
RESTful Annotation and Efficient Collaboration

Jonathan D. Wright
Linguistic Data Consortium, University of Pennsylvania

3600 Market Street Suite 810, Philadelphia, PA, 19104, USA
jdwright@ldc.upenn.edu

Abstract
As linguistic collection and annotation scale up and collaboration across sites increases, novel technologies are necessary to support
projects. Recent events at LDC, namely the move to a web-based infrastructure, the formation of the Software Group, and our
involvement in the NSF LAPPS Grid project, have converged on concerns of efficient collaboration. The underlying design of the
Web, typically referred to as RESTful principles, is crucial for collaborative annotation, providing data and processing services, and
participating in the Linked Data movement. This paper outlines recommendations that will facilitate such collaboration.

Keywords: annotation, restful, collaboration, NLP, HLT, pipelines, cost reduction

1. Introduction
1.1. Motivation
With Big Data comes Big Collaboration, and new chal-
lenges. An organization may receive Gigaword1 from
LDC2 in the mail, but then what? Does that organization
build its own NER tagger and annotation tools? Do they
download existing toolkits to run locally? They may, but
the internet allows the possibility of distribution of effort,
of machine and human annotation occurring remotely, of
the data itself delivered as needed. The challenge is then
one of communication, and communication that takes place
fast enough to be useful.
At LDC, beyond collaboration with other organizations, ef-
ficiency is of paramount importance. At a large corpora-
tion, the most sensible course of action may be to throw
money at the problem (any problem). LDC is relatively re-
source limited: even for a well funded project, a small staff
must meet short deadlines. Furthermore, computational re-
sources typically aren’t the bottleneck anymore, and pro-
cessing and storage are rarely obstacles. Rather, we must
address human efficiency.
In short, collaboration and efficiency converge on simi-
lar problems and solutions. Collaboration isn’t realistic
without a certain degree of efficiency, and efficiency de-
mands within an organization lead to ”collaborative” be-
havior. Annotators work remotely, therefore are identical to
collaborators from a technical point of view. The internet
services of collaborators are used to avoid reimplementing
capabilities locally. When capabilities are implemented lo-
cally for some reason, they are designed as internal services
that multiple projects share. Internal networks and exter-
nal networks converge in form. Or put in different terms,
we have a financial incentive to make internal and external
operations as similar as possible.

1.2. Dimensions of Efficiency
Programmers are familiar with time and space efficiencies,
which generally are opposing. For example, the use of an

1(Parker et al., 2011)
2http://www.ldc.upenn.edu/

index decreases query time but increases space consump-
tion. Project managers have to consider further tradeoffs,
like programmer effort. The implementation of an index
might be costly, and therefore not worth the speed increase.
Collaboration brings further considerations. A URL that
provides a large corpus in a single response is efficient for
the service provider in terms of programmer time, but not
for the collaborative effort because the server and client
software might not perform well. Here we consider all
these dimensions in scenarios typical of the HLT field.

1.3. Procedure
The World Wide Web, or more specifically, the network
of computers that communicate via HTTP3, is arguably
the most successful distributed architecture in the world.
The Web exemplifies at least 3 properties: universal iden-
tification, a constrained set of operations, and hyperme-
dia(Richardson and Amundsen, 2013). Representational
State Transfer (REST) due to Roy Fielding4 refers to the
notion of transferring resource representations, and REST-
ful has become a cover term for the proceeding properties.
Bending annotation and HLT processing to the same prin-
ciples is the obvious path to efficient collaboration. We’ll
examine these properties by developing a toy problem as
we go, which is trivial in content but realistic in form: an-
notating Part of Speech (POS) tags. LDC specific imple-
mentations will be drawn from but drastically simplified. In
general our goal is to promote procedures, not implemen-
tations, but we must have concrete reference points. Fur-
thermore, the implementations discussed are ever evolving.
The demo accompanying this paper will illustrate whatever
implementation is current using LDC’s annotation server5

(Wright et al., 2012).

2. Universal Identification
The internet relies on Universal Resource Identifiers (URIs)
and Locations (URLs), the latter a subset of the former that
is actually resolvable by some protocol. We’ll use both

3http://www.w3.org/Protocols/
4http://roy.gbiv.com/
5https://webann.ldc.upenn.edu/

1692



terms in what follows, but note that URLs are preferable,
because resolvable identifiers facilitate machine negotiation
of linked data. Resource Description Framework (RDF)6

often uses URIs that are not URLs, leveraging the unique-
ness property but neglecting resolvability. URLs will be
used throughout, but shortened to exclude the domain, in
other words http://www.ldc.upenn.edu/documents/1 will be
shortened to /documents/1. Because our example is illus-
trative but not functional, the reader shouldn’t expect re-
solvable URLs, but understand that they normally do repre-
sent URLs in a working API. Furthermore, internal to LDC,
there are multiple schemes of unique identification, which
coexist and serve complementary purposes. Here we fo-
cus on URLs which provide uniqueness and machine inter-
pretability.

3. Protocols
We’ll rely heavily on HTTP, which is a protocol with a very
limited set of operations, GET and POST the most well-
known. We’ll also make reference to Create Read Update
Delete (CRUD), which is a model of database operation,
similar to the POST GET PUT DELETE verbs of HTTP.
In both cases the motivation is partly to constrain available
operations, while putting the burden of complexity on the
data model. This provides advantages such as stability over
time and simplicity in reasoning about operations. Remote
Procedure Calls (RPC) is a programming paradigm some-
what in conflict with this approach, since it involves custom
definition of operations. APIs can be designed in this fash-
ion, for example, the following HTTP request could initiate
tokenization.

REQUEST
GET /tokenize
Accept: text/plain
RESPONSE
success

This uses HTTP in a non-RESTful manner. SOAP7 is a
standardized means of implementing RPC within HTTP (or
other protocols). SOAP and REST are not inherently in
conflict as is sometimes assumed, but operate at different
layers of abstraction. We’ll return to this point in a later
section.

4. Media Types
HTTP relies on a standardized set of media types, as well as
a means to notate custom types. Here we begin our annota-
tion example by annotating a word with a POS tag. Here’s
our document:

<DOC id="example">This is text.</DOC>

If ”example” is unique within the space of identifiers at
LDC, a conventional URI could be created like so:

http://www.ldc.upenn.edu/example

Another conventional pattern would look like this

6http://www.w3.org/RDF/
7http://www.w3.org/TR/soap/

http://www.ldc.upenn.edu/documents/1

which refers to the first in a collection of documents (see
section on collections). Universal identifiers are somewhat
a matter of convenience, and multiple schemes can coexist.
The toy document above illustrates a salient problem at
LDC, the ambiguity of format, or media type in the par-
lance of the web. Is the document XML or text, or both?
In practice, the history of LDC newswire and its use across
projects has led to difficulty in answering this question. It
is not always possible to start from scratch with the ”right”
design, and data must be used as is. The present paper
isn’t the venue for debating text formats, but we can rec-
ommend one way of addressing the existing problem. The
name REST is based on the idea that resources themselves
aren’t transferred, only their representations, of which mul-
tiple can exist. Therefore the following exchanges involve
different representations of the same content.

REQUEST
GET /documents/1
Accept: text/plain
RESPONSE
<DOC id="example">This is text.</DOC>

REQUEST
GET /documents/1
Accept: text/xml
RESPONSE
<?xml version="1.0" encoding="UTF-8" ?>
<DOC id="example">This is text.</DOC>

This allows a formal inclusion of both formats at once.
Specifications of the text that is annotated will differ, but
can be explicitly related to each other.
For data other than the original source material, our media
type is JSON8 (one variant or another). This is currently
the serialization format of choice for web APIs. If we serve
our toy document as plain text, we can create our first JSON
annotation as follows:

REQUEST
GET /tokens/1
Accept: application/json
RESPONSE
{
"offset": 26,
"length": 4,
"text": "text",
"POS": "noun"

}

5. Annotation Reification
A naive but sound model of annotation would be to have
a relational database table for every object or concept of
interest. For example, the four fields above could be the
columns of a token table. This would lead to CRUDy anno-
tation which can be mapped to the operations of a database
and the basic verbs of HTTP. Retrieving the above anno-
tation would execute a SQL SELECT, the Read of CRUD.

8http://www.json.org/

1693



This model is simple, robust, and adequate for the generic
web application, but for annotation (and likely many pur-
suits) it has notable shortcomings, explored below. We
argue that rather than CRUDy annotation, we use CaRe-
ful annotation, limiting ourselves to Create and Read at
the highest interface level. The user experience of Update
and Delete will be expressed at a lower level. At the low-
est level, the database interface, the operations would still
be CRUD, but annotation involves software that wraps the
database and imposes it’s own interface.
First, the Update operation obliterations the original anno-
tation. Not only is this inadequate, but so is a typical log
file. Also consider dual annotation. While a token can
only have one POS in one syntactic analysis, annotation ex-
ists outside that analysis, and one token can have multiple
POS tags. We argue that annotation reification is neces-
sary, which means the recognition of Annotation as a first
class object that abstracts over all domain specific objects
like POS tag.

id uri user label
1 /tokens/1 john noun
2 /tokens/1 jane verb
3 /tokens/1 jane noun
4 /tokens/1 john verb

The above example is ambiguous regarding the task: is this
collaborative correction, or dual annotation? At LDC we
model assignments with kits, or put another way, a kit is a
model that represents the unit of assignment. If we wanted
to represent our current example as dual annotation, we
could do the following.

id uri user label kit
1 /tokens/1 john noun /kits/1
2 /tokens/1 jane verb /kits/2
3 /tokens/1 jane noun /kits/2
4 /tokens/1 john verb /kits/1

Here kits are connected to single users, but that isn’t a re-
quirement either. Dual annotation and collaborative correc-
tion could coexist. At LDC we have several abstractions
of this sort, the details of which are not only outside the
scope of this paper, but not necessarily amenable to other
organizations. Here we argue that some such abstraction is
necessary, and the kit will serve present purposes.
The reification of annotation is in some sense passing the
buck, since the complexity of an annotation task has to be
represented somewhere. However, it is an important step
in a RESTful design. At the level of communication, there
are no annotation operations, only HTTP requests on an-
notation resources. We’ll return to the hidden complexity
below.

6. Hypermedia
Hypermedia is the use of URLs that a machine can resolve
to receive further media. Returning to our JSON represen-
tations, let’s examine annotations.

6.1. Linked Data
Hypermedia is basically synonymous with Linked Data,
RDF, etc. Consider our JSON annotation.

{
"id": 1,
"uri": "/tokens/1",
"user": "john",
"label": "noun",
"kit": "/kits/1"

}

This is still just JSON, but we’d actually like to use JSON-
LD9, which we can do with a few minor changes (some
necessary, some convenient).

{
"@context": "/context",
"@id": "/annotations/1",
"uri": "/tokens/1",
"user": "john",
"label": "noun",
"kit": "/kits/1"

}

The conversion to JSON-LD has two primary benefits.
First, it establishes a protocol for machine interpretation of
the document via the ”context”, essentially a schema for
the document. Second, it provides the basis for hyperme-
dia, since the context indicates which strings are actually
links that can be followed to access another resource. A
possible context for our example follows.

{
"@context":
{
"uri":
{
"@id": "http://vocab.lappsgrid.org/Token",
"@type": "@id"
}
"user": "http://xmlns.com/foaf/0.1/name",
"label": "http://schema.org/Text",
"kit":
{
"@id": "http://www.ldc.upenn.edu/kit",
"@type": "@id"
}
}

The context combines both standard and custom types,
ranging from the well-known FOAF10 ontology to custom
LDC types (also see the WS-EV in the section on LAPPS
Grid). The @type: @id key/value pair also indicates the
hypermedia links, so a machine can expect to follow /kits/1
(perhaps at http://www.ldc.upenn.edu/kits/1) and receive a
representation of a kit. We won’t flesh out the context for
other types in this paper, in order to save space, but will
continue to include the URI in documents.

9http://json-ld.org/
10http://www.foaf-project.org/

1694



At the highest level, annotation then becomes the use of
GET and POST to exchange JSON-LD documents with
this context. Since POST requests typically use URL-
encoded strings, and JSON is a serialization to a string, it
makes sense to embed the document in a single parameter,
which would look like the following, if we assume the only
key/value pair is label: ”noun”.

POST /annotations
Accept: application/ld+json
json=%7Blabel%3A%22noun%22%7D

The response to this request might be identical to the re-
sponse from the following.

GET /annotations/1
Accept: application/ld+json

For readability, we won’t continue to URL encode request
bodies here.

6.2. Collections
While creating annotations one at a time is reasonable,
reading them one at a time is not. This raises the imple-
mentation of collections, which will be of particular inter-
est when we return to source data representations. Here we
will simply illustrate the concept by reading all the annota-
tions for a specific kit.

REQUEST
GET /annotations?kit_id=1
Accept: application/json
RESPONSE
{

"items":
[

{
"@context": "/context",
"@id": "/annotations/1",
"uri": "/tokens/1",
"user": "john",
"label": "noun",
"kit": "/kits/1"

},
{

"@context": "/context",
"@id": "/annotations/4",
"uri": "/tokens/1",
"user": "john",
"label": "verb",
"kit": "/kits/1"

}
]

}

This mimics in part a personal standard called Collec-
tion+JSON11.

11http://amundsen.com/media-types/collection/

7. The Importance of Standards
The use of standards and widely used software is an impor-
tant part of our infrastructure, because they reduce costs,
but they are a double edged sword. Any particular imple-
mentation represents an investment, and the risk of the in-
vestment is that it will have to be re-implemented in the
face of changing circumstances. Return on investment is
limited by the time it takes for the community to replace
current practices, since change and reimplementation are
inevitable. This issue has to be addressed with almost ev-
ery concrete application or use case.
HTTP is an example of a standard not likely to disappear
tomorrow. Web APIs however have not reached maturity
and practices are likely to change. Standards must be used
with reservation, to strike the right balance between in-
teroperability and return on investment. XML and SOAP
have waned in popularity in favor of JSON based APIs, but
this trend is not mature yet, and there is a plethora of spe-
cific formats. Personal standards like Collection+JSON and
Hydra12 address important concerns (collection representa-
tions and hypermedia controls respectively), but are new
and may not receive wide acceptance. JSON-LD seems to
have momentum, builds on RDF, and with its context mech-
anism provides some relief to changing semantics (assum-
ing clients use it).
The LDC is therefore cautiously rolling out such ”stan-
dards” in its APIs, without presuming a single standard of
representation. The best we can do now is adopt the stan-
dard of protocol, meaning the use of HTTP and hyperme-
dia, which allows clients to reason in the face of change.
This has been the way the Web has evolved, as the response
to any particular URL changes over time.

8. LAPPS Grid
The LDC is participating in the NSF Language Application
Services (LAPPS) Grid project (Ide et al., 2014) which is
addressing most of the same concerns as this paper through
a different perspective. Not only is the project aimed at cre-
ating collaboration, it is a use case for LDC’s collaborative
model, since the Grid can be seen as a single entity with
which LDC’s software must collaborate. LAPPS aims to
achieve efficient collaboration in the following ways.
The current paper promotes no shared software, beyond the
use of HTTP servers. We promote design criteria or pro-
cedures. This approach is robust to change, but puts the
burden on the individual to implement communication soft-
ware. The LAPPS Grid uses a software package that indi-
viduals can adopt to alleviate that burden. The average user
or organization may wrap local software or data as a service
using LAPPS software, and therefore immediately become
a collaborator with anyone that’s also on the Grid. LDC is
wrapping existing services in the Data Node API created by
LAPPS developers so that the same resource accessible via
an HTTP request can be accessed via the Grid.
The LAPPS project adopted JSON-LD (among other stan-
dards) to integrate with the Linked Data movement, and
LDC follows their lead in APIs accessible outside the Grid.

12http://www.markus-lanthaler.com/hydra/

1695



LAPPS has developed a Web Service Exchange Vocabu-
lary (WS-EV)13 to serve as an interlingua among services
which don’t share input and output formats. The URL for
the token type in the previous examples comes from this
vocabulary.

9. Complex Resource Transfer
Transfer time across the web is a significant concern for any
architecture. Not only do large representations take time
due to the number of bytes they contain, but if they are pro-
duced dynamically, the runtime of their creation may be
significant. On top of this, a server must serve multiple
users concurrently. Therefore an architecture which simply
returns the obvious representation for a resource may be a
terribly inefficient one. If the client is an annotation tool,
then it doesn’t need much data at one time anyway, due to
human limits. The problem exists for both source material
and annotations. The POS tagging of a corpus would be
much larger than the corpus itself due to the overhead of
the object representations. Finally, because objects contain
other objects, it’s unclear how much embedding is appro-
priate. Imagine the serialization for an SMS conversation.
It might contain a list of message objects, which in turn con-
tain token objects. Message objects could contain speaker
objects, or speaker objects could be containers for all the
messages for that speaker.
As a rule of thumb, we use two-level embedding. The col-
lection pattern described earlier is essentially a resource
with a list of resources of specific type, leaving open the
question of further embedding. We can modify this con-
cept to treat a resource as a potential collection of arbitrary
types. As an example, let’s define a kit representation to
contain all its annotations, plus some other attributes.

{
"@context: "/context",
"@id": "/kits/1",
"user": "john",
"annotations":
[

"/annotations/1",
"/annotations/4"

]
}

In this representation, values may be URIs or lists of URIs,
but no further embedding occurs, leaving it to the client to
following the URIs for more data. Smart clients will do
so selectively to increase efficiency. Standard link relations
like ”next” and ”prev” can also be used to break up large
collections into parts, as is commonly done with HTML
and search results.

10. Authentication and Authorization
Effective collaboration isnt possible without thorough
means of authentication and authorization. Concurrency is
key to collaboration at scale, and servers receiving thou-
sands of concurrent requests must identify users (or agents)

13http://vocab.lappsgrid.org/

and grant access to exactly those resources and services per-
mitted. In addition, annotations must be associated with
annotators for practical purposes.
While this problem is never simple, the current architec-
ture defines the problem in a simple way, so that reason-
ing becomes straightforward. Resource representations are
exchanged with GET and POST primarily, so we express
constraints in those terms. Here we walk through an exam-
ple as it would be handled by webann. Lets assume Jane
attempts to annotate John’s kit.

POST /annotations
Accept: application/json
Cookie: jane’s-secret-key
{
"@context": "/context",
"kit": "/kits/1",
"uri": "/tokens/1",
"label": "adj"

}

Note the use of the Cookie header to pass a secret key.
This key combines the notions of username, password, and
session, and identifies John as making the request. Note
the document lacks the ”user” field, because that’s filled in
based on the secret key, ensuring the annotation matches
the current user. Data integrity could be enforced in differ-
ent ways at this point. Since kits represent who they are
assigned to, a user mismatch could be detected and an er-
ror thrown. Another approach is to allow this annotation to
be created as normal, because whether this is malicious or
collaborative can’t necessarily be determined from the in-
formation at hand. This would require the request for a kit
representation to enforce data integrity by excluding inap-
propriate annotations. The best approach depends on over
all system design, but the general model is simple and flex-
ible.

11. Structural Annotations
While sequential annotations are efficient in some respects,
they are inefficient in others. There is usually some sense
of ”current” annotations, which is some combination of the
annotations at the tail end of the sequence. But the origi-
nal represent of a token model/table with a field/column is
much more efficient for storing the current state, and could
coexist with the sequential annotations. However, ”current”
itself is not well defined. In the above example, John and
Jane both have a current version of their POS label. We
again need some sort of reification of an annotation, which
we’ll call a node. Consider the following table, based on
the same example.

id uri user label kit
1 /tokens/1 jane noun /kits/2
2 /tokens/1 john verb /kits/1

These are just rows 3 and 4 from the annotations table, but
now they represent nodes, structural rather than sequential
annotations. From the users’ point of view, they are the
current annotations. The choice of the word ”node” here

1696



reflects the generalization over any sort of graph of data.
Here the concrete model node is used as an abstraction over
whatever data structure is most useful, and we associate it
with our kit abstraction.

annotations
id user kit node operation value
1 john /kits/1 /nodes/1 update noun
2 jane /kits/2 /nodes/2 update verb
3 jane /kits/2 /nodes/2 update noun
4 john /kits/1 /nodes/1 update verb

nodes
id kit source target
1 /kits/1 /tokens/1 verb
2 /kits/2 /tokens/1 noun

Here ”update” does refer to the Update of CRUD, and we
might ask why not allow the API to operate on this table
directly. We don’t want to abandon the concept of CaRe-
ful annotation however. The annotations (sequential rep-
resentation) represent complete, immutable information,
while the nodes (structural representation) represent muta-
ble caches, which in fact could be completely erased and
reconstructed from the annotations. The operation column
in the current example is similar to RPC described above.
The inventory of operations is intended to be constrained
to CRUD when possible, but sometimes it is expedient to
introduce a custom operation. Since the annotations are the
primary representations which are CaReful, allowing the
nodes to be CRUDy is not risky. Data integrity problems,
once discovered, can be remedied via the annotations table.

12. RESTful Annotation Tools
Thus far we have focused on APIs and machine inter-
pretable semantics. However, a key component of LDC’s
current infrastructure is a web-based annotation tool frame-
work, since even LDC employees may not work in the of-
fice. These tools use the API described above. At the high-
est level, all the annotation tools are a single tool, and the
notion of tool really becomes a human based categoriza-
tion. The initial request made by an annotator, via their
web browser, includes a kit parameter, therefore accesses
a particular set of nodes, and the tool is just a represen-
tation of the structural annotations (nodes). The browser
then continues to access the API in the manner described
above in response to user input. This approach drastically
reduces (without eliminating) the amount of custom code
that a tool requires. This reduces programmer effort, and
therefore cost.
A great deal of power has been delegated from developer
to manager, which not only makes local management more
efficient, but remote management easier. Workflow selec-
tion, work assignment, progress tracking, etc., are all pos-
sible through the web browser. With a WYSIWYG editor,
a variety of annotation tools can be created from scratch
in the browser, and many properties can be modified at
runtime since they are parameters in a database. One ap-
plication of standards here is the use of CSS and HTML

tags for customization where possible, which are widely
understood by non-developers, further minimizing the ef-
fort required by developers. The connection of this edi-
tor to the API describe above lies in the structural annota-
tions (nodes). While the user/manager continues to operate
within the metaphor of ”tool”, they are actually defining
the structural relationships over which the sequential anno-
tations operate. We hope to see this ”meta-tool” used out-
side the LDC as another example of what’s possible when
web-services are fully leveraged.

13. HLT Pipelines
A number of collaborations are underway that combine an-
notation tools with HLT technologies like Speech Activity
Detection. These pipelines may be deployed through the
Grid or solely through WebAnn. Currently the pipelines are
not exposed over the Web, but nevertheless follow REST
principles like universal identification and CRUD-like op-
erations. Forcing what clearly is an open ended set of
operations into a resource oriented framework fosters ef-
ficiency and replicability, not to mention eventually expo-
sure over the Web. Here standards are less clear, but there
are broad communities working on the same domain, like
CLARIN14 and META-NET15. For now, simply following
RESTful principles may be sufficient to participate in such
communities.
Pipelines present particular problems when distributed.
Imagine a request to tokenize Gigaword, and how long the
client would have to wait for a response. Web communi-
cations must also deal with dropped connections, browser
refresh, web server overload, etc. Constructing a pipeline
across sites exacerbates these problems. There’s also the
problem of new input being added after the initial output is
delivered.
When can apply RESTful principles to these problems as
well. In the following we’ll gloss over many details of ac-
tual representations to focus on the problem. We’ll assume
a pipeline is something a client creates as follows.

REQUEST
POST /pipelines
Accept: application/json
{
"@context": "/context",
"process": "/pos_tagger"
"input": "/documents/1"

}
RESPONSE
{
"@context": "/context",
"@id": "/pipelines/1",
"process": "/pos_tagger"
"input": "/documents/1"
"output": "/kits/3"

}

Note how the request and response are basically the same
document, but with additional fields that reflect the creation

14http://www.clarin.eu/
15http://www.meta-net.eu/

1697



of a new pipeline resource, as well as a new output resource.
Consider this request to occur at time t0, while two requests
for the output occur at t1 and t2 as follows.

REQUEST
GET /kits/3
Accept: application/json
RESPONSE
{

"@context": "/context",
"@id": "/kits/3"

}

REQUEST
GET /nodes/3
Accept: application/json
RESPONSE
{

"@context": "/context",
"@type": "/...",
"@id": "/kits/3",
"nodes": [
{

"@id": "/nodes/1",
"source": "/tokens/1",
"target": "noun"

}
]

}

At t1, the pipeline hasn’t actually executed yet, but a re-
source for its output does exist. The representation for that
resource is valid but impoverished, until time t2. This is just
par for the course in RESTful communication, but is not the
norm for NLP pipelines. It is a sort of asynchronous pro-
cessing, especially if you consider that the input and output
may not just have empty and full states, but incremental
states as well. But URIs and hypermedia make the model
straightforward.
Architecture designers may need to change their thinking
from the assumption that resources are complete when they
can access them. This has been important in a completely
internal sense at LDC, where a data collection occurs over
time. Waiting for collection to finish before processing any
data is impractical. Processing the entire collection multi-
ple times isn’t much better. The optimization is to incre-
mentally process the input, which leads to something like a
RESTful design.

14. Licensing
For raw data, licensing can be treated as a subproblem of
authorization when the resource is requested. Pipelines
add considerable complexity to the problem, as there are
multiple components with different licenses that are dis-
tributed across sites. A well defined pipeline may fail at
arbitrary points due to licensing. The asynchronous model
described above decouples execution from access, since the
resources are identified before meaningful execution takes
place. Licensing again reduces to authorization on individ-
ual resources. If licensing cannot be determined due to a

gap in the database, it doesn’t block pipeline creation or
execution necessarily, only the retrieval of output.

15. Conclusion
Here we have focused not on standards that must be
adopted, but on a set of procedures that organizations can
follow to collaborate efficiently and reduce cost. In many
ways we are arguing for the path of least resistance. Open
standards should be adopted and developed, but in propor-
tion to their probable return on investment. For example,
JSON APIs are a safe bet, but the various extensions to the
format should be used cautiously. At the same time, avail-
able technologies should be used rather than reinvented, for
example, relying on existing media types whenever possi-
ble. Distributed architectures that depend on URIs and hy-
permedia bring great flexibility in a changing world. URIs
that are actually URLs should be used when reasonable so
that true hypermedia exists. While complex programming
ultimately involves complex operations, hiding these oper-
ations at the lowest levels simplifies collaboration. APIs
should limit the inventory of operations whenever possi-
ble, shifting the burden of complexity to representations
and hypermedia. Finally, cost reduction can be achieved
by assuming internal architecture follows the same patterns
as external architecture.

16. Acknowledgments
This work was supported by National Science Foundation
grants NSF-ACI 1147944 and NSF-ACI 1147912.
This material is based upon research supported by the De-
fense Advanced Research Projects Agency (DARPA) Con-
tract No. HR0011-11-C-0145 and Air Force Research
Laboratory agreement number FA8750-13-2-0045. The
U.S. Government is authoized to reporoduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of Air
Force Research Laboratory and Defense Advanced Re-
search Projects Agency or the U.S. Government.

17. References
Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., DiPersio,

D., Shi, C., Suderman, K., Verhagen, M., Wang, D.,
and Wright, J. (2014). The Langauge Application Grid.
In Proceedings of the Tenth International Language Re-
sources and Evaluation (LREC14), Reykjavik, Iceland.
European Language Resources Association (ELRA).

Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K.
(2011). English gigaword fifth edition.

Richardson, L. and Amundsen, M. (2013). RESTful Web
APIs. O’Reilly, Sebastopol, CA.

Wright, J., Griffitt, K., Ellis, J., Strassel, S., and Calla-
han, B. (2012). Annotation Trees: LDC’s Customiz-
able, Extensible, Scalable, Annotation Infrastructure. In
Proceedings of the Eighth International Language Re-
sources and Evaluation (LREC12), Istanbul, Turkey. Eu-
ropean Language Resources Association (ELRA).

1698


