
An implementation of a Latvian resource grammar in Grammatical Framework
Pēteris Paikens, Normunds Grūzītis

Institute of Mathematics and Computer Science, University of Latvia
Raina blvd. 29, Riga, LV-1459, Latvia

E-mail: peterisp@ailab.lv, normundsg@ailab.lv

Abstract

This paper describes an open-source Latvian resource grammar implemented in Grammatical Framework (GF), a programming
language for multilingual grammar applications. GF differentiates between concrete grammars and abstract grammars: translation
among concrete languages is provided via abstract syntax trees. Thus the same concrete grammar is effectively used for both
language analysis and language generation. Furthermore, GF differentiates between general-purpose resource grammars and
domain-specific application grammars that are built on top of the resource grammars. The GF resource grammar library (RGL)
currently supports more than 20 languages that implement a common API. Latvian is the 13th official European Union language that
is made available in the RGL. We briefly describe the grammatical features of Latvian and illustrate how they are handled in the
multilingual framework of GF. We also illustrate some application areas of the Latvian resource grammar, and briefly discuss the
limitations of the RGL and potential long-term improvements using frame semantics.

Keywords: computational grammar, language generation, Grammatical Framework

1. Introduction
The long-term research behind this paper is aimed at
semantic parsing of Latvian and natural language
generation in Latvian. While our former focus has been
on developing language resources and tools that can be
primarily used for language analysis, in this paper, we
describe a recent open-source implementation of a
Latvian resource grammar that can be effectively used
for both language analysis and language generation. We
have implemented this resource grammar in Gram-
matical Framework (GF), a toolkit and formalism for
rapid development of multilingual grammar applications
(Ranta, 2011).
Latvian is an Indo-European language, a member of the
Baltic language group, one of the official EU languages.
In terms of speakers, it is a relatively small language
(about 1.5 million native speakers and about 0.5 million
non-native speakers). It uses a Latin-based alphabet that
in almost all cases provides a one-to-one mapping
between letters and phonemes. The general grammatical
characteristic of Latvian is that it is a highly inflective
language with a relatively free word order.
Large annotated language resources, such as treebanks
and parallel corpora of various domains that would
facilitate statistical parsing and generation, are scarce for
Latvian – reusability of the developed computational
grammars across general and domain-specific use-cases
and across languages is very important.
A fairly successful attempt developing a robust, wide
coverage partial parser of Latvian has been in lines with
the dependency grammar approach (Bārzdiņš et al., 2007;
Pretkalniņa et al., 2011). Other computational grammars
of Latvian have been crafted for the needs of various
machine translation systems (Skadiņa et al., 2007;
Greitāne, 1997) and grammar checking tools (Deksne &
Skadiņš, 2011). However, there has been no general-
purpose wide-coverage computational grammar available
for generating Latvian sentences.

Although dependency-based grammars allow for robust
and effective parsing they lack the potential of language
generation. This is the strength of phrase structure
grammars, e.g. categorial grammars that link the surface
structure with the underlying semantic representation.
Among other features, GF essentially is an effective
implementation of the categorial grammar approach.

2. Grammatical Framework
GF facilitates reusability by splitting the grammar
development in two levels:

1. a general purpose resource grammar that covers
a wide range of morphological features and
syntactic structures,

2. and domain specific application grammars
defining semantic structures and the subset of
natural language that is used within a particular
domain.

This allows developing and testing of the morphological
and syntactic complexity once, which can be afterwards
reused in multiple domains and in different usage
scenarios without in-depth knowledge about the par-
ticular language and without the need to implement a
large list of nuanced exceptional cases. The use-cases are
ranging from controlled languages (e.g. dialogue systems
and interfaces to formal languages) to domain-specific
machine translation applications (e.g. speech-to-speech
travel assistants).
GF differentiates not only between general-purpose
resource grammars and domain-specific application
grammars, but also between abstract syntax and concrete
syntax. The abstract syntax captures the semantically
relevant structure of language, defining grammatical
categories and functions for building trees (Ranta, 2011).
Concrete syntax defines the linearization of the abstract
tree structures at the surface level. Translation among
languages (concrete grammars) is provided via abstract
syntax trees.
Note that in the GF grammar development there is no

1680

concept of a language pair or a translation direction. Also
there is no common semantic interlingua. Instead there
are many application- and domain-specific interlinguas,
and the concrete syntax can be built (but not necessarily)
on top of the common resource grammar API.
The GF resource grammar library (Ranta, 2009), or RGL
for short, currently supports more than 20 languages1
that implement the common API. Latvian is among 13
(out of 23) official EU languages that are supported.
The common API specifies about 60 hierarchical gram-
matical categories and nearly 500 syntactic construction
functions (including structural words and parameters
used in the abstract trees)2. The large number of func-
tions is still manageable from the application grammar
developer perspective: due to extensive overloading,
most of the functions are arranged in about 35 overload
groups. Apart from the syntactic functions, there are also
about 15 groups of lexical construction functions (the
exact number of overloaded paradigms varies among
languages; see Table 1 for a simplified example).

3. Morphology
Morphology plays an important part in grammatical
analysis of Latvian, as there are many3 inflected word-
forms possible for each lemma: about 10 noun/pronoun
forms, about 40 verb forms (excluding about 160
participle forms whose syntactic function is that of
adjectives), and more than 100 adjective forms. Still, a
lot of analytical wordforms are also used (e.g. analytical
verb forms and prepositional phrases).
We have developed a GF morphology module for the
full Latvian language by transforming and improving a
previously developed morphological analyzer (Paikens,
2007) to the GF language, taking into account the
language generation aspects. In particular, we have
implemented a set of functions that detail the lemma-
tization and palatalization that occurs in Latvian, and an
exhaustive list of word ending tables used in each
paradigm. In the result, the Latvian GF morphology
module and the analyzer by Paikens (2007) are quite
different from the application point of a view. The latter
one is designed as a highly robust analyzer for maximum
coverage of an unrestricted text and is not appropriate for
the generation needs as it suffers from overgeneration.
However, the GF module is designed for high precision
within a known lexical domain.
In Table 1, a simplified inflectional paradigm for Latvian
nouns of the 5th declension is given along with the
corresponding tiny fragment from the abstract grammar.
A similar approach has been used for implementing
morphology in GF for other inflective languages, e.g.
Russian4 (Khegai, 2006).
All the possible wordforms (linearizations) of a particu-

1 http://www.grammaticalframework.org/lib/doc/status.html
2 http://www.grammaticalframework.org/lib/doc/synopsis.html
3 If compared to analytical languages like English or Scandi-
navian languages.
4 In terms of grammar, the Slavic language group is the closest
branch to the Baltic language group.

lar Latvian noun are given in Table 2 along with possible
linearizations of the corresponding English noun.
Note that in the public API, the specific internal func-
tions (operations) that deal with the lexical paradigms are
hidden by overloaded functions (e.g. mkN in the case of
nouns).

Common abstract grammar: categories
cat	
 N	
 ;	

Latvian resource grammar: the morphology module
param
	
 	
 Number	
 =	
 Sg	
 |	
 Pl	
 ;	

	
 	
 Gender	
 =	
 Masc	
 |	
 Fem	
 ;	

	
 	
 Case	
 =	
 Nom	
 |	
 Gen	
 |	
 Dat	
 |	
 Acc	
 |	
 Loc	
 ;	

	
 	
 Declension	
 =	
 D1	
 |	
 D2	
 |	
 D3	
 |	
 D4	
 |	
 D5	
 |	
 ...	
 ;	

oper
	
 	
 Noun	
 :	
 Type	
 =	
 {	

	
 	
 	
 	
 s	
 :	
 Number	
 =>	
 Case	
 =>	
 Str	
 ;	

	
 	
 	
 	
 g	
 :	
 Gender	

	
 	
 }	
 ;	

	
 	
 mkNoun	
 :	
 Str	
 -­‐>	
 Noun	
 =	
 \lemma	
 -­‐>	

	
 	
 	
 	
 let	
 decl	
 :	
 Declension	
 =	
 case	
 lemma	
 of	
 {	

	
 	
 	
 	
 	
 	
 ...	

	
 	
 	
 	
 	
 	
 s	
 +	
 "e"	
 =>	
 D5	
 ;	
 -­‐-­‐	
 usually	

	
 	
 	
 	
 	
 	
 ...	

	
 	
 	
 	
 }	
 in	
 mkNoun_Decl	
 lemma	
 decl	
 ;	

	
 	
 mkNoun_Decl	
 :	
 Str	
 -­‐>	
 Declension	
 -­‐>	
 Noun	
 =	

	
 	
 	
 	
 \lemma,decl	
 -­‐>	
 case	
 decl	
 of	
 {	

	
 	
 	
 	
 	
 	
 ...	

	
 	
 	
 	
 	
 	
 D5	
 =>	
 mkNoun_D5	
 lemma	
 ;	

	
 	
 	
 	
 	
 	
 ...
	
 	
 	
 	
 }	
 ;	

	
 	
 mkNoun_D5	
 :	
 Str	
 -­‐>	
 Noun	
 =	
 \lemma	
 -­‐>	

	
 	
 	
 	
 let	
 stem	
 :	
 Str	
 =	
 cutStem	
 lemma	

	
 	
 	
 	
 in	
 {	

	
 	
 	
 	
 	
 	
 s	
 =	
 table	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Sg	
 =>	
 table	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Nom	
 =>	
 stem	
 +	
 "e"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Gen	
 =>	
 stem	
 +	
 "es"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Dat	
 =>	
 stem	
 +	
 "ei"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Acc	
 =>	
 stem	
 +	
 "i"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Loc	
 =>	
 stem	
 +	
 "ē"	

	
 	
 	
 	
 	
 	
 	
 	
 }	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 Pl	
 =>	
 table	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Nom	
 =>	
 stem	
 +	
 "es"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Gen	
 =>	
 palatalize	
 stem	
 +	
 "u"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Dat	
 =>	
 stem	
 +	
 "ēm"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Acc	
 =>	
 stem	
 +	
 "es"	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Loc	
 =>	
 stem	
 +	
 "ēs"	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 }	
 ;	

	
 	
 	
 	
 	
 	
 g	
 =	
 Fem	

	
 	
 	
 	
 }	
 ;	

Latvian resource grammar: API
oper	
 mkN	
 =	
 overload	
 {	

	
 	
 mkN	
 :	
 (s	
 :	
 Str)	
 -­‐>	
 N	
 =	
 \n	
 -­‐>	
 lin	
 N	
 (mkNoun	
 n)	
 ;	

	
 	
 mkN	
 :	
 (s	
 :	
 Str)	
 -­‐>	
 Declension	
 -­‐>	
 N	
 =	
 \n,d	
 -­‐>	

	
 	
 	
 	
 lin	
 N	
 (mkNoun_Decl	
 n	
 d)	
 ;	

}	
 ;	

Table 1: A simplified fragment of RGL.

1681

Domain-specific lexicon: abstract
fun	
 sun_N	
 :	
 N	
 ;
Domain-specific lexicon: Latvian
lin	
 sun_N	
 =	
 mkN	
 “saule”	
 ;	

Domain-specific lexicon: English
lin	
 sun_N	
 =	
 mkN	
 “sun”	
 ;	

Parsing into the abstract categories
>>	
 parse	
 -­‐lang=Lav	
 “sauļu”	

sun_N

>>	
 parse	
 -­‐lang=Eng	
 “suns'”	

sun_N

Generating the full inflectional paradigms
>>	
 linearize	
 -­‐lang=Lav	
 -­‐table	
 sun_N	

s	
 Sg	
 Nom	
 :	
 saule	

s	
 Sg	
 Gen	
 :	
 saules	

s	
 Sg	
 Dat	
 :	
 saulei	

s	
 Sg	
 Acc	
 :	
 sauli	

s	
 Sg	
 Loc	
 :	
 saulē	

s	
 Pl	
 Nom	
 :	
 saules	

s	
 Pl	
 Gen	
 :	
 sauļu	

s	
 Pl	
 Dat	
 :	
 saulēm
s	
 Pl	
 Acc	
 :	
 saules	

s	
 Pl	
 Loc	
 :	
 saulēs	

>>	
 linearize	
 -­‐lang=Eng	
 -­‐table	
 sun_N	

s	
 Sg	
 Nom	
 :	
 sun	

s	
 Sg	
 Gen	
 :	
 sun's	

s	
 Sg	
 Acc	
 :	
 sun	

s	
 Pl	
 Nom	
 :	
 suns
s	
 Pl	
 Gen	
 :	
 suns'	

s	
 Pl	
 Acc	
 :	
 sun

Table 2: A sample domain lexicon (a part of an
application grammar): its definition and usage.

4. Syntax
We have implemented grammar rules for all the common
phrase structures in the conventional style of categorial
grammars, basically: noun phrases with agreement rules
for adjectives and other modifiers, adjective phrases, and
verb phrases with the relevant complements. On one
hand, the implemented rules cover only the most
common (neutral) ways of expressing these phrases (in
terms of word order), excluding several alternative word
orderings that are occasionally used for special emphasis
(e.g. to indicate the given vs. new information) or for
poetic reasons. On the other hand, the grammar includes
syntactic construction rules for a full range of dependent
clauses and participle clauses used in Latvian language,
thus ensuring a wide coverage for generating natural,
complex sentences.
In essence, this approach models a subset of the full
natural language which relies on rich lexical information
about words in a specific domain and on a grammatically
correct standard language, gaining high precision while
accepting a lower recall rate if analyzing an unrestricted
text. From the language generation point of a view, the
design goal is that it should be possible to express every
valid structure in the most common way, i.e., in the

natural/neutral word order – but not necessarily in all the
possible word orderings, as there is no well-defined
model (for Latvian) for the exact semantic nuances
transferred by alternative word order in a more or less
unrestricted text5.

4.1 Clauses
We treat clauses as elements that specify actions – a verb
with its arguments – but leaves unspecified the way in
which the actions are described. Traditional Latvian
linguistics describes clauses in terms of moods and
tenses. There are infinitive, indicative, relative6, debitive7
and imperative moods, as well as few subtypes of some
of them and several types of participles. The relative and
debitive moods are Latvian-specific and are used to
express the reported speech and necessity or requirement
accordingly.
In general, every action can be expressed in any of these
moods by using different synthetic verb forms. In the
case of a perfect tense, analytical verb forms are used.
We have implemented the full set of mood, tense and
polarity combinations used in Latvian language, some
examples of which are illustrated in Table 3.

Parameters Example Translation
Indicative	

Present

zāle ir zaļa grass is green

Indicative	

Past

zāle bija zaļa grass was green

Indicative	

Anterior
Present

zāle ir bijusi zaļa grass has been
green

Relative	

Simultaneous	

Present	

zāle esot zaļa [one says that]
grass is green	

Debitive	

Simultaneous	

Present	

zālei jābūt zaļai grass has to be
green

Conditional	

Simultaneous	

zāle būtu zaļa grass would be
green

Relative	

Anterior
Negated	

zāle neesot bijusi
zaļa

[one says that]
grass has not been
green

Table 3: Examples of mood, tense and polarity variation
in Latvian.

The basic abstract (language-independent) syntax used in
GF RGL is based on a narrow view of tenses (present,
past, future and conditional). This limits the easily
(synthetically) available variety in generation of Latvian
sentences. In a standard resource grammar, at the
sentence level, the verb phrases are used in the indicative
mood, however, keeping the other types of moods
integrated allows us to reuse the same verb phrase

5 Although, in the case of a highly controlled Latvian, there is a
deterministic model defined by Grūzītis (2010).
6 http://www.isocat.org/datcat/DC-3836
7 http://www.isocat.org/datcat/DC-3835

1682

constructing functions in application grammars that need
the additional means of expression. This helps also when
translating specific (structural) verbs such as ‘must’,
‘might’ or ‘said’ – in a proper translation to Latvian it is
often necessary to modify the mood of the dependent
clause governed by these verbs instead of including the
literal translation of these verbs.
The API interface provided by the resource grammar is
as follows:

1. Function mkCl (make clause), parameterised by
the subject, core verb and any appropriate com-
plements. For example, “mkCl	
 John_N	
 give_V2	

key_N	
 Mary_N” generates clauses that corre-
spond to all combinations of tense and polarity
for using in different kinds of sentences: “John
gives a key to Mary”, “John has not given a key
to Mary”, “will John give a key to Mary” etc.

2. Functions to apply such clauses – parameterised
by tense, anteriority and polarity. For example,
by applying “mkS	
 pastTense	
 simultaneousAnt	

positivePol” to the previously defined clause
the specific declarative sentence “John gave a
key to Mary” is generated.

3. Helper functions for building incomplete
clauses that may be needed to form questions,
imperative sentences or subclauses.

This structure enforces a clean separation between the
actual predicate that is described, and the way in which it
is described in a narrative. For example, an application
may need to refer to the same action multiple times: first,
(hypothetically) to request a confirmation from a user,
and afterwards to refer to it as a completed action,
requiring a completely different syntactic structure.
In the practical development of user interfaces in Latvian
this is almost always done in an unsophisticated way,
using simple declarative sentences where the correct
wordform can be built easily by regular expressions or
similar methods. This results in sentence structures that
look clumsy to users, because humans would commonly
use a more complicated structure with subclauses.
Such a resource grammar allows applications to express
a particular clause once in a standardised way, and then
use it in various forms or combine it in complex sentence
structures without dealing with the rather complex rules
of inflection, agreement and structural changes when
using it as a subclause.

4.2. Verb phrases
The agreement rules for complements of multi-argument
verbs are implemented by specifying the syntactic
valences of each verb – the case or preposition that the
relevant complement must or may have.
This presents a challenge for implementing a practical
system for Latvian in relatively unrestricted language
domains with large lexicons, as currently there is no
publicly available syntactic valence dictionary for
Latvian, and thus all such verbs would need to be

defined manually instead of importing them from some
database of verbs with appropriate morpho-syntactic
information. However, if (application) grammar users
define syntactic valences of verbs that are appropriate to
the specific domain, it gives an opportunity to specify (at
the same time) also semantic valences, so that the role of
each complement can be obtained from the case (or
preposition) used, allowing to integrate the grammar
with frame semantics, e.g. with the data of FrameNet
(Fillmore et al., 2003), or to map the verb valences to
domain-specific predicate parameters.
In any case, this lexical information is necessary to
ensure correct analysis or synthesis, as verb complement
roles (both syntactic and semantic) are mainly defined by
their case or preposition. In Table 4 we illustrate this
valence mapping of semantic and syntactic roles for
three related verbs.

(a) saņemt (to receive):
Sem. role Latvian English
Recipient	
 Nominative Subject	

Theme	
 Accusative Object-­‐1
Donor	
 “no”	
 ++	
 Genitive	
 “from”	
 ++	
 Object-­‐2	

Mērija saņem atslēgu no Jāņa – Mary receives a key from John

(b) vajadzēt (to need):
Sem. role Latvian English
Recipient	
 Dative Subject	

Theme Accusative Object-­‐1	

Donor	
 “no”	
 ++	
 Genitive	
 “from”	
 ++	
 Object-­‐2	

Mērijai vajag atslēgu no Jāņa – Mary needs a key from John

(c) dot (to give):
Sem. role Latvian English
Donor Nominative Subject	

Theme	
 Accusative Object-­‐1	

Recipient	
 Dative “to”	
 ++	
 Object-­‐2	

Jānis dod atslēgu Marijai – John gives a key to Mary

Table 4: Syntactic and semantic role mappings

Note that the examples given in Table 4 correspond to
the neutral word order, but the other possible orderings
that preserve the same morphological features are also
valid in Latvian: “Mērija no Jāņa saņem atslēgu”, “no
Jāņa atslēgu Mērija saņem” etc. They convey virtually
the same meaning, but the information structure (topic
and focus) is different, affecting the further discourse
analysis (Grūzītis, 2010).
The syntactic information specific to each of the (a), (b)
and (c) verbs in Table 4 is necessary both to choose the
proper complement wordform in language generation,
and to determine the subject while parsing a sentence.
This also means that in the case of verbs that are
classified as three-place verbs some complements can be
(and often are 8) omitted while still keeping clear
valences.

8 Preliminary corpus analysis of Latvian verb valences
indicates that in about 30% cases one or multiple frame
elements are omitted.

1683

This property is relevant to other languages as well9, and
the current GF approach of classifying verbs according
to the number of arguments is not sufficient in the long
term, especially in the multilingual environment where
the syntactic realization of the same verb (concept) can
be different across languages.

4.3 Noun and adjective phrases
Noun and adjective phrases are implemented in a
straightforward manner as it is typical for inflective
languages – the phrase constituent relations are
determined from agreement of morphological features.
The treatment of determiners is somewhat interesting:
definite and indefinite articles are not used in Latvian,
and, in general, there is no difference between definite
and indefinite noun phrases (at the surface level). A noun
phrase might include an indefinite or demonstrative
pronoun, or an adjective that have distinct definite and
indefinite forms, however, the given and new
information is often indicated implicitly – by rather
systematic changes in the neutral word order (Grūzītis,
2010). These formal features can be exploited to ensure
the proper translation in a multilingual application. In
this regard, the definiteness property is tracked in noun
phrases in order to determine the agreement between a
noun and an adjective or a participle.
In Latvian, an attribute of a noun can be easily trans-
formed into a (comma-delimited) attributive subclause or
vice versa (in most cases). The resource grammar
includes full support for deep nesting of such subclauses
as they are typically used, for example, in legal texts.

5. Applications
GF has been used for a logic-based Latvian-English
application grammar even before the Latvian resource
grammar was available, creating a prototype for
authoring and verbalizing OWL ontologies in controlled
Latvian via Attempto Controlled English and its readily
available infrastructure (Grūzītis & Bārzdiņš, 2011;
Fuchs et al., 2008). Now it is possible to extend this
research on the basis of the resource grammar library and
on the basis of the work by Angelov & Ranta (2010).
However, the provided resource grammar is suitable also
for significantly less controlled applications if the inter-
pretation is left to the user, e.g. for tourist phrasebooks as
demonstrated by Ranta et al. (2012).
Language generation facilities can be used to easily
construct grammatically correct and natural sentences (or
even a text) in various end-user interfaces: from simple
use-cases like proper handling of named entities up to
automatic verbalization of database query results or in
hybrid machine translation systems (see the deliverables
of the MOLTO project10 for an example).
It should be emphasised that the limitations that are
imposed by the RGL API are present only if we want to
exploit the readily available multilingual parsing and

9 For example, Khegai (2006) mentions similar issues.
10 http://www.molto-project.eu/

generation facilities. For single-language applications it
is possible to extend the resource grammar without
preserving full compatibility with the shared API. For
instance, the current system could be adapted for parsing
texts in a weakly controlled language, e.g. legal docu-
ments. Furthermore, Angelov (2011) has demonstrated
the potential of the current GF resource grammar library
in statistical partial parsing of unrestricted texts.
Our future work is aimed at adaptation of the Latvian
resource grammar and at creation of a reusable Latvian
GF lexicon in order to enable semantic parsing of
multi-domain texts. I.e., we are aiming at integration of
the current approach with the frame semantics approach
so that the semantic valences of a verb would be taken
into account11. However, this would require significant
modifications not only in the Latvian resource grammar,
but also in the abstract syntax and to the current
principles of building GF lexicons.

6. Conclusion
We have implemented a computational grammar for
Latvian that works equally well for parsing and language
generation. It is available as an open-source distribution
in the GF release 3.3.3 and is available for download
from the GF source code repository or as a part of binary
packages 12 . Compiled GF application grammars are
suitable for inclusion in third-party applications on
various platforms.
For the developers of GF RGL modules for other
languages, it may be interesting to note the discrepancies
between the current resource grammar API and its
implementation for Latvian. While the morphological
layer is completely language-dependent, the sharing of
common syntactic structures to some extent limits the
resource grammar development and applicability in order
to ensure the compatibility (transferability) among the
languages. Our impression is that the current lan-
guage-independent API is still rather biased towards
peculiarities of English, and that it may be worthwhile to
summarize the issues for all language implementations to
identify the common limitations.
While we lack the knowledge to summarize the situation
for all languages supported by the RGL, our experiments
with Latvian-English-Russian parallel grammars suggest
that development of accurate robust multilingual systems
will eventually require including additional details in the
abstract syntax layer of the RGL. Notably, we would
recommend to replace the ‘n-place’ verb classification
with more structured valence data, and to extend the
common tense and mood system.

Acknowledgements
This work has been supported by the European Regional
Development Fund under the project No. 2011/0009/

11 There is an ongoing work developing a valence dictionary
for the most frequently used verbs in Latvian (Nešpore &
Saulīte, 2012).
12 http://www.grammaticalframework.org/

1684

2DP/2.1.1.1.0/10/APIA/VIAA/112. The authors would
like to thank Aarne Ranta for his helpful hints on the
implementation details, and the anonymous reviewers for
their suggestions on how to improve this paper.

References
Angelov, K. (2011). The Mechanics of the Grammatical

Framework. PhD Thesis. Chalmers University of
Technology and University of Gothenburg.

Angelov, K., Ranta, A. (2010). Implementing controlled
languages in GF. In N.E. Fuchs (Ed.), Controlled
Natural Language (CNL 2009), Lecture Notes in
Computer Science, Vol. 5972, Springer, pp. 82–101

Bārzdiņš, G., Grūzītis, N., Nešpore, G., Saulīte, B. (2007).
Dependency-Based Hybrid Model of Syntactic Analy-
sis for the Languages with a Rather Free Word Order.
In Proceedings of the 16th Nordic Conference on
Computational Linguistics (NODALIDA 2007), Tartu,
pp. 13–20

Deksne, D., Skadiņš, R. (2011). CFG Based Grammar
Checker for Latvian. In Proceedings of the 18th
Nordic Conference on Computational Linguistics
(NODALIDA 2011), Riga, pp. 275–278

Fillmore, C.J., Johnson, C.R., Petruck, M.R.L. (2003).
Background to FrameNet. International Journal of
Lexicography, 16, pp. 235–250

Fuchs N.E., Kaljurand K., Kuhn T. (2008). Attempto
Controlled English for Knowledge Representation. In
Proceedings of the 4th International Reasoning Web
Summer School, Lecture Notes in Computer Science,
Vol. 5224, Springer, pp. 104–124

Greitāne, I. (1997). Mašīntulkošanas sistēma LATRA
(The Machine Translation System LATRA). Proceed-
ings of the Latvian Academy of Sciences, Section A, 51
(3/4), pp. 1–6

Grūzītis, N., Bārzdiņš, G. (2011). Towards a More Natural
Multilingual Controlled Language Interface to OWL.
In Proceedings of the 9th International Conference on
Computational Semantics (IWCS 2011), Oxford, pp.
335–339

Grūzītis, N. (2010). Word Order Based Analysis of
Given and New Information in Controlled Synthetic
Languages. In Proceedings of the Workshop on the
Multilingual Semantic Web (at WWW 2010), Raleigh,
CEUR Workshop Proceedings, Vol. 571, pp. 29–34

Khegai, J. (2006). GF parallel resource grammars and
Russian. In Proceedings of the Joint Conference of the
International Committee on Computational Linguistics
and the Association for Computational Linguistics
(COLING/ACL 2006), Sydney, pp. 475–482

Nešpore, G., Saulīte, B. (2012). Verbu valences apraksta
iespējas latviešu valodā. In Valoda: nozīme un forma.
Teorija un metodoloģija latviešu valodniecībā, Rīga:
LU Akadēmiskais apgāds (to appear)

Paikens, P. (2007). Lexicon-Based Morphological
Analysis of Latvian Language. In Proceedings of the
3rd Baltic Conference on Human Language
Technologies (Baltic HLT 2007), Kaunas, pp. 235–240

Pretkalniņa, L., Nešpore, G., Levāne-Petrova, K., Sau-

līte, B. (2011). A Prague Markup Language Profile for
the SemTi-Kamols Grammar Model. In Proceedings
of the 18th Nordic Conference on Computational
Linguistics (NODALIDA 2011), Riga, pp. 303–306

Ranta, A., Enache, R., Détrez, G. (2012). Controlled
Language for Everyday Use: the MOLTO Phrasebook.
In N.E. Fuchs, M. Rosner (Eds.), Proceedings of the
2nd Workshop on Controlled Natural Language (CNL
2010), Lecture Notes in Computer Science, Vol. 7175,
Springer (to appear)

Ranta, A. (2011). Grammatical Framework: Program-
ming with Multilingual Grammars. Stanford: CSLI
Publications

Ranta, A. (2009). The GF Resource Grammar Library.
Linguistic Issues in Language Technology, 2 (2)

Skadiņa, I., Skadiņš, R., Deksne, D., Gornostaja, T.
English/Russian-Latvian Machine Translation System.
In Proceedings of the 3rd Baltic Conference on Human
Language Technologies (Baltic HLT 2007), Kaunas,
pp. 287–295

1685

