
NgramQuery - Smart Information Extraction from Google N-gram using
External Resources

Martin Aleksandrov† and Carlo Strapparava?

†Sofia University, Sofia, Bulgaria
martina@fmi.uni-sofia.bg

?FBK-irst, Trento, Italy
strappa@fbk.eu

Abstract
This paper describes the implementation of a generalized query language on Google Ngram database. This language allows for very
expressive queries that exploit semantic similarity acquired both from corpora (e.g. LSA) and from WordNet, and phonetic similarity
available from the CMU Pronouncing Dictionary. It contains a large number of new operators, which combined in a proper query can
help users to extract n-grams having similarly close syntactic and semantic relational properties. We also characterize the operators
with respect to their corpus affiliation and their functionality. The query syntax is considered next given in terms of Backus-Naur rules
followed by a few interesting examples of how the tool can be used. We also describe the command-line arguments the user could input
comparing them with the ones for retrieving n-grams through the interface of Google Ngram database. Finally we discuss possible
improvements on the extraction process and some relevant query completeness issues.

Keywords: N-grams, WordNet, Lexical Similarity

1. Introduction
In computational linguistics many tasks are properly dealt
exploiting a combination of syntagmatic and domain fea-
tures. Syntagmatic aspects are often managed by taking
advantage of the analysis of large n-gram databases, while
domain and ontological aspects are more properly modeled
by semantic similarity spaces (e.g. latent semantic space)
and lexical ontologies such as WordNet.
This paper describes the implementation of a generalized
query language on Google Ngram database, whose expres-
siveness boosting is accomplished by plugging semantic
similarity acquired both from corpora (e.g. LSA) and from
WordNet, and phonetic similarity available from pronounc-
ing dictionaries. It contains several different operators,
which combined in a proper query can help users to extract
n-grams having similarly close syntactic and semantic re-
lational properties. We also characterize the operators with
respect to their functionality, i.e. similarity, part-of-speech,
syntactic and semantic operators.
The tool can be useful in a variety of tasks, ranging from
specific lexicon extraction and lexical substitution task
(McCarthy and Navigli, 2007) to the automatization of cre-
ative and figurative language processes (Strapparava et al.,
2007; Stock et al., 2008; Veale, 2011) such as puns and
portmanteau words generation, metaphors, hyperbolae and
other rhetorical phenomena.
The paper is organized as follows. Section 2. briefly
presents the notions of what we call The Core language and
The Ngram-query language. Section 3. describes the oper-
ators we have implemented and it groups them into cate-
gories according to their functionality. In Section 4. we
present how we can extract domain-specific concepts and
how we can deal with orthographic and phonetic rhymes.
Finally, in Section 5. we describe the expressiveness of the
tool and some promising future directions.

2. Implementation
2.1. Preliminary notes
The starting point was the Google Web 1T 5-Grams
database (Brants and Franz, 2006). This data set con-
tains English word n-grams and their observed frequency
counts. The length of the n-grams ranges from unigrams
to five-grams. The n-gram counts were generated from
approximately 1 trillion word tokens of text from pub-
licly accessible Web pages. For easily handling that huge
dataset, we exploited Web1T5-Easy1, which is a collection
of Perl scripts for indexing and querying the Google Web
1T 5-Grams database with the open-source database engine
SQLite. The creation of our tool was inspired by the idea
of combining different knowledge sources, in particular:

• Lexical concepts and their taxonomies, given by Word-
Net lexicon database. Besides all the relations present
in WordNet, we embedded in the query language
also the common similarity measures (Budanitsky and
Hirst, 2006; Pedersen et al., 2004) such as Resnik, Lin,
Jiang-Conrath, etc.

• Exploiting a specific version of LSA space (Deer-
wester et al., 1990) acquired from the full British Na-
tional Corpus.

• The CMU Pronouncing Dictionary2, for dealing with
assonances, partial homophones, etc.

Finally we designed a query language that is able to express
these concepts according Google N-gram database. Infor-
mation extraction from such a database using fixed external

1http://cogsci.uni-osnabrueck.de/∼korpora/ws/cgi-
bin/Web1T5/Web1T5 freq.perl

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

563



resources is a difficult task, especially with respect to ef-
ficiency and completeness. We will discuss some of these
issues in the Section 5.
To give a flavor of the expressiveness, a possible query
could be:

∼#food sandwich with cheese#L#10

that retrieves the 4-grams, along with their frequencies,
in which the first word is a hyponym of food (i.e. the
term∼#food), then ‘sandwich with’ followed by one
of the first 10 similar words to cheese according to LSA
(i.e. cheese#L#10). The most frequent 4-gram (with fre-
quency 896) that satisfies the query is:

896 egg sandwich with tomato

2.2. Core language
Web1T5-Easy offers a quick and convenient way to build an
interactively searchable version of the Web1T5 database,
including a full collocation analysis and it provides five
search terms, i.e. a literal term, a word set term, wild-
card term (use of %), arbitrary word term (asterisk *) and
skipped token term (question mark ?). They give to the user
a simple extraction power. Nonetheless, they are quite use-
ful and we built our extension on top of them. We call the
set of queries constructed using these terms The Core-query
language.

2.3. Generalized language
We call The Ngram-query language the extension of the ba-
sic query language. It contains a large number of new op-
erators, with proper syntax and semantics. They allow the
user to combine syntagmatic and domain operators within
a single query and to retrieve resource-dependent n-grams
in a fast and efficient manner.

3. Operators
In this section we present the operators implemented by
dividing them into groups. This division was inspired
by having different external corpora, i.e. WordNet lexicon
database, a specific version of LSA space and the CMU
Pronouncing Dictionary, on one hand and the operator
functionality, i.e. pointer-concept, similarity and related-
ness, part-of-speech, syntactic and phonetic operators, on
the other.

3.1. WordNet
3.1.1. Relational operators
The organization of the lexical knowledge in the WordNet
repository is represented by a variety of lexical and seman-
tic relations. While lexical relations holds between word
forms, the semantic relations hold between word mean-
ings (i.e. synsets). We used pointers to represent the re-
lations between the words in one synset and another. Lex-
ical pointers relate specific word forms in the source and
taget synsets. Semantic pointers relate word meanings, and
therefore pertain to all of the members in the source and
target synsets. In addition, the repository files lexicograph-
ically correspond to one of the four syntactic categories, i.e.
noun, verb, adjective and adverb.

In Table 1 the operators implemented for each of the Word-
Net categories are listed.

Operator n v a r
Antonym (!) + + + +
Hypernym (@) + + - -
Instance hypernym (@i) + - - -
Hyponym (∼) + + - -
Instance hyponym (∼ i) + - - -
Member holonym (#m) + - - -
Substance holonym (#s) + - - -
Part holonym (#p) + - - -
Member meronym (%m) + - - -
Substance meronym (%s) + - - -
Part meronym (%p) + - - -
Attribute (=) + - + -
Derivationally related form (+) + + - -
Entailment (∗) - + - -
Cause (>) - + - -
Also see (ˆ) - + + -
Verb group ($) - + - -
Similar to (&) - - + -
Participle of verb (<) - - + -
Pertainym (\) - - + -
Derived from adjective (\) - - - +

Table 1: Pointer-concept operators. Abbreviation are as fol-
lows: n (noun); v (verb); a (adjective); r (adverb);
+ means the relation is present in WN, and − otherwise.

To clarify the use of the pointer operators we provide some
examples. First, let us consider the query:

∼#food#n

that retrieves the hyponyms of the noun food
for all of its senses. Some of the returned
unigrams, along with their frequencies in the
Google Web 1T5-gram database, are given below.

. . .
21757873 dish
20962063 milk

. . .
17654214 meat

16705545 cheese
16529672 cake
15533365 fiber

. . .
11444465 beef
10977879 juice
10888394 eggs

. . .
9757346 salmon

. . .
Our second example aims at uncovering the expressiveness
of the new language:

∼#query#v

which extracts the hyponyms of the verb query. Pos-
sible concepts with their frequencies are listed next.

564



. . .
130648714 question

. . .
22807901 wonder
18645408 pump

13032063 examine
11868500 quiz

. . .
5968768 inquire
2653183 enquire
155855 debrief

. . .
We also give a third example this time requiring the hyper-
nyms of the vehicle for all of its senses.

@#vehicle

. . .
47047997 transport
16188678 substance

5083861 instrumentation
1133899 conveyance

. . .

3.1.2. Similarity operators
Exploiting the topology and the content of the WordNet
repository it is possible to implement a variety of similar-
ity and relatedness measures as operators in the extended
language. The authors in (Pedersen et al., 2004) present
a simple and useful Perl-implemented software package,
Wordnet::Similarity, which can be used for retrieving infor-
mation related with the degree of similarity and relatedness
between two concepts either within a single part of speech
space or between different syntactic category spaces. In
the former case they discuss 6 similarity measures, i.e. 3
LCS-based and 3 path-based, which are followed by a short
presentation of 3 relatedness measures possibly crossing
the boundaries of the part of speech spaces. We used the
provided API to include all 9 measures as operators in the
Ngram-query language. Furthermore, we added the possi-
bility for the user to set a random measure, which chooses
in a stochastic manner one of the other measures, and a
similarity or relatedness threshold, i.e. if two concepts have
measure value below this threshold they are discarded. Ta-
ble 2 presents these operators together with their threshold.

3.2. LSA
In addition to similarity measures obtained using lexical
resources such as WordNet, we intended to exploit in the
query language also a corpus-based semantic similarity
mechanism. As a corpus-based measure of semantic simi-
larity we exploited latent semantic analysis (LSA) proposed
by (Landauer et al., 1998). In LSA, term co-occurrences in
a corpus are captured by means of a dimensionality reduc-
tion operated by a singular value decomposition (SVD) on
the term-by-document matrix representing the corpus. For
the implementation reported in this paper, we run the SVD
operation on the the full British National Corpus, using 400
dimensions. Then for each word in the corpus, we cached
the first hundred most similar words to that word, with the
respective cosine values.

Operator acr t sim rel
Resnik res ≥ 1.37 + -
Lin lin [0, 1] + -
Jiang & Conrath jcn ≥ 0 + -
Leac. & Chod. lch [0, 3.68) + -
Wu & Palmer wup (0, 1] + -
Measure path path (0, 1] + -
Hirst & St-Onge hso [0, 16] - +
Baner. & Peder. lesk ≥ 1 - +
Patwardhan vector [0, 1] - +
Random random above + +

Table 2: WordNet measures operators. Abbreviation are
as follows: acr (similiarity measure acronym); t (threshold
range); sim (similarity); rel (relatedness).

We embedded the LSA similarity into the query syntax in
two settings: a threshold for the number of similar words,
and a threshold for the cosine value between words. The
user has the freedom to insert them individually or together
within a single query term. As an example, the query

vehicle#L#0.7

57242495 traffic
48465416 driver

. . .
15093824 roads
9322146 brake

3434989 pedestrian
. . .

617922 motorist
. . .

gives the concepts which are similar to the noun vehicle
and have cosine value greater or equal than 0.7. The second
example generalizes the settings by specifying the number
of the required LSA terms within the query in addition to
their cosine. It retrieves the similar terms of food with co-
sine value at least 0.6 among the first 15 most similar terms.

food#L#15#0.6

44677719 diet
. . .

21566476 eating
. . .

2989025 poisoning
. . .

896822 nutritious
249796 sugary

. . .

3.3. Phonetic dictionary
The Carnegie Mellon University Pronouncing Dictionary
is a machine-readable pronunciation dictionary, which con-
tains over a hundred twenty-five thousands words and their
translations. The last is built on top of the phoneme domain,
which currently contain 39 phonemes, for which the vowels
may carry a flag indicating their lexical stress, i.e. 0 for no
stress, 1 for primary stress and 2 for secondary stress. We

565



implemented a single operator, which allows us to retrieve
words with similar phonemic beginnings, endings or both.
Its acronym is £ and it is applied in a manner similar to the
orthographic substring matching % operator in The Core-
query language, i.e. £tion, mod£ or £gmat£. In Table 3
a comparison between the two operators is given.

Operator acr begin middle end
Orthographic % + + +
Phonetic £ + - +

Table 3: Syntactic and phonetic operators. Operator appli-
cability: begin (at the beginning of a word); middle (within
a word); end (at the end of a word)

The orthographic operator can be applied multiple times
within a word, while the phonetic one can only be applied
either at the beginning or the end of a word (or both). The
following two examples clarify the use of the two operators.
They also show how the user can use the word set term (i.e.
asking for two different n-grams in the same query).

%quer%, %icle

181971412 article
54080132 vehicle
31285263 query

. . .
8329460 particle

7821136 albuquerque
6939347 chronicle

. . .
661990 konqueror
563796 follicle
439169 ventricle

. . .
We can see that % can be applied more than one times
within a string. This is not the case with the operator £
as shown next. Recall, when £ operator is applied to a
string then an overlapping between the given string and the
words in the phonetic dictionary is performed and the posi-
tive matches are returned as part of the results to the query.

£fore

5933321709 for
277552584 before
129170208 four
2380057 fore

542725 heretofore
. . .

3.4. Query syntax
In this subsection we give a formalization of the query syn-
tax in The Ngram-query language in terms of Backus-Naur
grammar rules.

3.4.1. Grammar
Note that we have a natural restriction on the length of the
query imposed by the fact that Google Ngram database con-
tains up to five grams.

〈query〉 ::= ‘<term>’ ;; unigram

| ‘<term> <term>’ ;; bi-grams

| ‘<term> <term> <term>’ ;; 3-grams

| ‘<term> <term> <term> <term>’ ;; 4-grams

| ‘<term> <term> <term> <term> <term>’

A query is composed of terms. The terms, in particular, can
be simple words or a combination of words and operators.
We clear the details with the following rules presenting the
syntax of the different kinds of terms.

〈term〉 ::= 〈term 0〉 | 〈term 1〉 | 〈term 2〉 | 〈term 3〉

〈term 0〉 ::= 〈expr〉

〈expr〉 ::= 〈word〉 | 〈%-string〉 | 〈£-string〉
| 〈string-£〉 | 〈expr〉,( 〈expr〉 , . . . )

〈%-string〉 ::= 〈% within concept〉

〈£-string〉 ::= 〈£ string〉

〈string-£〉 ::= 〈string £〉

Examples of possible expressions are: ‘house’,
‘%ing’, ’£ture’, ‘ref£’, ‘data, roof,
ref£, %mics, ad%nt%e, £ics’.

〈term 1〉 ::= 〈p c〉#〈term 0〉#〈pos〉#〈s n〉
| 〈term 0〉#〈L〉#〈sim〉#〈freq〉

〈p c〉 ::= pointer concept

〈pos〉 ::= n | v | a | r

〈s n〉 ::= sense number

〈L〉 ::= letter L

〈sim〉 ::= number similar words

〈freq〉 ::= frequency threshold

In the terms, following the first case of this pattern,
part-of-speech (〈pos〉) and the sense number (〈s n〉)
settings can be omitted. Instead their defaults values are
used, i.e. noun and all senses, respectively. In the second
case at least one setting must be specified, i.e. either the
number of similar concepts or the cosine threshold. Note
that the number of similar words should be less than one
hundred, a constraint imposed by the specificity of the LSA
matrix we used (see Section 3.2.). The following examples
give some possible terms according to the above pattern,
i.e. ‘@#fast#a#2’, ‘concept#L#10#0.7’,
‘data#L#0.3’, ‘∼term#1’.

〈term 2〉 ::= 〈p c〉#〈term 0〉#〈pos〉#〈s n〉
#〈L〉#〈sim〉#〈freq〉

| 〈p c〉#〈term 0〉#〈pos〉#〈s n〉#〈C〉#〈concept〉

| 〈term 0〉#〈L〉#〈sim〉#〈freq〉#〈C〉#〈concept〉

| 〈term 0〉#〈pos〉#〈s n〉#〈W〉#〈type〉#〈freq〉#〈s n〉
#〈C〉#〈concept〉

566



〈W〉 ::= letter W

〈type〉 ::= Wordnet similarity measure

〈C〉 ::= letter C

〈term 3〉 ::= 〈term 0〉#〈pos〉#〈s n〉#〈L〉#〈sim〉#〈freq〉
#〈W〉#〈type〉#〈freq〉#〈s n〉#〈C〉#〈concept〉

| 〈p c〉#〈term 0〉#〈pos〉#〈s n〉#〈L〉#〈sim〉#〈freq〉
#〈C〉#〈concept〉

| 〈p c〉#〈term 0〉#〈pos〉#〈s n〉
#〈W〉#〈type〉#〈freq〉#〈s n〉#〈C〉#〈concept〉

3.4.2. Command Line
The user can use the query language using the terminal in-
terface. A possible query is

perl NgramQuery.perl -o -l 50 -f 1000 -d 3 ‘∼ #food’

First the query retrieves the hyponyms of ‘food’, which are
down to the third level in the corresponding is-a hierarchy
of WordNet, then the first 50 unigrams with frequency at
least 1000 are proposed.

4. Examples
This section shows some examples on how to use the tool
and how it is possible to combine different resources within
a query.

4.1. Example 1: Automated creation of fast-food
menu

The query:

∼#food, drink sandwich, pizza, pasta, salad#L#10

will retrieve bigrams, along with their frequencies, in
which the first component is an hyponym of the word food
or drink and the second one is a word within the first 10
LSA most similar words to either sandwich, pizza, pasta
or salad. In such a way we can retrieve all the combina-
tions not only correct with respect to the WordNet ontol-
ogy and LSA similarity, but also reasonable with respect to
Google Ngram database, i.e. to the way people use them.
For instance, egg burger, tomato salad, cheese
spaghetti, etc. are foods people used to eat, while
chocolate gringer, sugar lasagna are not.

4.2. Example 2: Interesting activities
The query:

interesting %ing#n#1#W#res#2.1#1#C#activity

retrieves all bigrams in which the first word is
interesting followed by a word, ending in −ing,
which has to be a noun and its first sense in WordNet has
to be similar, according to Resnik similarity measure with
threshold ≥ 2.1, to the first sense of activity. The first two
results are:

3679 interesting shopping
2409 interesting training

. . .

5. Future work and discussion
In the first example above the reader can observe that the
query contains two terms and the results are bigrams. What
about multiple-word concepts such as modern and state-
of-the-art? The user might want to retrieve state-of-the-
art technique when input the query Q =∼#modern ap-
proach#L#20. We will address such a situation as a future
improvement.
An important issue is the trade-off between the expres-
siveness of the query language and the complexity of
the retrieval. Imagine the user wants to retrieve 4-
grams by entering the following query, Q = fast#a#L#10
old#a#1#L#10#W#lin#0.2#C#archaic &#cheap#L#0.8 ve-
hicle#L#10. How complex is answering to this query? A
complete freedom in combining operators leads quickly to
computational tractability problems. At present this issue
is addressed by relying on user awareness of keeping the
queries sensible. We are planning to implement a preven-
tive analysis of the query, providing the user with precise
help for faster and more reliable retrieving.

6. Conclusions
We developed a generalized query language on Google
Ngram database, whose expressiveness is boosted by plug-
ging semantic similarity acquired both from corpora (e.g.
LSA) and from WordNet, and phonetic similarity avail-
able from pronouncing dictionaries, in particular CMU Pro-
nouncing Dictionary. The language implements a large
number of new operators, each one of them with different
meaning and purpose. We summarized them and clarified
their syntax through usage examples. Then, we presented
the syntax of the new language and discussed the settings
involved. We think that this tool will be helpful in many
tasks some of which are specific lexicon extraction, cre-
ative language combinations, and generation of language
variations.

Acknowledgements
Martin Aleksandrov was partially supported by the Euro-
pean Master Program in Computational Logic (EMCL).
Carlo Strapparava was partially supported by a Google Re-
search Award.
Finally, we would like to thank Marco Guerini and Gözde
Özbal for many useful and valuable discussions.

7. References
T. Brants and A. Franz. 2006. Web 1T 5-gram version 1.

Linguistic Data Consortium.
A. Budanitsky and G. Hirst. 2006. Evaluating WordNet-

based measures of lexical semantic relatedness. Compu-
tational Linguistics, 32:13–47.

S. Deerwester, S. T. Dumais, G. W. Furnas, T.K. Landauer,
and R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Informa-
tion Science, 41:391–407.

T. K. Landauer, P. Foltz, and D. Laham. 1998. Introduction
to latent semantic analysis. Discourse Processes, 25.

D. McCarthy and R. Navigli. 2007. The semeval English
lexical substitution task. In Proceedings of the ACL Se-
meval workshop.

567



T. Pedersen, S. Patwardhan, and J. Michelizzi. 2004.
WordNet::Similarity - measuring the relatedness of con-
cepts. In Proceedings of the 19th National Confer-
ence on Artificial Intelligence (AAAI-2004), pages 1024–
1025, San Jose, CA, July. Lawrence Erlbaum Associates.

O. Stock, C. Strapparava, and A. Valitutti. 2008. Ironic
expressions and moving words. International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI),
22:1045–1057.

C. Strapparava, A. Valitutti, and O. Stock. 2007. Affective
text variation and animation for dynamic advertisement.
In Proccedings of 2nd International Conference on Affec-
tive Computing and Intelligent Interaction (ACII2007),
Lisbon, Portugal, September.

Tony Veale. 2011. Creative language retrieval: A robust
hybrid of information retrieval and linguistic creativity.
In Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pages 278–287, Portland, Oregon, USA,
June. Association for Computational Linguistics.

568


