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Abstract
The automatic grading of oral language tests has been the subject of much research in recent years. Several obstacles liein the way
of achieving this goal. Recent work suggests a testing technique called elicited imitation (EI) that can serve to accurately approximate
global oral proficiency. This testing methodology, however, does not incorporate some fundamental aspects of language, such as fluency.
Other work has suggested another testing technique, simulated speech (SS), as a supplement or an alternative to EI that can provide
automated fluency metrics. In this work, we investigate a combination of fluency features extracted from SS tests and EI test scores as a
means to more accurately predict oral language proficiency.Using machine learning and statistical modeling, we identify which features
automatically extracted from SS tests best predicted hand-scored SS test results, and demonstrate the benefit of addingEI scores to these
models. Results indicate that the combination of EI and fluency features do indeed more effectively predict hand-scoredSS test scores.
We finally discuss implications of this work for future automated oral testing scenarios.
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1. Introduction

Automated grading of oral proficiency is in theory at-
tractive, though the current state of speech processing
and recognition technologies still poses considerable chal-
lenges. Oral proficiency is traditionally evaluated on
two axes: accuracy—the proper use of vocabulary, gram-
mar, and pragmatics—and fluency—the smooth, unhalt-
ing delivery of conversational turns (Ellis, 1993; Cham-
bers, 1997). We discuss and demonstrate how two test-
ing methodologies—elicited imitation (EI) and simulated
speech (SS)—can together address these abilities.

EI test items (Bley-Vroman and Chaudron, 1994) consist
of aurally presented sentences recorded beforehand that are
carefully engineered at various levels of linguistic complex-
ity (Christensen et al., 2010). The subject must repeat back
the sentences, and the responses are recorded and scored
either by humans or by computer using specialized tech-
niques (Graham et al., 2008). Scores from well designed
EI tests correlate well with other oral proficiency tests such
as the oral proficiency interview (OPI), which has standard-
ized guidelines that target particular language features for
assessing oral proficiency (ACTFL, 1999).

However, EI does not incorporate various spontaneous
speech phenomena that are important indicators of global
oral proficiency (Housen and Kuiken, 2009). Chief among
these phenomena is oral fluency, since EI responses are too
short and lack spontaneity. Other forms of oral-language
testing (such as the OPI) are geared to identifying and test-
ing these features much more accurately. These interview-
style oral tests take advantage of normal discourse patterns
to evaluate the control of a language learner over various
aspects of language. However, this makes automatic scor-
ing by computer more difficult. Recent work has focused
on using automatically identified fluency features to serve
as a measurement for grading (Koponen and Riggenbach,
2000).

Another automatic oral testing method is referred to as
semi-direct or simulated speech (SS). A computer requests
and records a student’s spontaneous free-form monologue
in a simulated conversational setting instead of a dialog-
or interview-style test. Automated scoring (Bernstein et
al., 2010) usually employs a limited vocabulary language
model for the ASR engine, phrase or word-spotting, or ex-
traction of specific fluency-related features (Ginther et al.,
2010; Cucchiarini et al., 2000). Of course, SS does not
test skill at turn taking and other discourse strategies. SS
tests are currently much more widespread than EI tests; ex-
amples include the web-based TOEFL test (iBT), the sim-
ulated OPI (SOPI), and the Computer Assisted Screening
Tool (CAST) all make use of the SS testing methodology
(Malone, 2007). SS scores also correlate strongly with
those of OPI-style interview tests (Higgins et al., 2011).
Both EI and SS tests offer advantages and pose challenges.
Recent research has focused on combining them with the
expectation that the result will be a more balanced auto-
matic scoring approach. Müller et al. (2009) incorpo-
rated both accuracy and fluency metrics in the calculation
of a score for test items. Matsushita (2011) combined EI
scores and SS scores in predicting OPI scores for Japanese
learners. He identified eleven features that he could ex-
tract from SS responses using the Julius recognition engine
(Matsushita and Lonsdale, in print). They include the num-
ber of types, number of tokens, number of pauses, silence
length, tokens per speech runs, and speech time per run.
The results were promising and invite validation in English,
motivating this study. Specifically, we use a combination
of automatically scored EI and SS tests to see how closely
computer scores agree with expert test evaluators.

2. Data and methods
Our testing data was acquired at the English Language Cen-
ter (ELC) at Brigham Young University. At the beginning
of each semester the ELC administers a battery of place-
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ment tests. Upon semester completion, students take a se-
ries of tests including a speaking language achievement test
(sLAT). The sLAT is a 10-item simulated speech (SS) test
that prompts the student to give spontaneous speech re-
sponses. Tests are designed to adequately test all levels
of language learners—from basic to academic level. The
sLAT is administered on a computer, and responses are
recorded for later human scoring.
Our data were recorded by a testing application at the ELC
and then given a holistic score by a human grader on a
scale of 1 to 7. Each test was double-scored by raters at the
ELC according to a grading rubric. The test administrator
then ran the scores though Facets (Many-Facet Rasch Mea-
surement) for an in-depth analysis of rater bias. Finally, a
weighted average score was assigned each test. The test
files in this study ranged between 20 seconds to just under
2 minutes, and for each student the average length of file
was between 50 seconds and a minute.
We also administered an EI test to the students at the same
time. Each EI test was also double-scored by trained raters
at the ELC.
We report on aggregated over three semesters, each
semester having between 169 and 196 students, for a total
of 492 students who took both tests and for whom scoring
data is available.
We also scored the EI and SS test responses with the
Sphinx automatic speech recognition (ASR) system (Lee,
1989). We used customized grammars for scoring the EI
responses; sLAT responses were run through the recog-
nizer using the off-the-shelf Hub4 language model and WSJ
acoustic model. Targeted features were extracted from the
ASR engine, and script-based postprocessing provided ad-
ditional analysis (Xi et al., 2008). Each SS item score con-
sisted of values for each of the 10 aggregate ASR fluency
features.
For comparison purposes we also extracted fluency features
from the SS responses using the Praat tool (Boersma and
Weenink, 2005). Praat is an open-source signal processing
and acoustic analysis program widely used for feature ex-
traction from sound files (Préfontaine, 2010). Unlike with
ASR, Praat feature extraction relies on no underlying mod-
els to successively map layers of output. Instead features
are identified by calculations that analyze the acoustic sig-
nal for silence, voicing, syllable nuclei, and other properties
as determined by specific heuristics.
Our use of Praat required only slight adjustment to a spe-
cially designed script (De Jong and Wempe, 2009). Con-
figuring the Praat script requires manual calibration of set-
tings, such as the minimum threshold length for silence, a
decibel threshold tuning parameter (defining silence within
a speaker’s utterance), as well as the minimum decibel dip
(defining the distinction between syllable peaks). For our
work we calibrated these settings as follows:

• three-tenths of a second as the minimum length of si-
lence

• -25 decibels as the tuning parameter for silence

• 2 decibels as the minimum dip between syllables.

Previous related work (Matsushita, 2011) used similar set-
tings. We also adpoted the 400 millisecond boundary from
previous studies to specify minimum silence duration, thus
separating continuous speech runs. However, when we in-
vestigated a portion of the data empirically, a shorter mini-
mum seemed to better reflect human-perceived pauses and
also improved experimental results. Accordingly, we short-
ened the silence duration. We also omitted from silent-
feature calculations any long silences at the beginning or
end of the sound files.

Many of the features extracted—either via ASR using
Sphinx or via signal processing using Praat—can be more
accurately quantified by human judges. However, other fea-
tures presumably cannot be assigned by a human judge,
such as articulation rate or degree of adherence to an acous-
tic model. In either case, when hand-scoring SS tests,
the grader presumably does not consciously quantify these
metrics but rather assigns a grade subjectively, taking into
account an abstract representation of the subject’s fluency
comprised by some combination of these metrics and other
factors. The use of these computationally extracted flu-
ency features can therefore be viewed more as an attempt
to model the rater’s perception of a speaker’s fluency. The
accurate identification of the most influential and discrimi-
native features is consequently of interest and importance.

We evaluate the contribution of various combinations of
features in two ways: with machine learning (ML) using the
Tilburg Memory-Based Learning (TiMBL) system (Daele-
mans et al., 2010), and using statistical modeling.

We used TiMBL to analyze the features, identifying which
led to a more accurate prediction of the human-assigned
sLAT score. The TiMBL program is commonly used in the
machine learning field, usually in the context of language-
related problems. TiMBL uses a variety of algorithms to
establish a nearest-neighbor model based on training data
that is then used to annotate incoming test items.

In our case the annotation (i.e. TiMBL’s guess) is the pre-
dicted score for a given test item response based on the
features extracted from it. The accuracy of the model is
then scored by comparing the actual score versus the pre-
dicted outcome for the sLAT item. TiMBL also reports a
ranked list of the relative contribution of the features in the
computing the results. The scores used to train the system
in this case were weighted averages, which we used be-
cause human scores often differ by a point or more. This
additional margin for error is consistent with human-rating
scoring practices.

We obtained test prediction accuracy scores via the leave-
one-out method of prediction. In this approach, the model
only performs one prediction per training run, the item be-
ing tested having been removed from the training data.

In Experiment 1, we compared the ability of both the ASR
and Praat features to predict sLAT scores. Then in Exper-
iment 2 we computed correlations and regression models
that demonstrated the relationship of fluency features with
the sLAT score. Finally, Experiment 3 evaluated how well
the EI and SS scores together can be used to predict student
proficiency scores.
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3. Results
We ran two sets of features through TiMBL and obtained
test prediction accuracy scores. The ASR training file con-
sisted of 484 vectors each consisting of the ten fluency fea-
tures extracted from the ASR transcription results. The
Praat training file had 536 vectors consisting of the seven
fluency feature extracted from the sound files, including a
few sounds files that were not successfully recognized by
the ASR system.
Table 1 shows the results, both for exact predictions and
for within-one predictions (since human scoring often is
computed this way). ASR slightly outperforms Praat-based
scoring. Both ASR and Praat achieve exact accuracy above
30%; for within-one scores, the accuracy is around 83%
for both systems. Thus prediction of sLAT scores based
on ASR and Praat features gives good results and either
method is a reasonable candidate for automating fluency
feature extraction. Note that neither system’s accuracy
matched those of Matsushita (2011) for Japanese; this is
probably due to our 7-point scale outcome for sLAT versus
his 3 or 4 level scale (3 or 4 outcomes).

ASR Praat
Exact accuracy 0.3908 0.3645
Within-one accuracy 0.8376 0.8299

Table 1: Prediction accuracy for fluency features (machine
learning)

Table 2 shows the relative ranking of contribution for both
feature sets; they largely agree with Matsushita’s, with
some permutation. Among the Praat features, speech rate
emerged as the top discriminative feature. Not surprisingly,
the simplest score extracted—total duration of the file—had
the least discriminative effect on the predicted scores.
Some features have equivalents in both the ASR and Praat
feature sets (e.g. number of syllables, number of pauses),
and many of these proved influential in overall calculations.
One obvious exception was speech rate, which—as calcu-
lated by Praat—proved to be the most discriminative fea-
ture, but in Sphinx came up next to last in importance. This
variation in feature importance could be a reflection of the
quality of the speech rate as calculated by ASR versus by
Praat, or it could just be a reflection of the inherent ASR in-
accuracy of the pseudo-phonemes used by counting letters
in orthography.
We then computed a statistical regression model on the
data, evaluating the significance of the individual features
and their respective impact on the model. We also com-
puted t-tests for each feature; see Table 3. The results here
contrast slightly with the TiMBL results; here Praat outper-
forms ASR.
For the ASR model, the features that reached the level of
statistical significance (p < 0.05) are: (1) # of word types,
(2) silence length, (3) speech length, and (4) # of runs.
Table 4 shows regression values for the features obtained
from Praat. The features that reached statistical significance
for this model were: (1) # of syllables, (2) file duration, (3)
articulation rate, and (4) phonation time.

Figure 1 summarizes the results for both models. The Praat
features yield a slightly better regression model than the
ASR features did. Both models are statistically significant
(ASR model:F = 25.459, p < 0.01; Praat model:F =

41.536, p < 0.01).
For Experiment 2, we combined EI and SS scores with the
goal of improving the ML results in predicting sLAT scores.
This had the hoped-for effect of noticeably improving ML
prediction accuracy for SS scores. The EI score proved to
be the single most discriminative feature. The difference in
the prediction accuracy was significant, with exact accuracy
by TiMBL jumping to 49%, a 10% increase from the ML
results reported above. The within-one accuracy reached
more than 86%, a 3% increase. Although the nearly 50%
accuracy is still not at the accuracy level reported in Mat-
sushita (2011), it does approach human agreement metrics
for the scoring of the sLAT files.
Analysis results for Experiment 3—combining the EI and
SS scores—show similar improvement of results for the re-
gression model. Regression model statistics appear in Fig-
ure 2. The overall improvement in the model’s R2 was
0.124. The difference in the R values is significantly higher
with EI results included (p < 0.03) as determined by the
Fisher r-to-z transform. The R2 value of this new model ap-
proaches 0.5, indicating the about half of all the variance in
the sLAT test scores can be accounted for by EI and fluency
features. As demonstrated earlier with the TiMBL results
as well as with this regression model, EI scores give signifi-
cant additional information to the fluency features and thus
improve the model’s ability to predict sLAT scores.

Model R R2 Adjusted R2 Std. Error
of the Estimate

1 .684a .467 .455 .821

(a) Model summary

Model Sum of df Mean F Sig.
squares square

Regression 279.000 11 25.364 37.647 .000
Residual 317.998 472 .674
Total 596.998 483

(b) ANOVA

Figure 2: Regression model for joint EI and SS scores

Figure 3 plots the regression model predictions by their ac-
tual hand-graded sLAT results.
The analysis of the individual features of the combined
model appear in the right-hand portion of Table 3. As ex-
pected and demonstrated previously with ML results, EI
scores produced the most significant t value. Importantly,
none of the significant features in the ASR-only model were
made obsolete by the addition of the EI scores, though they
were reordered in their level of significance.
Both regression and ML appear useful in utilizing and com-
piling the features from EI scores to produce a model that
can be used to predict sLAT scores with accuracy that nei-
ther test could achieve independently. This independence
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ASR features Praat features
1. # of runs 1. speech rate (# of syllables / file duration )
2. # of pauses 2. # of syllables
3. # of word types 3. # of pauses
4. # of word tokens 4. articulation rate (# of syllables / phonation time)
5. tokens / run 5. average syllable duration (speaking time / # syllables)
6. silence length 6. phonation time
7. speech length 7. file duration
8. speech time / run
9. speech rate (# of phonemes / sec.)
10. run word types/speech length

Table 2: Fluency feature rankings by order of significance

sLAT ASR sLAT ASR and EI combined
Unstandardized Standard- Unstandardized Standard-

Model Coeff. ized Coeff. t Sig. Coeff. ized Coeff. t Sig.
B Std. Err. Beta B Std. Err. Beta

(Constant) 3.518 .312 11.271 .000 .965 .402 2.401 .017
speech time/run -.022 .072 -.033 -.303 .762 .000 .066 .000 -.005 .996

speechRate .000 .009 .001 .029 .977 -.006 .009 -.035 -.750 .453
types/speechLen .051 .082 .076 .615 .539 .039 .075 .059 .513 .608

tokensPerRun -.045 .039 -.068 -1.172 .242 -.065 .038 -.090 -1.706 .089
speechLen -.107 .043 -.548 -2.490 .013 -.109 .039 -.561 -2.805 .005
silenceLen -.146 .035 -.582 -4.136 .000 -.106 .033 -.424 -3.249 .001
numTypes .117 .029 1.761 4.045 .000 .076 .027 1.144 2.851 .005

numTokens .030 .031 .510 .951 .342 .053 .029 .898 1.827 .068
numRuns -.142 .060 -.648 -2.383 .018 -.157 .055 -.710 -2.879 .004

numPauses -.023 .016 -.250 -1.465 .144 -.023 .015 -.249 -1.576 .000
EI ASR .008 .001 .398 9.914 .000

Table 3: Regressions for ASR feature coefficients

Unstandardized Standard-
Model Coeff. ized Coeff. t Sig.

B Std. Err. Beta
(Constant) 4.043 .715 5.653 .000

numSyl .016 .004 .450 3.948 .000
npause .020 .013 .119 1.631 .103

dur -.089 .016 -.328 -5.445 .000
phonationTime .038 .016 .268 2.309 .021

speechRate -.099 .130 -.055 -.763 .446
artRate .321 .117 .180 2.735 .006

ASD -.100 .141 -.028 -.713 .476

Table 4: Regressions for Praat feature coefficients

(a) ASR model
Model R R2 Adjusted R2 Std. Err.

of the Estimate
1 .586a .343 .329 .912

(b) Praat model
Model R R2 Adjusted R2 Std. Err.

of the Estimate
1 .596a .356 .347 .896

Figure 1: Regression model summaries for each feature extraction method
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Figure 3: Regression model predicted values and sLAT
scores.

from modeling technique further serves to validate these
features as accurate broad-spectrum measures of global oral
proficiency. Despite variable orderings of the features in
their significance for the model, a representative model of
oral proficiency can be created from fluency features and
EI. Though fluency features for this analysis were limited
to those identified in other studies, it seems clear from other
research in area that other fluency features can be extracted
and used successfully in the measurement of oral profi-
ciency. The combination of these other features and EI may
yet yield significantly better results. Because the resultsac-
count for less than 50% of the variance in sLAT scores,
additional work must be done to further identify signifi-
cant features. The within-one scores do demonstrate, how-
ever, that the EI results and fluency features do give a good
approximation of oral proficiency which could be used in
lower-stakes testing scenarios.
The fluency features provided a relatively good account of
the data. While the prediction accuracy for the ML model
of the SS scores was not extremely high, the regression
model demonstrated that over a third of the variance in
scores (approximately 35% - R2 = 0.343 for ASR and R2
= 0.356 for Praat) can be explained solely by the fluency
features extracted. These results identify a relatively strong
relationship between fluency and overall SS scores.

4. Conclusions and future work
By comparing the utility and advantages of feature extrac-
tion using different automated tools, this study enables lin-
guists to improve their targeted use of these tools in identi-
fying accurate fluency features, whether by ASR or by stan-
dalone signal processing. While the correlation and predic-
tion accuracy of the models in this work does not reach the
level where an automated exam would suffice for a high-
stakes test, it does demonstrate the potential of using this
style of testing battery to identify the approximate oral pro-
ficiency of a speaker quickly and efficiently.
The significant improvement of both the ML and regression
model with the addition of the EI results clearly demon-
strates that differing skills are represented in the EI and SS

tests. The increase of over 12% in the explanatory power
of the regression model and the 10% jump in the predictive
power of the TiMBL model indicate the value of the new
information available in the EI test, information not repre-
sented in the fluency features.
Though this work was inspired by Matsushita’s Japanese
study, the granularity of these studies differed. He used
fluency features at both the test-item level and at the sub-
ject level in his feature vectors, whereas we aggregated the
scores from the full SS test and averaged the features to
obtain one fluency-feature vector per student.
As both fluency and accuracy are fundamental to the con-
siderations of human graders in the assignment of a grade
for an oral proficiency exam, neither EI or fluency features
by themselves can give an accurate and complete picture of
the global oral proficiency of the speaker.
The Praat results were not quite as good as the ASR results,
but did not perform appreciably worse. The additional fea-
tures available to the ASR system did not, in this study, sig-
nificantly increase the utility of the ML model in correctly
predicting the score. Possible advantages of an automated
SS system that implements a Praat feature extraction would
include increased speed of extraction and simpler process-
ing without the need of additional models. The additional
complexity of the ASR features appears to have been of no
additional help in the correct prediction of SS scores.
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