision etc.), translation expertise, translation under
time pressure, and machine translation post-editing.
Translog is also used for translator training, teaching and
learning purposes.
Translog-II records user activity data (UAD), that is, all
the keystrokes and gaze movements (if an eye-tracker is
connected). It classifies the keystroke data as 1) insertion,
2) deletion (delete and backspace), 3) navigation (cursor
movements), 4) copy/cut-and-paste, 5) return key or 6)
mouse operations. Since the keylogger runs in the
background, the recording does not interfere with the
writing or translation process. Translog-II logs the exact
time at which each keystroke operation is made. If
connected to an eye-tracker2, Translog-II also records 7)
gaze-sample points, 8) computes fixations (i.e. clusters of
gaze-samples) and 9) mappings of fixations to the closest
character on the screen. This latter operation performs a
mapping from the spacial location of the gaze on the
screen to a character offset in the text. That is, an X/Y
coordinate of a fixation center is mapped onto a character
position of the text that is being looked at. Since there is
some noise in the recordings of gaze-sample points, the
representation in the log file is such that fixations and to a
certain extent also mappings can be re-computed offline.
The gaze and the keystroke information can then be

2 Currently connection to Tobii eye tracker is supported, but
other interfaces are planned.

4108

correlated, as they both refer to textual positions. The
information is stored in an XML format and can be
replayed or analyzed with Translog-II or analyzed in
external tool. In Carl and Müller (2011) and Carl and
Jakobsen (2009) is given more information on the XML
representation. Here we describe the functions of the data
acquisition software Translog-II.

2. Functions of Translog-II
Translog-II has three main functions:

1. create a project file:
• determine the size and orientation of a source and

a target window on the screen for reading and
writing permission respectively.

• produce texts for the source and/or the target
window, their layout, text font, size, color, line
spacing etc.

• determine which data are to be logged, keyboard
and eye-tracking

2. run and record a Translog-II session:
• load a project file
• calibrate eye-tracker (if connected)
• record and log UAD

3. replay and analyze a recorded log file:
• statistics: figures about text production/

elimination/ navigation events
• user view: replays the translation session in time

(Figure 1)
• linear view: plots a textual representation of the

UAD (Figure 2)
• pause plot: shows a 2D representation how the

text emerge in time (Figure 3)

The Translog-II Supervisor program implements the
functions 1. (create a project file) and 3. (replay a log
file), Translog-II User is only used to record a Translog
session and to store the UAD in a log file. A Translog-II
project file can be configured for a reading experiment,
where only the “source window” will be visible during the
recording session, it can be configured for a writing
experiment, where only the “target window” is visible in
which a text can be typed, or for a translation experiment,
in which both windows are visible (as in figure 1). In fact
Translog-II also allows for post-editing texts, if a pre-
defined text is entered in the target window. Translog-II
allows the source and the target windows to be
horizontally or vertically oriented and the source or target
windows to be left or right, or bottom or top.
As in previous Translog versions, texts can be displayed in
smaller portions, e.g. one sentence at a time. Each portion
can be displayed for a certain number of pre-defined

Figure 1 The screen shot of a Translog-II Supervisor replay session shows a fragment of a translation experiment with the
source text (top) and the beginning of a translation (bottom) in the target text window. It also shows the gaze movement
during the translation of the past 8 words. Red and green dots are gaze-sample points (sampling rate 60Hz.) for the right
and left eye respectively, and the blue circles represent fixations. Much more gaze activity is takes place on the lower
target window during translation.

4109

seconds, or the writer may decide to go on to the next
portion of source text when ready to do so.

3. Translog User
The Translog-II User program is an interface for
displaying and typing text and for logging UAD. To start a
translation session, a project file must be loaded.
According to the settings in a project file, the eye-tracker
needs be calibrated, then Translog-II User opens a source
and/or a target text window, plots the pre-defined texts in
the source window, and waits for the translator to type a
translation into the target window. As the size, orientation
and rendering of the windows and the font is defined in
the project file, it is not possible to re-size the windows in
Translog-II User, to change the font. It is possible to use
Translog-II User as a post-editing, by providing (machine)
translation in the target window and to record text
modifications during post-editing.

4. Translog-II replay mode
The most interesting feature in Translog is the replay
mode. Translog-II Supervisor computes some statistical
figures on the number of keystrokes, but more interesting
are certainly the possibilities to replay the log file. As
mentioned above, there are three different ways to
visualize the UAD, the user view, the linear view, and the
pause plot which are respectively presented in figures 1, 2
and 3. The user view (a screen shot is shown in Figure 1)
replays the typing process in real-time, and radio buttons
can be used to accelerated or decelerated, to pause the
replay, rewind or forward it etc. In addition to the
keystrokes, Translog-II also plots the gaze-sample points,
fixations, and fixated words. In Figure 1, gaze sample
points and fixations were collected over a period of
approx. 30 seconds illustrating the gaze path and the
coordination of reading and writing activities. It is
possible to select or un-select whether gaze and fixation
information should be plotted.
The linear view represents the UAD in a textual (linear)
manner. Each key and mouse activity3 has a representation
in the linear view, and pauses are either indicated as

3 It is also possible to visualize gaze-samples and
fixations in the linear view, which is omitted here.

Figure 2 Two linear view screen shots of the same text with different temporal resolution. Top: each dot represents 1
second pause. Bottom: a dot represents 0.1 seconds between successive keyboard activities.

Figure 3. Screen shot of the pause plot: Blue dots indicate the accumulation of pauses during a translation session (in
seconds).

4110

asterisks, and/or numeric value indicating the duration
between successive activities. The granularity of the pause
display can be selected starting from 1ms up to any
amount of time. This gives the possibility to get an
overview over the coarse temporal structure of a
translation session, reducing the temporal information to a
minimum (Figure 2, top), or to zoom into a sequence to
study pausing behaviour as small as a few hundreds of
seconds (Figure 2, bottom).
The third Translog-II replay mode is the pause plot. A
pause plot represents essentially the same information as
the linear view does, this time in as 2D graph. Keyboard
activities are indicated on the horizontal X-axis, while the
vertical Y-axis shows the accumulation of time (pauses).
Figure 3 shows a segment of a translation session.
It is possible to scroll through the pause plot, to zoom in
or out. Translog-II also allows to synchronize all three
visualization methods. That is, all three windows (user and

linear view as well as pause plot) can be opened at the
same time, and by clicking the synchronization item the
cursor in all three windows will be positioned at the same
time. The option in the user view would then trigger a
synchronous replay in the three windows.

5. Translation Progression Graphs and
Product Data Alignment

While the visualization options in Translog-II (Figures 1-
3) trace how the target text emerges in time, we have also
developed more powerful visualization possibilities that
show how the translation (ie. the relation between the
source and the target text) evolves. Figure 4 plots the
relation between the word positions in the source text
(vertical axis) and the translation activity in time on the
horizontal axis. The figure presents a time segment of ca.
10 seconds (from secs. 51 to 61) in the string “fik en
fængselsdom på livstid i dag for at slå” is produced, which
is (part of) the Danish translation of “was imprisoned for

life today for the killing”. Each keystroke is mapped onto
the source text segment of the translation to which it
contributes. Thus, line 11 shows all gaze and keyboard
activities that relate to the production of the translation for
English “was imprisoned”, line 13 for that of “for”, line
14 of “life” etc. The graph also shows gaze activities in
relation to source segments. The blue dots are fixations on
the words in the source text, while the green dots represent
fixations in the target window, most of the time on the
word(s) that are currently being typed.
Translation progression graphs require additional
alignment knowledge of the source and the target texts,
and are therefore not supported inside Translog-II. A set of
additional tools are used:

1. to align the translation,
2. to compute the keystroke-to-source text mapping
3. to visualize the graph.

Carl and Jakobsen (2009) describe a general method and
rule-based formalism to map keystrokes on source text
words. In their method, they iteratively retrieve all
keystrokes which contribute to the creation of a target text
segment Ti. Given alignment information for the target
text segment Ti to a source segment Sj, the retrieved
keystrokes can be mapped via Ti to source segment Sj.
With an exhaustive fragmentation of the target text into n
non-overlapping text segments T1...n, and a complete
alignment of the source and the target texts, every
keystroke can be associated with a source segment Sj. As
illustrated in Figure 5, we have re-implemented this
algorithm in a more efficient way: From the alignment of
the translation product (top in Figure 5) we know which
source words are linked to which cursor positions in the
target text. The text processing operations can then be
mapped on the target text positions and from there further
on the source word(s). Figure 5 illustrates how the
keystrokes which produced the correction of “trial

Figure 4. The graph visualizes the translation progression of the 8 English words: “was imprisoned for life today for the
killings” into Danish: “fik en fængselsdom på livstid i dag for at slå”. This translation segment corresponds to the
accumulated gaze movements in Figure 1, which lasted approximately 10 seconds. Blue dots represent fixations on the
source text, green dots fixations on the target text, the black characters are insertions and the red characters are text
deletions.

4111

sentence” into “test sentence” in the target text can be
mapped on the source text word 5 “Testsatz”.

From the alignment of the product data, we know that “test
sentence” is the translation of “Testsatz”, and that “test
sentence” occupies cursor positions 11 to 23 in the final
translation. The idea is to look backwards into the process
data and collect all keyboard activities between positions
11 and 23, which are then identified to contribute to the
production of the translation for “Testsatz”.
Figure 5 shows that the four last letters “rial” of the word
“trial” were deleted and then substituted by “est”. As all
deletion and insertion activities take place between cursor
positions 11 and 23, these keystrokes are part of the
operations that contribute to the translation of “Testsatz”.
To compute these mappings, the algorithm looks
backwards into the activity data and decides for each
operation which word it produces. The last operation in
Figure 5 is the insertion of the letter “t” at time Tf-1
which took place at cursor position 14. Accordingly, the
text length was one character shorter before that insertion
took place and the translation of “Testsatz” consisted only
of the characters 11 to 22. Insertion operations lead to a
shortening of the text while deletions extend the text, as is
the case for the operations Tf-4 to Tf-7. The algorithm
keeps track of the length and position of each word during
all times to correctly map the keyboard operations on the
words. The collected keystrokes can then be linked to the
source text words and plottet, together with the gaze data,
as shown in figure 5.

A free version of Translog-II and auxiliary tools can be
downloaded for academic use upon request to the author
of this paper. A base containing approximately 200
sessions of translation process data is being constructed
and released soon.

6. Acknowledgements
The implementation of Translog-II
would not have been possible
without previous work on the
various Translog versions in the
development of which were
involved Lasse Schou, Arnt Lykke
Jakobsen, Morten Lemvigh and
Jakob Elming.

7. References
Michael Carl and Arnt Lykke

Jakobsen, 2009. Towards
Statistical Modeling of
Translators' Activity Data. In
International Journal of Speech
Technology,Volume 12, Number
4, 125-138

Michael Carl and Henrik Høeg
Müller. 2011. CRITT NLP
Resources for Translation
Representation of User Activity
Data in Translog-II, in
Proceedings of LTC, Poznan

Lykke Jakobsen, A. 1999. Logging
target text production with
Translog. In Hansen, G. (ed.),

Probing the process in translation: methods and results,
Copenhagen Studies in Language, volume 24.
Copenhagen: Samfundslitteratur. Pages 9–20

Lasse Schou, Barbara Dragsted & Michael Carl (2009),
Ten years of Translog. Copenhagen Studies in Language
(37), pages 37-51

Špakov, O. (2007). GWM – the Gaze-to-Word Mapping
Tool, available online at:
http://www.cs.uta.fi/~oleg/gwm.html (abgerufen am 21.
Juni 2011).

Figure 5. The mapping algorithm traverses the process data against the time line, from
the final translation product towards the start of the translation session. The arrow on
the left indicates the time flow in the process data. While traversing the process data,
all operations are associated with a target text position, and hence a source sentence
number.

4112

