
The Ellogon Pattern Engine: Context-free Grammars over Annotations

Georgios Petasis
Software and Knowledge Engineering Laboratory
Institute of Informatics and Telecommunications

National Centre for Scientific Research (N.C.S.R.) “Demokritos”
GR-153 10, P.O. BOX 60228, Aghia Paraskevi, Athens, Greece

petasis@iit.demokritos.gr

Abstract
This paper presents the pattern engine that is offered by the Ellogon language engineering platform. This pattern engine allows the
application of context-free grammars over annotations, which are metadata generated during the processing of documents by natural
language tools. In addition, grammar development is aided by a graphical grammar editor, giving grammar authors the capability to test
and debug grammars.

Keywords: context-free grammar, grammar over annotations, LARL parser

1. Introduction
Developing pipelines of tools for many tasks of natural lan-
guage processing, such as named-entity recognition or sen-
timent analysis, has never been an easy task. One research
direction that tried to alleviate this difficulty, was research
on infrastructures/platforms for natural language engineer-
ing: Within this context of research several platforms have
been developed and made publicly available, usually dis-
tributed with open source libraries. Indeed, platforms like
GATE1 (Cunningham et al., 2013), Ellogon2 (Petasis et
al., 2002) or Apache UIMA3 have made the development
of natural language processing pipelines easier, by provid-
ing suitable infrastructure for many common tasks, includ-
ing corpora management, models for the linguistic meta-
data, a modular environment where components interoper-
ate, metadata visualisation tools, and toolboxes of ready-to-
be-used natural language processing tools. The availability
of ready-to-use tools, such as ANNIE (Cunningham et al.,
2002), has increased the popularity of these platforms, es-
pecially through their use as “black boxes”, that perform
tasks such as information extraction.
However, there are situations where the provided by a plat-
form tools and pipelines are not enough: Either the per-
formance is not enough for specific tasks, or the task at
hand requires modifications, or even new tools. In such
cases, components offered by a platform must be modified,
or new components must be written for the platform, which
requires developers to be first acquainted with the internal
organisation and programming interfaces of the platform,
and then to develop the required components. Typically, a
component inside a platform operates on the text of the doc-
ument to be processed, taking into consideration linguistic
metadata that has been produced by other processing com-
ponents, while the component is expected to enrich this lin-
guistic metadata.
On the other hand, there are grammars which are play-
ing an important role in many natural processing tasks,
and their use is widespread in a much broader audience,

1http://gate.ac.uk/
2http://www.ellogon.org/
3http://uima.apache.org/

including non-developers, such as linguists. Despite the
fact that grammars are usually associated with sequences
of characters and strings, it is feasible to apply them on
“sequences” of any kind of objects, which may be far more
complex than characters. The work presented in this paper
tries to combine grammars with component development,
by implementing a pattern engine that can apply context-
free grammars on linguistic metadata, in the form of an-
notations of the Ellogon language engineering platform.
This pattern engine can apply a grammar on the annotation
graph of a document, which models the linguistic meta-
data/information kept for a document within Ellogon. The
motivation behind this pattern engine is to allow users to
perform transformations of the linguistic metadata with-
out the need to develop a component in languages such as
C/C++/Java/Tcl/Python/Perl, and instead construct a gram-
mar that contains rules and actions, in a “neutral” language,
that is not tied to a specific programming language. Obvi-
ously, the linguistic tasks that can be modelled through such
an engine, clearly depend on the expressivity of both the
rules, that must be matched on the annotation graph, and the
actions, which define the operations that can be performed
on the linguistic metadata. Thus, we have opted context-
free grammars over regular grammars for the rules, while
actions can be augmented with Tcl code, if the provided
action types are found insufficient for a specific natural lan-
guage processing task.

2. Related Work
The idea of developing linguistic processing components
with the help of patterns over both text and linguis-
tic annotations in not new. For example, the “Com-
mon Pattern Specification Language” (CPSL) (Appelt and
Onyshkevych, 1998) has been specified in the late 90’s,
in the context of the TIPSTER (Harman, 1992) project.
Among the first platforms to offer such an infrastructure
was GATE (Cunningham et al., 2013), with its JAPE en-
gine (Cunningham et al., 2000). JAPE, or “Java Annotation
Patterns Engine”, creates finite state transducers that oper-
ates over both text and linguistic metadata (annotations),
based on regular expressions. Being a version of CPSL, it
has been used for a wide range of applications, including

2460

http://gate.ac.uk/
http://www.ellogon.org/
http://uima.apache.org/


pattern-matching, semantic extraction, and many other op-
erations in the context of the ANNIE (Cunningham et al.,
2002) information extraction system, included in the GATE
platform. TextMarker (Klügl et al., 2008; Kluegl et al.,
2009) is another rule-based engine, aiming also at informa-
tion extraction, which has been integrated into the Apache
UIMA4 platform, leading to Apache UIMA Ruta5 (Rule-
based Text Annotation). UIMA Ruta offers an “imperative
rule language extended with scripting elements”6. A rule is
composed of a sequence of rule elements and a rule element
essentially consists of four parts: A matching condition, an
optional quantifier, a list of conditions and a list of actions.
In addition, a workbench is provided, which provides edit-
ing support (i.e. syntax checking), rule application debug-
ging, and rule learning through the included “TextRuler”
framework, which is able to induce rules and, therefore,
enable semi-automatic development of rule-based compo-
nents.
“Stanford TokensRegex”7 is a framework included in Stan-
ford CoreNLP, for defining regular expressions over text
and tokens, and mapping matched text to semantic objects.
Implemented as a set of stages, the TokensRegex pipeline
reads extraction rules from a file and applies them sequen-
tially over text and tokens, followed by “composite” rules
which are repeatedly applied until no changes are detected.
Then, at the last stage, “filtering” rules are applied to to dis-
card any expressions that should not be matched. Unitex8

is a corpus processing system, based on automata-oriented
technology. It offers a pattern engine, allowing regular ex-
pression over tokens associated with simple morphological
information, such as token shapes. Despite the fact that
it is more limited that the aforementioned systems, it still
allows regular expressions not only on text, but also on lin-
guistic metadata. Finally, “graph expression” or “GExp”9,
according to its authors, is similar to GATE JAPE, and al-
lows expressions to be applied on graphs. However, not
much information is available for this pattern engine, with
the exception of a few examples.
One common aspect of all these engines, is their bias to-
wards regular languages: All approaches presented so far
employ some form of either regular grammars or Perl-
style regular expressions (which are slightly more expres-
sive than regular grammars), and they tend to handle cases
that need greater expressiveness with the cascade applica-
tion of different grammars. The fact that no engine tries to
implement a more expressive language, motivated us to ex-
plore context-free grammars, in order to evaluate their ap-
plicability on the task of component construction, and de-
cide whether a more expressive formalism has more advan-
tages over disadvantages when compared to regular gram-
mar formalisms. Potential advantages include applicability
in more complex tasks (that require higher level dependen-

4http://uima.apache.org/
5http://uima.apache.org/ruta.html
6http://uima.apache.org/ruta.html
7http://nlp.stanford.edu/software/

tokensregex.shtml
8http://www-igm.univ-mlv.fr/˜unitex/
9http://code.google.com/p/

graph-expression/

cies than those that can be handled by regular expressions),
and more “elegant”, “compact” and easier to handle gram-
mars. On the other hand, context free grammars can be
less efficient with respect to their application and more am-
biguous, leading to multiple parses. However, the Ellogon’s
Pattern Engine is a fairly recent addition to the Ellogon plat-
form, with limited usage so far, which does not allow us to
draw any conclusions over the advantages of using context-
free grammars over regular ones. To our knowledge, the
only uses of the Ellogon’s Pattern Engine are limited to a) a
shallow syntactic parser that identifies phrases for Greek
(included in Ellogon), and b) to a commercial sentiment
analysis system for Greek (Petasis et al., 2014).

3. Ellogon’s Data Model
The data model of Ellogon is based on the data model of
the TIPSTER (Harman, 1992) project. Due to this, it shares
some basic features with other TIPSTER-based infrastruc-
tures, but it also offers a large number of features that dif-
ferentiate it from such infrastructures. The central element
for storing data in Ellogon is the Collection. A collection is
a finite set of Documents. An Ellogon document consists of
textual data as well as linguistic information about the tex-
tual data. This linguistic information is stored in the form
of attributes and annotations.
An attribute associates a specific type of information with
a typed value. An annotation associates arbitrary informa-
tion (in the form of attributes) with portions of textual data.
Each such portion, named span, consists of two character
offsets denoting the start and the end characters of the por-
tion, as measured from the first character of some textual
data. Annotations typically consist of four elements (fig-
ure 1):

• A numeric identifier. This identifier is unique for ev-
ery annotation within a document and can be used to
unambiguously identify the annotation.

• A type. Annotation types are textual values that are
used to classify annotations into categories.

• A set of spans that denote the range of the annotated
textual data.

• A set of attributes. These attributes usually encode the
necessary linguistic information.

The vast majority of the linguistic metadata about a doc-
ument is represented through annotations, which associate
an arbitrary set of attributes with one or more segments in
the document’s text.

4. A Pattern Engine for Context-free
Grammars

The pattern engine accepts as input a grammar, which is
parsed and converted into instructions, that can be executed
in the context of the Ellogon platform. There are several
steps involved into this conversion process: initially the
syntax of the grammar is verified, and subsequently con-
verted into the Backus–Naur Form (BNF) (Wirth, 1977).
Then, the BNF grammar is converted either to a Look-
Ahead LR (LARL) (DeRemer, 1969) parser, or an Earley

2461

http://uima.apache.org/
http://uima.apache.org/ruta.html
http://uima.apache.org/ruta.html
http://nlp.stanford.edu/software/tokensregex.shtml
http://nlp.stanford.edu/software/tokensregex.shtml
http://www-igm.univ-mlv.fr/~unitex/
http://code.google.com/p/graph-expression/
http://code.google.com/p/graph-expression/


Figure 1: The data model of Ellogon.

parser (Earley, 1970), depending on the grammar. The re-
sulting parser is then serialised into an object, which can
later be loaded into Ellogon in order to process documents
and their annotations.
The pattern engine will try to generate optimised parsers,
and will silently perform some simple optimisations on the
input grammar, in order to improve processing efficiency
and detect some common problematic cases, which may
cause efficiency problems, such as some types of recur-
sion. In addition, it offers a simple development environ-
ment, where the grammar author can edit the grammar, see
the various intermediate steps (such as the rules in BNF),
apply the grammar on text and visualise the results of the
matched actions. This development environment, with a
simple grammar that adds an attribute to all verbs in a doc-
ument, is shown in figure 2. Figures 3 and 4 show a slightly
more complex grammar, which tries to detect some simple
named-entities, and the entities that have been detected by
applying this grammar on the sample text on the left part
of the editor. Finally, figure 5 shows the grammar after its
conversion to BNF. The editor, beyond being an editor and
a test environment for a grammar, it additionally provides
some simple debugging capabilities, in the sense that the
user can apply the grammar “step-by-step”, and examine
how the generated parser matches each annotation found
in the linguistic metadata. Grammars can use and mix any
type of annotations, no matter what their level in the pro-
cessing chain is.

4.1. The Pattern Engine Grammar Language
The grammar of the Ellogon’s pattern engine is loosely
modelled after CPSL – Common Pattern Specification Lan-
guage10, upon which JAPE11 is also based. JAPE is a simi-

10http://www.ai.sri.com/˜appelt/TextPro/
11http://gate.ac.uk/sale/tao/index.html#

x1-2120008

lar pattern engine, which implements regular expressions
over annotations within the GATE language engineering
platform. Since both pattern engines share common ances-
try, interoperability may be easier between these two en-
gines than, for example, Apache Ruta, which uses a dif-
ferent grammar formalism. GATE Jape, having a history
of more than ten years, provides a significant number of
grammars (i.e. within the open source ANNIE system) that
can allow the future comparison of the two engines, if these
grammars get ported to the Ellogon’s pattern engine. How-
ever, despite being based on a common ancestor and bear-
ing some similarities, the two grammar languages are not
identical, and grammars from one platform are not expected
to operate on the other platform without modification. We
expect that it will be easier to port grammars from JAPE
to Ellogon’s pattern engine than doing the opposite, which
will be applicable only on Ellogon’s grammars that are not
context-free.
A grammar consists of a set of rules, each of which consists
of a set of patterns (the left-hand-side (LHS) of the rule) and
an action (the right-hand-side (RHS) of the rule). When the
LHS of a rule is matched over the input, the RHS is exe-
cuted and modifies the linguistic metadata, usually through
the addition of new annotations or new attributes to exist-
ing annotations. Actions can refer to various parts of the
pattern in the LHS by means of labels that are attached to
pattern elements. Consider the following example:

R u l e : s e t a t t r i b u t e t o s o m e t o k e n s
{ t o k e n pos match ”V∗”} : a n n

−−>
: a n n . t o k e n = { i s v e r b = ” t r u e ” } ;

<−−

The LHS is the part preceding the symbol “-->” and the
RHS is the part following it. The LHS specifies a pattern to
be matched, while the RHS specifies what is to be done to
the matched text. In this example, we have a rule entitled
“set attribute to some tokens”, which will match annota-
tions of type “token” (generated by the tokeniser and rep-
resenting words) that have an attribute named “pos” (rep-
resenting the part of speech of the word), whose value
matches the pattern “V*”, which simply means that the
value of the “pos” attribute starts with the letter “V” (which
may well represent all verbs, with a suitable part-of-speech
tag set). Once this rule has matched a sequence of input
annotations, the entire sequence is tagged with a label by
the rule, and in this case, the label is “ann”. On the RHS,
we refer to this matched input using the label given in the
LHS; “ann”. This action denotes that an annotation of type
“token” that spans the matched input must be created (if it
does not already exists of course), and an attribute named
“is verb” with the value “true” must be added. There are
several operators that can be used in the LHS, including
the operator “|” for specifying alternatives, parentheses for
grouping elements, the operators “?”, “∗”, “+” for denot-
ing repetitions (optional, zero or more, one or more respec-
tively), etc. In addition, each rule is associated with a name,
specified after the “Rule:” keyword, which essentially is the
name of the non-terminal symbol associated with the rule,
and allows the embedding of a rule in the LHS of other

2462

http://www.ai.sri.com/~appelt/TextPro/
http://gate.ac.uk/sale/tao/index.html#x1-2120008
http://gate.ac.uk/sale/tao/index.html#x1-2120008


Figure 2: The development environment of the pattern engine, with a simple grammar loaded.

Figure 3: The development environment of the pattern engine, with a slightly more complex grammar loaded.

rules. More information about the grammar language can
be found in the Ellogon developers manual12.

12http://www.ellogon.org/index.php/
download/documentation

5. Conclusions and Future Work
In this paper we present a pattern engine for applying
context-free grammars over annotations, and not strings.
Annotations represent linguistic metadata, which is usually
the outcome of analysing text with natural language pro-

2463

http://www.ellogon.org/index.php/download/documentation
http://www.ellogon.org/index.php/download/documentation


Figure 4: The development environment of the pattern engine, with a grammar applied on the sample text and the results
of the actions visible.

Figure 5: The development environment of the pattern engine, showing the grammar converted into BNF.

2464



cessing tools. The pattern engine is accompanied by a sim-
ple graphical grammar editor, which offers simple debug-
ging facilities in order to facilitate grammar development.
Having a pattern engine which can modify the linguistic
metadata driven by a grammar and according to actions as-
sociated to grammar rules, can constitute a valuable tool
for modelling a significant set of natural language process-
ing tasks, such as named-entity recognition or sentiment
analysis, without the need to develop an new component
for the language engineering platform. The described pat-
tern engine is a recent addition to the Ellogon platform,
with limited usage so far, which does not allow us to draw
any conclusions over the advantages of using context-free
grammars over regular ones. As a result, future work
will concentrate into writing grammars for this new en-
gine, in order to evaluate the advantages and disadvantages
of using a formalism with greater expressivity than regu-
lar patterns. Finally, the described pattern engine and the
graphical grammar editor are distributed along with the El-
logon language engineering platform, freely available from
http://www.ellogon.org under the LGPL version
3 open source license.

6. References
Appelt, D. E. and Onyshkevych, B. (1998). The com-

mon pattern specification language. In Proceedings of
a Workshop on Held at Baltimore, Maryland: October
13-15, 1998, TIPSTER ’98, pages 23–30, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Cunningham, H., Maynard, D., and Tablan, V. (2000).
Jape: a java annotation patterns engine. Technical re-
port, University of Sheffield, Department of Computer
Science.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). GATE: A Framework and Graphical Devel-
opment Environment for Robust NLP Tools and Applica-
tions. In Proceedings of the 40th Anniversary Meeting of
the Association for Computational Linguistics (ACL’02).

Cunningham, H., Tablan, V., Roberts, A., and Bontcheva,
K. (2013). Getting more out of biomedical documents
with gate’s full lifecycle open source text analytics.
PLoS Comput Biol, 9(2):e1002854, 02.

DeRemer, F. (1969). Practical Translators for LR(k) Lan-
guages. MAC-TR. Project Mac, Massachusetts Institute
of Technology.

Earley, J. (1970). An efficient context-free parsing algo-
rithm. Commun. ACM, 13(2):94–102, February.

Harman, D. (1992). The darpa tipster project. SIGIR Fo-
rum, 26(2):26–28, October.

Kluegl, P., Atzmueller, M., and Puppe, F. (2009).
Textmarker: A tool for rule-based information extrac-
tion. In Chiarcos, C., de Castilho, R. E., and Stede,
M., editors, Proceedings of the Biennial GSCL Confer-
ence 2009, 2nd UIMA@GSCL Workshop, pages 233–
240. Gunter Narr Verlag.

Klügl, P., Atzmüller, M., and Puppe, F. (2008). Integrat-
ing the rule-based ie component textmarker into uima.
In Baumeister, J. and Atzmüller, M., editors, LWA, vol-
ume 448 of Technical Report, pages 73–77. Department
of Computer Science, University of Würzburg, Germany.

Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopou-
los, I., and Spyropoulos, C. D. (2002). Ellogon: A New
Text Engineering Platform. In Proceedings of the 3rd
International Conference on Language Resources and
Evaluation (LREC 2002), pages 72–78, Las Palmas, Ca-
nary Islands, Spain, May 29–31. European Language Re-
sources Association.

Petasis, G., Spiliotopoulos, D., Tsirakis, N., and Tsantilas,
P. (2014). Sentiment analysis for reputation manage-
ment: Mining the greek web. In A. Likas and K. Blekas
and D. Kalles (Eds.): SETN 2014, LNCS 8445, pages
327–340. Springer International Publishing Switzerland.

Wirth, N. (1977). What can we do about the unnecessary
diversity of notation for syntactic definitions? Commun.
ACM, 20(11):822–823, November.

2465

http://www.ellogon.org

	Introduction
	Related Work
	Ellogon's Data Model
	A Pattern Engine for Context-free Grammars
	The Pattern Engine Grammar Language

	Conclusions and Future Work
	References

