
CLIMB grammars: Three projects using metagrammar engineering

Antske Fokkens, Tania Avgustinova, Yi Zhang

Department of Computational Linguistics, LT-Lab DFKI GmbH
Saarland University, Saarbrücken Germany

{afokkens,avgustinova}@coli.uni-saarland.de,yizhang@dfki.de

Abstract
This paper introduces the CLIMB (Comparative Libraries of Implementations with Matrix Basis) methodology and grammars. The basic
idea behind CLIMB is to use code generation as a general methodology for grammar development in order to create a more systematic
approach to grammar development. The particular method used in this paper is closely related to the LinGO Grammar Matrix. Like the
Grammar Matrix, resulting grammars are HPSG grammars that can map bidirectionally between strings and MRS representations. The
main purpose of this paper is to provide insight into the process of using CLIMB for grammar development. In addition, we describe
three projects that make use of this methodology or have concrete plans to adapt CLIMB in the future: CLIMB for Germanic languages,
CLIMB for Slavic languages and CLIMB to combine two grammars of Mandarin Chinese. We present the first results that indicate
feasibility and development time improvements for creating a medium to large coverage precision grammar.
Keywords: Grammar engineering, methodology, code sharing

1. Introduction
This paper introduces the CLIMB (Comparitive Libraries
of Implementations with Matrix Basis) methodology for
grammar engineering together with two projects that use
the methodology and one that has concrete plans to do so.
CLIMB is based on the basic idea expressed in Fokkens
(2011) to use metagrammar engineering as a methodology
for implementing linguistically motivated precision gram-
mars. The term metagrammar refers here to software that
can generate implemented grammars.
The main goal of this paper is to provide a detailed de-
scription of the set-up and workflow of metagrammar en-
gineering using technology from the LinGO Grammar Ma-
trix (Bender et al., 2010). Second, it introduces three
projects that use this technology, each with a different
(main) purpose. Germanic CLIMB grammars (Fokkens,
2011) use CLIMB for systematic grammar development
and empirical research on alternative analyses. Slavi-
Core (Avgustinova and Zhang, 2009) uses CLIMB mainly
for sharing implementations across languages. Finally, two
independently developed grammars for Mandarian Chi-
nese, the MCG (Zhang et al., 2011) and ManGO1 will be
combined with CLIMB. We will provide a brief motivation
for the approach in this introduction.
Grammar engineers are confronted with the problem that,
often, more than one analysis can account for a syntac-
tic phenomenon. Because phenomena interact, the choices
made at early stages of grammar development can have a
major impact on the possibilities that remain for phenom-
ena that are treated in the future. When using metagram-
mar engineering as a methodology, all additions to a gram-
mar are added to syntactic libraries. These libraries con-
tain syntactic analyses as well as implementations to make
sure analyses interact properly. The grammar developer
can store alternative analyses for the same phenomenon in
such libraries and keep on creating and testing the impact
of these alternatives as the grammar grows.

1moin.delph-in.net/MandarinGrammarOnline

To our knowledge, Fokkens (2011) is the first approach
that suggests complete grammar development through code
generation with the purpose of comparing analyses.2 How-
ever, the grammars implemented and tested in Fokkens
(2011) are small. The successor of this implementation,
Germanic CLIMB, covers the development set of Chee-
tah (Cramer and Zhang, 2009), a 105 positive example
set3 that was used to develop phenomena occurring in the
TIGER Treebank (Brants et al., 2002). This shows that the
technique can be applied to develop large-scale grammars.
Investigating the practical side of using metagrammar engi-
neering as a methodology for grammar development is one
of the main questions the projects presented in this paper
address. As part of this question, we also investigate the
possibility to adapt grammars that have been implemented
manually for an extended period of time to CLIMB. We
measure the time invested in the structure of this process
precisely to get insight into the investment needed to adapt
the approach at a later stage of development. The current
time investment of 36 hours covers approximately 84% of
the SlaviCore and 70% of the Russian Resource Grammar
(Avgustinova and Zhang, 2010, RRG). As will be discussed
below, further refinement is needed to fully benefit from
the methodology, but it seems that the time needed to adapt
this grammar to the new methodology will be around two
to three weeks of fulltime work for one person.
The rest of this paper is structured as follows. We start
with a description of the LinGO Grammar Matrix, explain
who CLIMB extends its use and compare the Grammar Ma-
trix standard approach to CLIMB. The main advantages of
using CLIMB are explained, before we describe the indi-
vidual projects. After presenting related work, we discuss
advantages and shortcomings of the approach and provide
an overview of future work to improve it.

2Metagrammars and similar techniques have been used in
grammar development for over a decade. We will discuss these
approaches in Section 7.

3One example of the original 106 set was rated ungrammatical
by a native speaker.

1672

nom-acc-transitive-verb-lex :=
transitive-verb-lex &

[ARG-ST
< [LOCAL.CAT.HEAD noun &

[CASE nom]],
[LOCAL.CAT.HEAD noun &

[CASE acc]] >].

Figure 1: Example of type definition defined in TDL.

2. The CLIMB Methodology
CLIMB emerged from the LinGO Grammar Matrix (Ben-
der et al., 2010) and uses parts of its software. We will
therefore start the description of CLIMB with an overview
of the LinGO Grammar Matrix. After presenting how
CLIMB uses the Grammar Matrix architecture, we will dis-
cuss the difference between the two approaches.

2.1. LinGO Grammar Matrix
The Grammar Matrix is a multi-lingual resource that cre-
ates starter grammars based on specified linguistic prop-
erties provided through a web-based questionnaire.4 The
Grammar Matrix and its derived grammars are situated
within DELPH-IN5, an international research consortium
that develops open-source software for NLP applications
using linguistically motivated grammars. In line with
DELPH-IN, the Grammar Matrix uses the HPSG (Pollard
and Sag, 1994) framework and can map bidirectionally be-
tween surface strings and semantic representations in the
format of Minimal Recursion Semantics (Copestake et al.,
2005, MRS). They can be used to parse and generate sen-
tences with the LKB (Copestake, 2002) and to parse with
PET (Callmeier, 2000).
The basic workflow of using the Grammar Matrix is to fill
out the Matrix questionnaire and click on “create gram-
mar”. An archive containing a grammar based on the filled-
out questionnaire can be downloaded. The grammar is
specified in DELPH-IN’s reference formalism TDL (Krieger
and Schäfer, 1994; Copestake, 2002) and can be extended
manually. Figure 1 presents an example of a type definition
in TDL. It defines a type called nom-acc-transitive-verb-lex
which receives basic properties for a transitive verb from
its supertype transitive-verb-lex. Further constraints indi-
cate that its first argument must be a noun in nominative
case, and its second a noun in accusative case.
The source code of the Grammar Matrix can be obtained
under the MIT-license.6 Internally, the system is organized
into “libraries” that by and large correspond to the indi-
vidual pages of the web-interface. The customization sys-
tem that generates language specific implementations takes
a file called “choices” (henceforth choices file) as input con-
taining options and definitions provided by the user through
the questionnaire. The options in the choices file can pa-
rameterize the analyses that are combined as well as spe-

4http://www.delph-in.net/matrix/
customize/

5http://www.delph-in.net/
6http://www.delph-in.net/matrix/

cific properties on individual items. The functions in the
libraries can create types and add properties to types intro-
duced elsewhere in the customization system.
The parts developing lexicon and morphotactics are partic-
ularly interesting from a developer’s point of view. We will
highlight some properties that are relevant to the CLIMB
method. First, the customization system revises user de-
fined type hierarchies based on underspecified forms in the
lexicon or in morphotactics of the language. Second, the
morphotactics library allows the user to define a complex
system with interacting stems and morphemes. Finally, it
contains code to help define linguistic properties that often
vary on lexical items or inflection. Currently, these aspects
include syntactic head features (e.g. case and verbal forms)
as well as semantic features (e.g. index, tense). These fea-
tures can be marked on the lexical item, on its subject or
object for verbs and on the specified noun for determiners.
These three properties permit users to create large chunks
of the grammar using relatively simple definitions. When
used cleverly, they can lead to a significant speed up in the
grammar development process.

2.2. The CLIMB Workflow
CLIMB can be used to create any grammar written in
TDL. However, all three projects described in this paper are
Matrix-based grammars, i.e. they make use of the Matrix
core, as well as implementations provided by the standard
customization system of the Grammar Matrix. In our de-
scription below, we will assume this is the typical case for
using CLIMB.
When using CLIMB as a methodology, the grammar
engineer creates a Matrix starter grammar through the
web-based questionnaire and obtains the Grammar Matrix
source code. The starter grammar contains the choices
file described above, which defines phenomena and prop-
erties that are generated using the customization system’s
libraries. Choices are directly linked to implementations
in the libraries and their parameters. Engineers can start by
extending the intial grammar manually as before. Each time
an implementation is completed or improved, the grammar
engineer adds it to a linguistic library and associates it with
a particular definition in the choices file. After updating the
libraries and choices file, a grammar including the exten-
sions can be created for further development.
More advanced users can extend the libraries and choices
files directly. This can typically be done for new lexical cat-
egories and morphotactic properties. As described above,
these libraries contain many general functions that can
combine complex properties. Simple changes to the source
code of CLIMB and a set of definitions in the choices file
can give a major boost in grammar coverage. In this case,
the CLIMB method can be faster than traditional grammar
engineering.7

Implementing syntactic libraries requires programming
skills in an other language than TDL for the grammar engi-
neer. The Grammar Matrix customization system is written
in Python, which is therefore also used in CLIMB. Figures

7German adjectives (including inflection depending on de-
terminer, number, gender and case) were implemented within 6
hours.

1673

section=word-order section=lexicon

word-order=v2 noun1 name=1st-pron-nom

has-dets=yes noun1 feat1 name=person

noun-det-order=det-noun noun1 feat1 value=1st

has-aux=no noun1 feat2 name=case

noun1 feat2 value=nom

section=case noun1 det=obl

case-marking=nom-acc

nom-acc-nom-case-name=nominative verb1 name=trans

nom-acc-acc-case-name =accusative verb1 valence=nom-acc

Figure 2: Small extract of a choices file

wo = ch.get(’word-order’)

if wo == ’v2’:
mylang.add(’head-initial-head-nexus := head-initial & \

[SYNSEM.LOCAL.CAT.MC na & #mc, \
HEAD-DTR.SYNSEM.LOCAL.CAT.MC #mc].’)

mylang.add(’head-final-head-nexus := head-final & \
[SYNSEM.LOCAL.CAT.MC bool, \
HEAD-DTR.SYNSEM.LOCAL.CAT.MC na].’)

#rules shared among free and v2

if wo == ’free’ or wo == ’v2’:
mylang.add(’head-subj-phrase := decl-head-subj-phrase & head-initial-head-nexus.’)
mylang.add(’subj-head-phrase := decl-head-subj-phrase & head-final-head-nexus.’)

Figure 3: Sample code from word order library: implementations triggered by word-order=v2 in choices

2 and 3 provide samples of a choices file and Python code
found in a syntactic library, respectively. The code pre-
sented in Figure 3 will be called because of the definition
word-order=v2 in the choices file. Functions that must be
written to use CLIMB are typically if-then-else conditions,
as in Figure 3, or iterators. The most complex implementa-
tions of the system are the parts that interpret and combine
type definitions, but these are provided by the Grammar
Matrix customization system. We therefore believe that ba-
sic programming skills suffice to adapt the methodology.

2.3. Methodological comparisons
The description of CLIMB has shown that it is tightly
linked to the Grammar Matrix. However, both the philoso-
phy behind the projects as well as the practice of applying
them highly differ. The Grammar Matrix aims at lowering
the hurdle starting a new grammar. It is therefore essential
that the system be easy to use and cover a wide typolog-
ical range. CLIMB, on the other hand, is a methodology
that particularly pays off on long term projects. Users of
CLIMB can be expected to be experts for whom it pays off
to invest in the architecture of their system and techniques
that may facilitate modularity. We will elaborate on the
consequences of these differences below.
The standard approach when using the Grammar Matrix
is to create a grammar through the web interface and ex-
tend this grammar manually. Most of the linguistic proper-
ties defined through the questionnaire do not reveal a direct
link to the customization system or even to HPSG theory.
The only exception is the possibility to create hierarchies

of supertypes and subtypes, which points to HPSG’s formal-
ism: typed feature structures. The Grammar Matrix basic
approach thus emphasizes the central control of “hidden”
logic behind the scenes of the customization process. The
user can explore provided analyses in TDL, but no direct
insight into how the customization system came to the re-
sulting grammar can be obtained while merely using the
web-interface. CLIMB takes a radically different approach
by placing the customization source code under control of
the grammar engineer, so that different levels of parame-
terization can be achieved in individual grammar develop-
ment projects. Users are encouraged to explore the possi-
bilities of the customization system and expand it for their
language specific needs.

Another difference between the Grammar Matrix and
CLIMB is the wide typological variations aspired by the
Grammar Matrix. Sharing implementations across lan-
guages is one of the main purposes of the Grammar Matrix.
Even though CLIMB takes advantage of this possibility,
the method was originally introduced to examine different
ways of achieving the same goal. One could say that the
Grammar Matrix explores an analysis that can be used in
different manifestations of a phenomenon, whereas CLIMB
explores a specific manifestation of a phenomenon that may
use different analyses for its implementation. In the end, the
Grammar Matrix and CLIMB complement each other. The
former makes grammar engineering accessable to a wider
public and provides a starting point for new grammars. The
latter can be used to improve grammar development on long

1674

term projects. The next section will give a more elaborate
explanation of this property and other advantages of using
CLIMB.

3. Advantages of CLIMB
The main advantage of the CLIMB approach is the in-
creased flexibility as compared to traditional grammar en-
gineering. This advantage is seen in the Germanic CLIMB
grammars where libraries store alternative analyses that
capture the same phenomenon. The extensions developed
for one version can be used to automatically extend other
versions of the grammar (though minor adaptations may
be needed due to interactions between phenomena). The
Chinese CLIMB project will investigate whether the ap-
proach works if alternative analyses come from indepen-
dently developed grammars. CLIMB’s flexibility also al-
lows researchers to choose which phenomena to include or
exclude in the grammar. This can be an advantage when
an old analysis needs to be revised: a new grammar can
be generated without the older analysis which does include
analyses added at a later stage.
The second advantage is the speed-up through support
by Grammar Matrix tools. In particular, when grammars
for related languages are developed in parallel. Gram-
mar Matrix techniques for implementing phenomena that
vary cross-linguistically can be used to integrate exten-
sions made for one language into the grammar for another.
This advantage is mainly explored in the Slavic and Ger-
manic grammar projects. However, speed-up can also oc-
cur within an individual language. Its exact impact is one of
the research questions addressed by the Germanic CLIMB
project, which compares development time of the CLIMB
grammars to that of the German grammar Cheetah (Cramer
and Zhang, 2009).
Finally, the approach can be used to evaluate the Grammar
Matrix. The Grammar Matrix provides basic implementa-
tions for a broad range of languages. The CLIMB gram-
mars expand the Grammar Matrix approach in another di-
rection, covering more phenomena and more language spe-
cific depth. This may provide insights into futher exten-
sions of the Grammar Matrix. In addition, CLIMB devel-
opement has already led to increased feedback to the Ma-
trix. The original idea behind the Grammar Matrix (Ben-
der et al., 2002) was that derived grammars would in turn
provide feedback on the cross-linguistic applicability of the
Matrix. In practice, changes made in the core for an indi-
vidual language are seldom reported. For customized anal-
yses, the feedback loop is even harder to maintain: it is
not straight-forward to see which language specific changes
are extensions and which are corrections from the original
analysis. The Germanic system reveals exactly where revi-
sions to previous analyses were introduced and where ad-
ditions for new analyses were made. Moreover, it is kept
in sync with the original Grammar Matrix so that changes
to the core must be discussed with other Matrix develop-
ers. The Germanic CLIMB grammars have already lead to
revisions for adjectives, modification, wh-questions, long-
distance dependencies, relative clauses and adpositions: the
biggest revision of existing analyses since the Matrix was
launched (Bender, p.c.).

4. Germanic CLIMB
The Germanic CLIMB resource focuses on German. Vari-
ations are introduced for Dutch, and to a lesser extend for
Danish. The development of this resource has several goals.
First, we want to examine whether the CLIMB approach
can be used in a large scale grammar development project.
Second, we examine the impact of alternative analyses for
verb-second languages and auxiliary structures on cover-
age, overgeneration and efficiency of the grammar. Third,
in future work, we would like to gain insight into the impact
of using analyses from the Grammar Matrix on the rest of
the grammar. Finally, we use the CLIMB resource to adapt
analyses based on the grammars’ intended use. The first
and third goal and its current achievements will be elabo-
rated below.

4.1. CLIMB in large scale projects
Part of our investigation addresses the impact of using
CLIMB on development speed. On the one hand, CLIMB
requires additional implementations of syntactic libraries
which may be time consuming. Moreover, the decision
to keep alternative analyses may slow development down
due to additional adaptations to assure correct interaction
with other phenomena. The same holds for the efforts to
also cover certain phenomena in Dutch and Danish. On
the other hand, CLIMB’s facilities for code generation can
be time saving. The increased flexibility created by link-
ing each part of an implementation to an explicit phe-
nomenon or analysis may facilitate changing the grammar,
which may provide an additional gain in development time.
Grammar development using CLIMB could in principle ei-
ther be slower or faster than implementing TDL code di-
rectly.
In order to get insight into the impact on development
time using CLIMB, we compare the development time of
a CLIMB grammar for German to the development time of
Cheetah (Cramer, 2011). Note that a comparison between
two development processes can never give conclusive evi-
dence on the benefit of a given approach: no two grammar
engineers are alike. Experience has a major impact on de-
velopment speed, so measuring the difference in develop-
ment of grammars developed by the same engineer is not
an option either. However, conditions between our gram-
mar and Cheetah are similar enough to give an indication
of the impact of CLIMB: Both grammars were grammars
of German written by a graduate student (having compara-
ble experience) with Dutch as a native language. Both had
access to the same resources: implementations of Cheetah
were not looked at during the development of Germanic
CLIMB, literature on HPSG analyses of German was con-
sulted by both engineers.
The development time for a German grammar that gets (at
least) the same coverage as Cheetah on Cheetah’s develop-
ment set was approximately six months,8 compared to one
person year reported in Cramer (2011). If all influencing

8About one month of this time was spend in revising the archi-
tecture of the first metagrammar implementation. We expect this
is mainly due to the fact that Germanic CLIMB is the first CLIMB
grammar and could possibly be avoided in future projects.

1675

factors had been stable, this would have meant that CLIMB
reduced development time by half. Even considering the
fact that the engineers were different, we believe that it is
unlikely that this could lead to such big a difference. When
taking into account that time spent on alternative languages
as well keeping Germanic CLIMB in sync with the Gram-
mar Matrix are not obligatory in using CLIMB, this result
provides a strong indication that CLIMB in general has a
positive influence on development time.

4.2. Future work: The impact of the Grammar
Matrix

An important question related to the Grammar Matrix is
what impact it has on the resulting grammar to use the Ma-
trix’s basic implementations. This research question was
one of the reasons to develop a grammar for German. Two
comparative resources using the same formalism exist for
this language, namely GG (Müller and Kasper, 2000; Crys-
mann, 2003) and Cheetah. The two differ in the sense that
GG has stayed reasonably close to standard analyses for
German in HPSG. Though coverage and efficiency have cer-
tainly been taken into account, linguistic precision has al-
ways been a major aim in GG. Cheetah, on the other hand,
aimed to get high coverage on newspaper data fast, pre-
ferring to exclude phenomena that are infrequent and lead
to inefficiencies when covered. Germanic CLIMB can be
placed in between these two: it contains both implemen-
tations that reflect HPSG theory, as well as variations that
primarily aim at efficiency.
Table 1 presents results for running GG, Cheetah and the
best performing settings of Germanic CLIMB on Cheetah’s
(Coverage Original) and CLIMB’s extended (Coverage Ex-
tended) development set. CLIMB’s development set is an
extension from Cheetah’s 105 positive development exam-
ples, containing 510 positive and 616 negative examples.
Given that CLIMB was developed on this set, results on
coverage and overgeneration do not evaluate the quality of
the grammars. The experiment was used for initial observa-
tions. Cheetah covered, as expected, the basic phenomena
in the set, but not all linguistic variations or combinations
of phenomena. GG, on the other hand, did not cover all
phenomena (e.g. comparatives), but variations and combi-
nations were generally handled correctly for those phenom-
ena it did cover. Overgeneration was mainly due to flexible
morphology for both GG and Cheetah. CPU time was mea-
sured on 319 positive examples parsed by all grammars.

Coverage Coverage Over- CPU (s per
Original Extended generation sentence)

Cheetah 88.6% 81.4% 15.7% 0.46
GG 86.7% 81.8% 8.7% 1.56
CLIMB 94.3% 99.8% 1.1% 0.60

Table 1: Results on CLIMB development data

To evaluate the performance of individual grammars on in-
dependent data, we plan to import Cheetah’s learned lexi-
con into Germanic CLIMB and GG and compare their per-
formance on the TIGER Treebank. The main focus will

be comparing Germanic CLIMB and Cheetah. It is hard to
predict a priori which system will do better: Cheetah covers
less linguistic variation, but may cover more long sentences
due to its efficiency. Depending on the results, we will im-
port alternative analyses from Cheetah and GG into CLIMB
and measure the impact of such changes.

5. SlaviCore
SlaviCore is a resource that contains basic analyses known
to occur cross-linguistically within the Slavic language
family. The main idea behind this project was inspired by
the Grammar Matrix and some of the issues it addresses are
in line with those addressed by CLIMB. Like the Grammar
Matrix, it aims to share knowledge and implementations
for grammar development to help new projects get started.
Like CLIMB, the resource primarily addresses advanced
users with a large scale project of grammar development
in mind.
A multilingual resource restricted to one language family
allows us to tackle some of the challenges faced by the
Grammar Matrix’s ambition to cover a wide typological
range of languages. A Slavic specific core can cover more
phenomena and model them in greater detail than a core
grammar that aims to be useful for all natural languages.
Another aspect of multilingual grammar engineering the
Slavic grammars hopes to improve is the feedback loop
between developers of the core grammar and engineers
working on individual languages. Current implementation
projects in SlaviCore are mainly run by three researchers,
Avgustinova and Zhang working on Russian and Osenova
working on Bulgarian, who collaborate to establish the core
grammar. The resulting SlaviCore in itself can provide im-
portant feedback to the Grammar Matrix. The Slavic lan-
guage family namely does not only reveal many common
properties, but also exhibits a wide range of typological
variation.

5.1. SlaviCore strategy
The Slavic grammar uses a strategy designed to be com-
patible with the current Grammar Matrix program: the cus-
tomization system is used to quickly build small grammars
for individual languages; shared analyses are put into a
SlaviCore; when the next language is added, the SlaviCore
helps to more efficiently build the new grammar, simul-
taneously receiving a cross-Slavic validation. As related
languages share a much wider range of linguistic informa-
tion than typically assumed in standard multilingual gram-
mar architectures, a distinctive feature of this approach to
Slavic grammatical resources is that grammar engineer-
ing for each individual language takes place in a common
Slavic setting. This in particular means that if, for example,
two possibilities are conceivable of how to model a par-
ticular phenomenon observed in a certain Slavic language,
the option that would potentially be consistent with what is
found in the other grammars will be strongly preferred.
The ultimate goal is a SlaviCore module in the format of a
phenomenon based library designed for maximum reusabil-
ity, lifting out the elements that can and should be common
across individual resource grammars. The the Russian Re-
source Grammar (Avgustinova and Zhang, 2010, RRG) is

1676

the main focus of the project, both in terms of the end prod-
uct and as a large-scale experimental set-up for hypothesis
testing. The integration of an existing Bulgarian grammar
(Osenova, 2010, BURGER) into the Slavic matrix archi-
tecture forms the second central activety of the project. Fi-
nally, a grammar prototype for Polish provides the possibil-
ity to test the approach on a new Slavic language.

5.2. SlaviCore and CLIMB
The CLIMB approach is primarily intended to facilitate the
integration of the independently developed BURGER, as
well as to extend the static SlaviCore with more dynamic
methods for sharing analyses across languages.
As a first step, we have started to reproduce the RRG
through CLIMB. This can be tackled in two ways: either
we include the Slavic core as a stable file of definitions, just
like the basic types of the Matrix core, or we add analyses
found in the SlaviCore to CLIMB libraries and generate the
core just like the language individual files. The SlaviCore
in its current form is based on extensive research on formal
analyses for Slavic phenomena (Avgustinova, 2007). This
means we can expect the core to remain relatively stable.
This stability can, however, also be achieved by a stable set
of ‘family choices’ at the top of choices files that can serve
as a basis for new Slavic grammars. We decided to include
general Slavic analyses in CLIMB libraries, because this
has the additional advantage that it facilities research on the
true applicability across Slavic languages for implementa-
tions in the SlaviCore. We will elaborate on this advantage
in the next subsection, which describes the current state of
Slavic CLIMB and observations made in the creation pro-
cess.

5.3. Current stage and observations
Currently, 36 work hours have been invested in getting
analyses of the RRG integrated in Slavic CLIMB, resulting
in 84% coverage of definitions found in the SlaviCore and
70% of the RRG as a whole. Based on the present experi-
ence and phenomena left to integrate into Slavic CLIMB,
we estimate needed time for completing the process to be
approximately two work weeks in total. The currently pro-
duced fragment contains most of the syntactic rules and
complete hierarchy of verbs and nouns defined in the RRG.
In fact, the fragment already has full (treebanked) coverage
over the 280 examples provided in RRG’s basic testset.
Based on these initial efforts, we can report some obser-
vations on SlaviCore and using CLIMB. First, most effort
went into extending and changing the choices file. Sev-
eral of these extensions did not require any additions to
the CLIMB generation code. This indicates that the Ma-
trix customization system could have provided more initial
implementations than the original developers of the RRG
made use of. It may therefore be worthwhile for Grammar
Matrix users to download the customization system and ex-
periment with extended choices files, even if they do not
intend to adapt the CLIMB approach.
Our second observation concern the implementations in
SlaviCore themselves: many, as well as a large part of Rus-
sian specific implementations, consist of large type hier-
archies based on theoretical research reported in (among

other sources) Avgustinova (2007). Our present implenta-
tion for Slavic CLIMB reproduces these exact hierarchies,
including the original name in most cases. As it turns out,
the advantages of code generation are relatively limited for
creating these implementations. Extensions to code gen-
eration software may have been small, but declaring type
definitions in a choices file is as labour intensive as di-
rectly writing them in TDL. Only minor advantages could
be found in generating cross-classifications automatically.
It is, however, in this area were some interesting research
questions can be addressed.
If we relax the effort to exactly reproduce SlaviCore and al-
low its exact form to interact with language specific defini-
tions, we can create empirical tests of Avgustinova (2007)’s
model. In particular, the customization system’s capabil-
ity to introduce underspecified supertypes based on surface
forms defined for the language can lead to such insights. It
would, for instance, be interesting to see whether case hi-
erarchies created for a set of languages with a flexible cus-
tomization system correspond to the hierarchy proposed by
Avgustinova (2007) based on theoretical research. We plan
to address these questions in future research.

6. Mandarin Chinese
Two HPSG-based grammars for Mandarin Chinese, MCG
(Zhang et al., 2011) and ManGO, have been under in-
dependent development at different institutes for over a
year. Both grammars started with the Grammar Matrix,
and achieved moderate coverage over basic phenomena,
including numeral-classifier phrases, light-verb construc-
tions, relative clauses with DE, various aspect markers,
topic-comment constructions, inter alios.
Although the two grammars have significant overlap on
covered phenomena, MCG aims for broader coverage of
more frequent phenomena, while ManGO specializes in
challenging but less frequent phenomena. Aiming to im-
prove the long-term maintainability, developers have de-
cided to merge the two grammars. The grammar merg-
ing task is non-trivial, and involves detailed comparison of
different linguistic treatments. Following the CLIMB ap-
proach helps us isolate implementations for each individual
phenomenon, making the comparison easier and more fo-
cused.
Preliminary analysis shows that the V-not-V construction
(for interrogative sentences in Mandarin Chinese) imple-
mentation in ManGO can be straight-forwardly carried
over to the MCG. The treatment of BA(causative) and
BEI(passive) constructions in MCG involves systematic
changes on the valency list, and can be easily applied to
ManGO. Meanwhile, the analysis for the numeral-classifier
phrases in MCG is more consistent than ManGO (in vari-
ous cases of ellipsis). The difference in the treatment for
DE relative clauses is another interesting case. The MCG
further distinguishes three subtypes of relative clauses with
differences on semantic argument binding. ManGO, on the
other hand, delivers only one type analysis for DE rela-
tive clauses with underspecified semantics, due to the lack
of syntactic cue for further disambiguation in most of the
cases. Both treatments are interesting, and with CLIMB we

1677

can leave this as a toggle option to produce either coarse-
grained or fine-grained analyses.

7. Related work
Several grammar engineering projects make use of code
sharing or metagrammars. This section provides a brief
overview of the goals and set-up of some notable projects.
The MetaGrammar project (Candito, 1998; Villemonte de
la Clergerie, 2005) was originally set up as a hierarchy that
encodes syntactic knowledge. The factorized descriptions
of MetaGrammar support Tree-Adjoining Grammars (Joshi
et al., 1975, TAG) as well as Lexical Functional Gram-
mars (Bresnan, 2001, LFG). The eXtensible MetaGrammar
(Crabbé, 2005, XMG) defines its MetaGrammar as classes
that are part of a multiple inheritance hierarchy. Within
TAG grammars, the metagrammar plays a role that is com-
parable to the upper part of the type hierarchy in HPSG: it
allows to share parts of structures between individual ele-
mentary trees.
The GF Resource Grammar Library (Ranta, 2009) is a lin-
guistic resource consisting of crosslinguistically applica-
ble syntactic analyses implemented in GF (Grammatical
Framework). Engineers can write basic grammar rules that
inherit complex syntactic structures (written by linguistic
experts) from the GF library. Code sharing is used ex-
tensively: a core syntax grammar contains general cate-
gories and constructions that are used in individual gram-
mars. Code sharing also takes place between the subset
of languages explored, in particular by means of common
modules for Romance languages and for Scandanavian lan-
guages.
The main difference between CLIMB and the projects men-
tioned above is that CLIMB promotes complete grammar
development through a metagrammar, including language
specific properties. In MetaGrammar, GF or the typical
methodology applied with the Grammar Matrix described
in Section 2.1., users build up language specific analysis us-
ing implementation from the metagrammar or libraries. All
projects described above, including CLIMB, aim at improv-
ing the architecture of implemented grammars, develop-
ment speed and consistency across grammars through code
sharing. However, CLIMB introduces, to our knowledge,
new applications of metagrammars and syntactic libraries
in comparing individual analyses in a consistent manner
over time and in using the technique to combine individ-
ually developed analyses.

8. Conclusion and Future Work
8.1. Conclusion
This paper introduced CLIMB, a methodology for gram-
mar engineering based on an idea originally introduced by
Fokkens (2011). We have provided a detailed description of
how the methodology works and how it relates to the Gram-
mar Matrix. Three projects that use CLIMB or have direct
plans to do so have been introduced. The first project pre-
sented was Germanic CLIMB that investigates the impact
of CLIMB on a large scale projects as well as the influ-
ence of individual analyses on overall performance of the
grammar. Second, Slavic CLIMB uses the methodology to

integrate shared analyses from two individually developed
grammars for Russian and Bulgarian. Third, a project plan-
ning to use CLIMB to combine analyses for individually
developed grammars of Mandarin Chinese.
The results from the first two projects aim to provide an
indication in the impact of CLIMB on development time.
Germanic CLIMB was developed twice as fast as the com-
parable resource Cheetah. Efforts into adapting the RRG to
CLIMB indicate that the transfer will cost approximately
two work weeks. We believe that this effort is worthwhile
given the expected speed in future development. Based on
these experience, we believe that it is both feasible and ad-
vantageous to adapt CLIMB, if needed expertise is present.

8.2. Discussion and future work
Time spent on developing generation software and testing
alternative analyses has emerged as criticism on CLIMB.
Regarding this concern, it should be noted that, even though
we believe that it makes sense to stick to CLIMB once one
is set-up, this is not strictly necessary. If working on syn-
tactic libraries should become too cumbersome at a cer-
tain time, it is always possible to create the latest or best
version of the grammar and continue with manual devel-
opment only. Concerning time spent on testing alternative
versions; they can be run in parallel, so this does not nec-
essarily cost more time than testing only one grammar. It
is also possible to focus on the most promising version of
the grammar, and run tests on the others in the background
while continuing development. Changes needed to keep
other versions performing correctly can be added at a later
stage.
It should also be noted that, even though all existing
CLIMB projects create Grammar Matrix-based grammars,
CLIMB can also be used without using the linguistic prop-
erties of the Matrix. The basic functions of the customiza-
tion system can combine any properties written in well-
formed TDL. The grammar engineer can thus choose to
use CLIMB and write a grammar that is not related to the
LinGO Grammar Matrix by removing linguistic analyses
from the source code. This also means that, technically, any
grammar written in TDL can be reproduced by CLIMB. It
would afterall be possible (though not very useful) to add
all types individually to the grammar through a generation
definition.
Because CLIMB can, in principle, be used to write any
grammar in TDL, impact on coverage and performance of
the grammars was not the main focus of our evaluation.
Coverage and performance depend, in principal, on the
analyses of the grammar and not on the methodology. Nev-
ertheless, we have started comparative research between
two grammars for German to Germanic CLIMB in this pa-
per. This research may provide some indication into the
impact of using the Grammar Matrix and CLIMB. The
outcome of this research remains a mere indication: ini-
tial analyses provided by the Grammar Matrix are likely to
influence future development of the grammar and CLIMB
may influence the choice of analyses. It is, however, impos-
sible to determine how much is influenced by the Grammar
Matrix or CLIMB and how much is the result of insights
and decisions of the engineer writing the grammar.

1678

Finally, required programming skills can be a hindrance for
a grammar engineer to start using CLIMB. We have argued
above that basic skills in a scripting language suffice, but
nevertheless, it remains a drawback of the approach. We
plan to address this in future work by developping sup-
porting software for CLIMB. For instance, Fokkens et al.
(2011) present an algorithm that helps engineers to iden-
tify parts of the grammar that do not influence the perfor-
mance. This algorithm is integrated into the TDL processing
implementations of CLIMB. We plan to extend these im-
plementations so that they can compare an extended gram-
mar to the grammar originally produced by its choices file.
Through this comparison, it will provide feedback to the
engineer concerning the additions that need to be made to
CLIMB.

9. Acknowledgements
We would like to thank Emily Bender and anonymous re-
viewers for their feedback, which helped to improve this
paper. The third author thanks the Deependance project
funded by the BMBF (01IW1103) for its support of the
work. All errors are our own.

10. References
Tania Avgustinova and Yi Zhang. 2009. Parallel gram-

mar engineering for Slavic languages. In Proceedings of
GEAF, Singapore.

Tania Avgustinova and Yi Zhang. 2010. Conversion of a
Russian dependency treebank into HPSG derivations. In
Proceedings of TLT’9.

Tania Avgustinova. 2007. Language Family Oriented Per-
spective in Multilingual Grammar Design. Linguistik
International: Band 17. Peter Lang - Eurpopäischer Ver-
lag der Wissenschaft, Frankfurt am Main, Germany.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-kit
for the rapid development of cross-linguistically consis-
tent broad-coverage precision grammars. In John Car-
roll, Nelleke Oostdijk, and Richard Sutcliffe, editors,
Proceedings of the GEE Workshop, pages 8–14, Taipei,
Taiwan.

Emily M. Bender, Scott Drellishak, Antske Fokkens, Lau-
rie Poulson, and Safiyyah Saleem. 2010. Grammar
customization. Research on Language & Computation,
8(1):23–72.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER treebank.
In Proceedings of the Workshop on Treebanks and Lin-
guistic Theories, Sozopol, Bulgaria.

Joan Bresnan. 2001. Lexical Functional Syntax. Black-
well Publishers, Oxford, UK.

Ulrich Callmeier. 2000. PET - a platform for experimenta-
tion with efficient HPSG processing techniques. Natural
Language Engineering, 6(1).

Marie-Helene Candito. 1998. Building parallel LTAG for
French and Italian. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computa-
tional Linguistics, Volume 1, pages 211–217, Montreal,

Quebec, Canada. Association for Computational Lin-
guistics.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A.
Sag. 2005. Minimal recursion semantics: An introduc-
tion. Research on Language & Computation, 3(4):281–
332.

Ann Copestake. 2002. Implementing Typed Feature Struc-
ture Grammars. CSLI Publications, Stanford, USA.

Benoı̂t Crabbé. 2005. Représentation modulaire et
paramétrable de grammaires électroniques lexicalisées.
Ph.D. thesis, Université Paris 7.

Bart Cramer and Yi Zhang. 2009. Constructon of a Ger-
man HPSG grammar from a detailed treebank. In Pro-
ceedings of GEAF, pages 37–45, Singapore.

Bart Cramer. 2011. Improving the feasibility of precision-
oriented HPSG parsing. Ph.D. thesis, Saarland Univer-
sity.

Berhold Crysmann. 2003. On the efficient implementation
of german verb placement in hpsg. In Proceedings of
RANLP.

Antske Fokkens, Yi Zhang, and Emily M. Bender. 2011.
Spring cleaning and grammar compression: Two tech-
niques for detection of redundancy in HPSG grammars.
In Proceedings of the 25th PACLIC, Singapore, Singa-
pore.

Antske Fokkens. 2011. Metagrammar engineering: To-
wards systematic exploration of implemented grammars.
In Proceedings of ACL:HLT, Portland, Oregon, USA.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree Adjunct Grammars. Journal of Computer
and System Sciences, 1(10):136–163.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL - A
Type Description Language for constraint-based gram-
mars. In Proceedings of the 15th International Confer-
ence on Computational Linguistics, pages 893–899, Ky-
oto, Japan.

Stefan Müller and Walter Kasper. 2000. Hpsg analysis
for german. In Wolfgang Wahlster, editor, Verbmobil:
Foundations of Speech-to-Speech translation, pages 238
– 253, Berlin, Germany. Springer.

Petya Osenova. 2010. BUlgarian Resource Grammar Ef-
cient and Realistic (BURGER).

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase
Structure Grammar. UCP, Chicago, USA.

Aarne Ranta. 2009. The GF resource grammar library.
Linguistic Issues in Language Technology, 2(2).

Éric Villemonte de la Clergerie. 2005. From metagram-
mars to factorized TAG/TIG parsers. In Proceedings of
IWPT05, pages 190–191.

Yi Zhang, Rui Wang, and Yu Chen. 2011. Engineering a
deep hpsg for mandarin chinese. In Proceedings of ALR,
Chiang Mai, Thailand.

1679

