
Improving Open Relation Extraction via Sentence Re-Structuring

Jordan Schmidek Denilson Barbosa
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

schmidek@ualberta.ca, denilson@ualberta.ca

Abstract
Information Extraction is an important task in Natural Language Processing, consisting of finding a structured representation for the
information expressed in natural language text. Two key steps in information extraction are identifying the entities mentioned in the
text, and the relations among those entities. In the context of Information Extraction for the World Wide Web, unsupervised relation
extraction methods, also called Open Relation Extraction (ORE) systems, have become prevalent, due to their effectiveness without
domain-specific training data. In general, these systems exploit part-of-speech tags or semantic information from the sentences to
determine whether or not a relation exists, and if so, its predicate. This paper discusses some of the issues that arise when even
moderately complex sentences are fed into ORE systems. A process for re-structuring such sentences is discussed and evaluated. The
proposed approach replaces complex sentences by several others that, together, convey the same meaning and are more amenable
to extraction by current ORE systems. The results of an experimental evaluation show that this approach succeeds in reducing the
processing time and increasing the accuracy of the state-of-the-art ORE systems.

Keywords: Information Extraction, Open Relation Extraction, Sentence Re-Structuring

1. Introduction
The proliferation of massive text corpora on the Web has
made Information Extraction (IE), often also called Text
Analytics (Jurafsky and Martin, 2008), a very important
task in Natural Language Processing in recent decades. The
ultimate goal of an IE system is to extract the information
in the text and represent it in a structured way (e.g., as a
table or a graph), amenable to storage, indexing, and query
processing by a standard database management system, or
processing by a statistical analysis tool, among other ap-
plications. Despite their many differences, all IE systems
perform two basic operations: Named Entity Recognition
(NER), and relation extraction.
NER systems label (primarily) noun phrases as entities in
the text. Relation extraction systems analyze the text be-
tween two named entities, and determine the relation be-
tween them (if one exists). The first relation extraction
systems were supervised and specific to a single relation.
In order to tackle massive text corpora containing a large
number of unknown relations, Banko and Etzioni (2008),
among others, proposed systems that tackle the Open Re-
lation Extraction (ORE) problem: finding relations in text
without a priori knowledge of which relations actually ex-
ist in the text. ORE Systems quickly became prevalent in
Web information extraction applications where supervised
methods do not scale.
A key ingredient of ORE systems is to rely on the output of
NLP tools instead of the actual words in the sentence. Their
fundamental goal is to exploit the relatively few grammat-
ical constructs that express relations between entities. For
example, many relations are expressed using a single verb
between two entities as in “E1 married E2” or “E1 ac-
quired E2”. Similarly, other relations are expressed using a
noun and a preposition, following a copula, as in “E1 is the
CEO of E2” or “E1 was born in E2”.
Clearly, the effectiveness of ORE systems depends on the

“The pattern is pretty much the same across the
nation, said [Kris Knapton]#PER, a spokesman
for [Metra]#ORG, a commuter rail service in
northeastern [Illinois]#LOC.”

Figure 1: Example complex sentence with relations.
Named entities are identified and tagged with a type (PER
for person, ORG for organization and LOC for location).

sophistication and accuracy of the NLP tools they employ.
Mesquita et al. (2013) characterize the state-of-the-art in
ORE in these terms: Broadly speaking, existing ORE ap-
proaches can be grouped according to the level of sophis-
tication of the NLP techniques they rely upon: (1) shallow
parsing, (2) dependency parsing and (3) semantic role la-
belling. There is a clear cost-benefit trade-off established
by this scale: the most efficient methods use “shallow”
NLP techniques (e.g., POS tagging only) while the more ef-
fective ones are based on “deeper” NLP (e.g., dependency
parsing). That paper also describes a new system, called
EXEMPLAR, that borrows elements from all three groups,
resulting in a system that is as accurate as the “deep” NLP
methods but much faster.
This paper considers an orthogonal issue: the degree to
which complex sentences pose a challenge for the state-of-
the-art ORE systems at the time of writing.
Figure 1 shows a complex sentence annotated with three en-
tities. There are two relations among these entities, namely:
([Kris Knapton]#PER, spokesperson, [Metra]#ORG) and
([Metra]#ORG, located, [Illinois]#LOC). However, most
ORE systems would fail to detect such relations, for a vari-
ety of reasons. For instance, the copulas are implicit, ren-
dering useless those extraction patterns that depend on their
presence. Also, most extraction systems have a limit on the
number of tokens that are allowed between the named en-

3720



tities. On the other hand, most systems would succeed if
provided with the following three, much simpler, sentences
instead:

• “The pattern is pretty much the same across the
nation, said [Kris Knapton]#PER.”

• “[Kris Knapton]#PER is a spokesman for [Me-
tra]#ORG.”

• “[Metra]#ORG is a commuter rail service in northeast-
ern [Illinois]#LOC.”

Throughout the paper, simplified sentences such as the ones
above will be referred to as partial sentences, as each of
them contains only part of the information in the original
sentence. The remainder of the paper describes and eval-
uates effective strategies to re-arrange arbitrary sentences
in a way that state-of-the-art ORE systems achieve higher
accuracy without introducing a substantial computational
penalty.

2. Background and Related Work
NER systems such as those described by Ratinov and Roth
(2009) and Finkel et al. (2005) rely on multiple features
extracted from the text as well as external knowledge, of-
ten called gazetteers, to label (primarily) noun phrases as
entities in the text. Other techniques are often used to im-
prove NER systems, such as resolving pronouns and abbre-
viations. Also, such systems often pay special attention to
salutations (e.g., “Mr.”) and to the capitalization of words.
State-of-the-art systems reach very high accuracy on well-
formed text such as news articles.
Relation extraction systems build on the output of NER sys-
tems. They focus on those sentences containing two or
more entities and aim at determining a relation between
such entities (if one exists). The first relation extraction
systems were specific to a single predefined and domain-
specific relation. Systems such as SnowBall (Agichtein
and Gravano, 2000) started from known relation instances
and learned text patterns to extract previously unknown in-
stances. Several authors employed machine learning for re-
lation extraction; to name just a few, Craven et al. (2000)
used many linguistic and statistical features while Bunescu
and Mooney (2005) pioneered the use of kernel method.
Supervised relation extraction approaches do not scale be-
cause the cost in providing training data is linear in the
number of relations. Open Relation extraction methods fare
better on the Web scenario. Mesquita et al. (2013) study the
state-of-the-art in ORE at the time of writing.
To some extent, the method described in this paper bears
some resemblance with paraphrasing-based relation extrac-
tion methods: they aim at improving relation extraction ac-
curacy by rewriting the sentences, in hopes of arriving at
forms that are more amenable to extraction. Romano et al.
(2006) explored this idea and proposed a system that as-
sumes the existence of a set of templates that can be used
to rewrite the text to arrive at the paraphrases. The authors
evaluated the approach on a dataset concerning text about

protein interactions, reporting satisfactory results. As for
the number of patterns, the authors report that 50% recall
can be achieved with 20 patterns or so, while to reach 80%
or more recall, hundreds of patters are needed. Unlike this
work, the paraphrases generated by their system are not in-
tended to simplify the text.

3. Sentence Re-Structuring
As explained above, ORE systems build on the output of
NLP tools that, for instance, annotate the input text with
POS tags or word dependencies. Therefore, the effective-
ness of an ORE system is limited by the accuracy of the
NLP tools themselves. Given the complexity of natural lan-
guage, such tools are bound to make mistakes, especially
when applied to long and complex sentences.
The goal of the method described here is to prevent some
of the failures in the NLP tools, by breaking down com-
plex sentences into simpler ones that are easier to process.
In turn, these sentences would be easier for existing ORE
systems to handle, yielding higher accuracy overall for the
relations extracted.
Of course, such decomposition must be done with care, so
as to preserve every relation expressed in the original text.

Method Overview. The method proposed in this pa-
per focuses particularly on relative clauses and participle
phrases in the original sentences. At a high level, the
method works as follows. First, chunking (Jurafsky and
Martin, 2008) is applied to break the original sentence into
its basic building blocks. The method then determines the
relationships among all chunks in the sentence; depending
on these relationships, several chunks may be combined
together into a partial sentence. However, the chunks are
never broken down into separate partial sentences.
More precisely, the method considers chunk Ci and deter-
mines if it is connected, disconnected, or dependent on the
previous one Ci−1. If they are connected, the method joins
them. If Ci depends on the previous one, the method cre-
ates a new sentence by combing them. If Ci and Ci−1 are
disconnected, the method checks Ci against the last chunk
of the previous partial sentence. The process is repeated
for all chunks.
The next two sections discuss different ways of determining
the dependencies of two chunks.

3.1. Sentence Re-Structuring With Parsing
As explained, a crucial task in sentence re-structuring is to
determine if two chunks of the original sentence are con-
nected, disconnected, or dependent. One way to if two
chunks are related is to use dependency parsing (Juraf-
sky and Martin, 2008) on the sentence. The dependencies
used in this work are the Stanford dependencies for En-
glish (Klein and Manning, 2003). Two chunks are said to
be connected if there exists a word in one chunk with a de-
pendency on a word in the other chunk. Furthermore, if the
dependency is rcmod, appos, or partmod, the chunks are
said to be dependent of each other. If no such dependency
exists, the chunks are disconnected.
In the example of Figure 1, the chunks “said [Kris Knap-
ton]#PER” and “The pattern is pretty much the same

3721



across the nation” are connected; “a spokesman for [Me-
tra]#ORG” and “said [Kris Knapton]#PER” are depen-
dent; and “a commuter rail service in northeastern [Illi-
nois]#LOC” and “said [Kris Knapton]#PER” are discon-
nected.
As shown in Section 4., re-structuring via dependency pars-
ing is very effective, in some cases doubling the accuracy of
a state-of-the-art ORE system. However, it is also costly, as
it requires parsing. Therefore, we also investigated whether
we can determine the relationship among chunks using a
classifier based on features that do not require parsing.

3.2. Sentence Re-Structuring Without Parsing
This section describes the use of a Naive Bayes classifier,
implemented wit the Weka toolkit (Hall et al., 2009), to de-
termine the relationships between chunks at a lower com-
putational cost compared to parsing. The features used by
the classifier are: the POS tags of the first 2 and last 2 to-
kens of each chunk, the chunk tag (NP, VP, etc.), and the
distance (in number of tokens) between the chunks.
In order to train the model, distant supervision was used.
More precisely, the model was trained with dependencies
from 37015 parse trees of The Wall Street Journal section
of OntoNotes1, labeled as connected, disconnected, or de-
pendent according to the criteria above. Note that using
parse trees from OntoNotes effectively minimizes potential
errors introduced by automatic parsers.
The accuracy of the classifier in a 10-fold cross validation
setting is as follows. Overall, 77.7% of the instances are
correctly classified. On a per-class basis, the accuracy (f-
measure) scores are 0.85 for disconnected, 0.75 for con-
nected and 0.55 for dependent. More importantly, the clas-
sifier has much higher precision than recall, leading to a
fairly low number of false positives.

4. Experimental Evaluation
This section discusses an experimental evaluation of the
sentence re-structuring methods described above with two
state-of-the-art ORE systems: ReVerb (Fader et al., 2011)
and EXEMPLAR (Mesquita et al., 2013), and three test cor-
pora. These methods were chosen as they constitute the
state-of-the-art in open relation extraction, as argued by
Mesquita et al. (2013): no other system outperforms these
two in terms of both efficiency and accuracy.
ReVerb builds on the premise that most relations are ex-
pressed using a few patterns. More precisely, it handles
only three types of relations (“verb”, “verb+preposition”
and “verb+noun+preposition”). Limiting itself to such a
small number of patterns, ReVerb requires very little NLP
machinery (i.e., it is a “shallow” method), and thus has a
very low processing cost per sentence.
EXEMPLAR is a rule-based system that builds on depen-
dencies among terms in the sentence, thus requiring parsing
(i.e., it is a “deeper” method). EXEMPLAR detects triggers
that may indicate relations, and then verifies if there are
dependencies in the sentence involving the trigger and two
or more named entities. The different rules in the system

1LDC Catalog No LDC2011T03–http://catalog.
ldc.upenn.edu/LDC2011T03.

NYT-500 (ground truth: 150 relations)
P R F-1 sec/sent.

ReVerb 0.70 0.11 0.18 0.0146
ReVerb + DEP-SR 0.81 0.23 0.35 1.1088
ReVerb + NB-SR 0.82 0.21 0.33 0.0612
EXEMPLAR 0.72 0.39 0.51 1.0918
EXEMPLAR + DEP-SR 0.74 0.44 0.55 1.7236
EXEMPLAR + NB-SR 0.79 0.41 0.54 0.8954

PENN-100 (ground truth: 51 relations)
P R F-1 sec/sent.

ReVerb 0.78 0.14 0.23 0.0180
ReVerb + DEP-SR 0.89 0.33 0.49 0.6190
ReVerb + NB-SR 0.88 0.29 0.44 0.0670
EXEMPLAR 0.79 0.51 0.62 0.6010
EXEMPLAR + DEP-SR 0.80 0.55 0.65 1.0300
EXEMPLAR + NB-SR 0.76 0.51 0.61 0.5780

WEB-500 (ground truth: 461 relations)
P R F-1 sec/sent.

ReVerb 0.92 0.29 0.44 0.0104
ReVerb + DEP-SR 0.91 0.29 0.44 0.4752
ReVerb + NB-SR 0.91 0.30 0.45 0.0394
EXEMPLAR 0.96 0.46 0.62 0.4862
EXEMPLAR + DEP-SR 0.96 0.46 0.63 0.8940
EXEMPLAR + NB-SR 0.96 0.46 0.63 0.4940

Table 1: Accuracy and performance results on the three test
datasets. The columns show the average precision (P), re-
call (R), f-1 measure (F-1), and time (in seconds) per sen-
tence, for each method.

determine whether or not these dependencies form a rela-
tion. It is also worth mentioning that ReVerb is a supervised
method while all rules in EXEMPLAR were crafted by hand.
The methods are compared in terms of precision (P), re-
call (R), f-measure (F-1) and time (in seconds) per sentence
on the test corpora before and after applying the sentence
re-structuring method described in this paper. The results
of the dependency-based (DEP-SR) and the classifier-based
(NB-SR) sentence re-structuring methods are reported sep-
arately, for comparison. Table 1 shows all results.
The three corpora, also used in the benchmark of Mesquita
et al. (2013), are as follows:

• NYT-500 consists of 500 sentences from the New
York Times corpus, manually annotated with binary
relations. As shown in Table 1, a total of 150 sen-
tences have relations.

• PENN-100 contains sentences from the Penn Tree-
bank recently used in a tree-kernel ORE method (Xu
et al., 2013), where 51 relations are annotated.

• WEB-500 is a commonly used dataset, developed
for the TextRunner experiments (Banko and Etzioni,
2008).

Of the three corpora, WEB-500 has the least sophisticated
sentences, making it the easier benchmark (as evidenced by
the high precision of both ORE systems).

3722



4.1. Discussion
As indicated in Table 1, the dependency-based sentence re-
structuring method (DEP-SR) increases the effectiveness of
both ORE systems in all datasets. The improvements in
terms of accuracy are dramatic for ReVerb on the NYT-500
and PENN-100 corpora: 95% increase for NYT-500 and
113% for PENN-100. As for EXEMPLAR, we also observe
improvements using DEP-SR, although not nearly as sub-
stantial (between 5% and 8%, respectively).
Furthermore, the results in Table 1 provide further evidence
that the WEB-500 benchmark is rather simple from an NLP
point of view, in the sense that restructuring the sentences
has little effect in the accuracy. As expected, the superior
accuracy of DEP-SR comes with the added computational
cost incurred by parsing the sentences, which is especially
noticeable for the case of ReVerb.
Table 1 also shows that NB-SR offers a very attractive com-
promise, leading to significant accuracy improvements, es-
pecially for ReVerb, without increasing the computational
cost as much as DEP-SR. Considering the results for EX-
EMPLAR with our NB-SR method, two observations can
be made. First, NB-SR seems to have a small positive ef-
fect in increasing the accuracy across all corpora (although
a negligible drop in accuracy was observed in the PENN-
100 benchmark). Second, NB-SR leads to a reduction in
processing time, which is due to the fact that it takes EX-
EMPLAR less time to parse all partial sentences produced
by the method rather than the original, more complex, one.

5. Conclusion
To the best of the authors knowledge, this work starts the in-
vestigation of re-structuring complex sentences to improve
relation extraction for arbitrary text. The paper describes
a method that breaks the sentences via chunking, and ana-
lyzes those chunks to determine which ones should be re-
grouped together into the same partial sentence. Two strate-
gies for such analysis are presented. One uses dependency
parsing and leads to substantial accuracy gains, while the
other is based on a classifier that exploits features readily
available from the chunks. An experimental evaluation with
three sentence corpora, with varying degrees of difficulty,
reveals that the method is capable of drastically increasing
the accuracy of “shallow” relation extraction systems such
as ReVerb or significantly reduce the cost of “deeper” rela-
tion extraction systems such as EXEMPLAR.
There are several directions for future work. One would
be to further process the chunks and eliminate those that
are unlikely to be part of any relation. An immediate ap-
proach would be to ignore those partial sentences that do
not mention any entities, for example. More generally, the
method described here applies only to participal and de-
pendent clauses, and exploiting other sources of complexity
may also lead to similar performance gains.

6. Acknowledgements
This work was supported by grants from the Natural
Sciences and Engineering Research council of Canada,
through its Business Intelligence Network.

7. References
Agichtein, E. and Gravano, L. (2000). Snowball: extract-

ing relations from large plain-text collections. In Pro-
ceedings of the ACM Conference on Digital libraries,
pages 85–94. ACM.

Banko, M. and Etzioni, O. (2008). The tradeoffs between
open and traditional relation extraction. In Proceedings
of the Annual Meeting of the Association for Computa-
tional Linguistics, pages 28–36. ACL.

Bunescu, R. C. and Mooney, R. J. (2005). A shortest path
dependency kernel for relation extraction. In Mooney,
R. J., editor, Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural
Language Processing, pages 724–731. ACL.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A.,
Mitchell, T. M., Nigam, K., and Slattery, S. (2000).
Learning to construct knowledge bases from the world
wide web. Artif. Intell., 118(1-2):69–113.

Fader, A., Soderland, S., and Etzioni, O. (2011). Identify-
ing Relations for Open Information Extraction. In Pro-
ceedings of Conference on Empirical Methods in Natural
Language Processing, pages 1535–1545. ACL.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information extrac-
tion systems by gibbs sampling. In Proceedings of the
43rd Annual Meeting on Association for Computational
Linguistics, pages 363–370. ACL.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18.

Jurafsky, D. and Martin, J. H. (2008). Speech and Lan-
guage Processing. Prentice Hall, 2 edition, May.

Klein, D. and Manning, C. D. (2003). Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - Volume
1, pages 423–430. ACL.

Mesquita, F., Schmidek, J., and Barbosa, D. (2013). Ef-
fectiveness and efficiency of open relation extraction. In
Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 447–457.
ACL.

Ratinov, L. and Roth, D. (2009). Design challenges and
misconceptions in named entity recognition. In Proceed-
ings of the Thirteenth Conference on Computational Nat-
ural Language Learning, pages 147–155. ACL.

Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., and
Lavelli, A. (2006). Investigating a generic paraphrase-
based approach for relation extraction. In Proceedings
of the 11st Conference of the European Chapter of the
Association for Computational Linguistics, pages 409–
416. ACL.

Xu, Y., Kim, M.-Y., Quinn, K., Goebel, R., and Barbosa,
D. (2013). Open information extraction with tree ker-
nels. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 868–
877. ACL.

3723


