
Praaline: Integrating Tools for Speech Corpus Research

George Christodoulides

Centre Valibel, Institute for Language & Communication, University of Louvain
Place Blaise Pascal 1, B-1348 Louvain-la-Neuve, Belgium

E-mail: george@mycontent.gr

Abstract

This paper presents Praaline, an open-source software system for managing, annotating, analysing and visualising speech corpora.
Researchers working with speech corpora are often faced with multiple tools and formats, and they need to work with ever-increasing
amounts of data in a collaborative way. Praaline integrates and extends existing time-proven tools for spoken corpora analysis (Praat,
Sonic Visualiser and a bridge to the R statistical package) in a modular system, facilitating automation and reuse. Users are exposed to
an integrated, user-friendly interface from which to access multiple tools. Corpus metadata and annotations may be stored in a
database, locally or remotely, and users can define the metadata and annotation structure. Users may run a customisable cascade of
analysis steps, based on plug-ins and scripts, and update the database with the results. The corpus database may be queried, to produce
aggregated data-sets. Praaline is extensible using Python or C++ plug-ins, while Praat and R scripts may be executed against the corpus
data. A series of visualisations, editors and plug-ins are provided. Praaline is free software, released under the GPL license.

Keywords: corpus management; corpus annotation; data analysis and visualisation

1. Introduction
This paper presents Praaline, an open-source software
system for managing, annotating, analysing and
visualising speech corpora. It attempts to address the
needs of researchers working with speech corpora, who
are often faced with multiple tools and formats and need
to work with ever-increasing amounts of data in a
collaborative way.

Praaline is based on and extends Praat (Boersma &
Weenink 2014) and Sonic Visualiser (Cannam et al.
2010), and interfaces with the R statistical language (R
Core Team 2013). Instead of creating a system from
scratch, we have chosen to focus on the integration of
open-source tools that are already widely-used in the
community. As a result, researchers using Praaline can
benefit from the features, extensions and contributions to
these tools. This design allows for the reuse of many
existing tools and scripts providing automated annotation
and analyses.

Praaline is written in C++ using the Qt framework
(Nokia) for both its core functions and user interface. It is
cross-platform software that runs under Windows, Linux
and Mac.

Recordings and corpus annotations may reside in a file
system (cf. infra) and are managed through a relational
database. It is possible to use SQLite for local installations
or MySQL for client-server access. Praaline can import
and export annotations in different formats, including
Praat TextGrids, TranscriberAG (Barras et al., 1998),
ELAN (Brugman & Russel, 2004) and EXMARaLDA
Partitur (Schmidt, 2012) files. An integrated user
interface permits the management of corpus data and
metadata, annotation using editors or automated
procedures, visualisation for the purposes of data
exploration or demonstration, and querying the data for
analysis. Praaline can be extended with plug-ins written in
C++ or Python, and also supports executing scripts
written in the Praat scripting language or for the R system
against the corpus data and annotations.

2. Corpus Management
Users may construct their corpora from scratch or by
importing a set of existing files (e.g. recordings and
annotations). The user interface for defining and
managing a corpus is shown in Figure 1. A corpus is
organised in Communications (communicative situations)
and Speakers. Each Communication may consist of
several Recordings and Annotations. Speakers participate
in Communications with specific Roles; and Annotations
contain Annotation Levels (see section 3).

Using these basic concepts, users define the
Annotation Structure and the Metadata Structure of their
corpora. These definitions specify the information stored
for each type of object. Corpus definitions are stored in a
relational database and/or in XML files. It is possible to
import and export the XML formats of EXMARaLDA’s
Coma editor. Users may also create projects and
collaborate with colleagues using version control (i.e.
compare and merge changes made to the corpus metadata
and annotation).

Corpus metadata can be used to define sub-corpora,
and selectively apply automated annotation procedures or
queries to them, in other parts of the system. Aggregate
data (e.g. number of samples, total recording time, counts
of specific units like tokens or syllables) may be exported.

3. Annotation
While following the classical timeline model for
annotating speech data, Praaline offers a key
improvement: the option to define structural links
between the annotation tiers, such as hierarchy,
containment, attachment, controlled vocabularies etc. The
annotation includes knowledge about the relationships
between the different layers. An Annotation Level may
contain any number of attributes, and relationships
between Annotation Levels are encoded as part of the
corpus structure. Praaline does not impose any specific set
of Annotation Levels or attributes (sample sets are

31

included to help users). Annotation attributes have
associated data types, and may be marked as optional.

Annotations may be imported, entered manually using
an editor, or obtained automatically by applying
annotation plug-ins. Praaline allows the user to apply a
cascade of annotation plug-ins on the entire corpus, or on
subsets of it. Heterogeneous annotation utilities can be
applied sequentially on the corpus. For example, a
compiled plug-in for feature extraction, may be followed
by a Praat script for prosodic annotation, and then by a
POS tagger and an NLP parser in Python, while finally an
R script is used to perform a statistical analysis. Praaline
handles the data conversions needed to allow such
combinations.

 The Annotation Level and Annotation Attribute can
represent timeline annotations, and also ensure integrity
of the data. It is often the case that congruent annotation
tiers are used (e.g. in Praat) to represent multiple features
of the same object (e.g. a syllable, and an indication of

whether it was perceived as prominent or not, or whether
it is disfluent). While practical for small amounts of data,
this system quickly leads to problems when corpora get
larger: e.g. discrepancies in tier boundaries that should
had been aligned according to the model; or data
incoherence between tiers that are supposedly linked (e.g.
phones-syllables). Since these relationships are explicitly
captured explicitly in Praaline, it is possible to check the
data integrity of a set of corpus annotations, possibly
correcting them automatically.

A spreadsheet-like editor allows the user to
simultaneously edit attributes belonging to several
different Annotation Levels. For example, in a corpus for
prosodic studies, we may discern at least three levels:
phones, syllables and tokens (words). Each level may
have a number of associated Attributes (e.g. syllables may
be described by several automatically extracted prosodic
features). The editor (Figure 2) allows the user to view
and update a selection of attributes from each level; it is

Figure 1: Corpus management mode (left pane: corpus structure; middle: metadata; right: annotation structure)

Figure 2: Vertical timeline editor

32

essentially a vertical timeline display, synchronised with
the sound signal. It is also possible to define bookmarks in
the corpus, and move directly to these points.

The Annotation Level – Annotation Attribute data
model translates directly into a relational SQL database.
Each Annotation Level is a table, and Annotation
Attributes are columns. Praaline uses this system to
provide querying functionality (see section 5, infra). In
addition to the possibilities offered by the user interface
and through scripting, an advanced user can directly
query Praaline’s SQL database. It is important to note that
the schema is dynamic and adapted to each corpus
definition (with the exception of system tables that are
always present). Finally, it is envisaged that this corpus
metadata and annotation database can be linked to web
interface to provide outside users with limited access to
the corpus.

4. Visualisation
The visualisation module of Praaline is based on Sonic
Visualiser (Cannam et al., 2010). Visualisations can
display waveforms, spectrograms, melodic spectrograms,
any combination of annotation levels and tiers, numerical
data (points, curves, histograms, colour-coded regions
etc.). Plug-ins may add visualisations: for example, we
have adapted Prosogram (Mertens, 2004) do display
prosodic analysis information.

These elements can be combined to present
annotations in a format appropriate for each type of
investigation. For example, a dialogue involving multiple
speakers can be visualised in speaker turns. In Figure 3,
we show a colour-coded annotation of prominent
syllables (along with a waveform, spectrogram, intensity,
f0, and transcription). As can be seen in Figure 4, in order

Figure 3: A visualization of prominent syllables with colour coding

Figure 4: A visualisation for comparing the prosody of a speaker and an interpreter using

a multi-channel recording and Prosogram (Mertens 2004)

33

to study the prosody of simultaneous interpreting, we
used a Praaline visualisation comparing the prosodic
characteristic of the speaker’s and the interpreter’s
speech, based on Mertens (2004), and calculating
similarity measures (cf. DeLooze & Rauzy 2011;
Christodoulides 2013).

5. Querying
Corpus annotations are stored in a relational database, the
schema of which is dynamically constructed based on the
annotation structure definition. Annotation levels
correspond to database tables and annotation tiers to
columns. The relationships between the different levels
are also encoded. Praaline simplifies the conversion of
structured annotation into two-dimensional tables suitable
for statistical analysis. SQL queries can be used to select
and summarise a subset of the corpus.

It is possible to construct a Dataset by an interactive
query editor. For each attribute, functions can be applied
to calculate aggregate measures (e.g. sum, mean, standard
deviation, etc.); a filter can be used to limit the returned
values; and a normalisation transformation (e.g. z-score
over all samples of the same sub-corpus) may be applied.
In this way, researchers may more easily explore and
analyse the information in the corpus, in an interactive
way and without necessarily resorting to scripts.

Furthermore, concordances can be extracted using
Praaline, based on simple value filters or regular
expressions (search term, left and right context). The
results of such queries are objects that can be further
processed, using the statistical analysis module, or
exported for use with other software.

6. Statistical Analysis

Praaline interfaces with the R statistical environment,
through the Rcpp package (Eddelbuettel & François
2011). Corpus annotations (as well as the results of corpus
queries) are exposed to R as data frames, allowing for the
use of R commands, scripts and extensions to analyse the
data. Praaline provides a two-way link between the
corpus and R: the results of analyses performed using R
can be posted back into the corpus database, by adding to
or updating an existing annotation level, or by creating a
new annotation level.

7. Programmability
Praaline can be extended with plug-ins, written in C++
using a simple API and compiled. This method is suitable
for plug-ins adding substantial functionality to the system.
Praaline is also scriptable with Python, by providing
bindings to its core functionality. Praat scripts can be
executed, in which case the corpus data are available as
(virtual) Praat objects. Finally it is possible to evaluate R
scripts accessing corpus data in the form of data frames. A
programmer may mix the following techniques in order to
use the tool that is best suited to each task. Currently
available plug-ins include the following:
 An adapted version of Mertens’ (2004) Prosogram.
 An automatic rule-based syllabifier, based on the

increasing sonority principle (a list of allowed
syllable onsets for each language is required).

 A plug-in version of the DisMo morphosyntactic
annotator, for English and French (Christodoulides et
al., 2014).

 A plug-in for calculating similarity and convergence
measures in dialogue, based on the methodology of
De Looze & Rauzy (2011).

8. Conclusion and Future Work
Praaline is currently under active development, and is
made available to the research community under the GPL
licence. It can be downloaded from www.praaline.org.

We welcome feedback on the functionality and future
directions of the project. We are exploring the
development of a bridge between Praaline databases and
open-source content management systems, in order to
facilitate the publishing of corpus data to the web.

9. References
Barras, C.; Geoffrois, E.; Wu, Z. and Liberman, M.

(1998). Transcriber: a Free Tool for Segmenting,
Labeling and Transcribing Speech. In Proceedings of
LREC 1998, pp. 1373-1376.

Boersma, P.; Weenink, D. (2009). Praat: doing phonetics
by computer. http://www.praat.org

Brugman, H. and Russel, A. (2004). Annotating
Multimedia/ Multi-modal resources with ELAN. In
Proceedings of LREC 2004.

Cannam, C.; Landone, C.; Sandler M. (2010). Sonic
Visualiser: An open source application for viewing,
analysing, and annotating music audio files,
Proceedings of the ACM Multimedia 2010
International Conference, pp. 1467-1468.

Christodoulides, G. (2013): Prosodic features of
simultaneous interpreting. In Mertens, P. & A.C. Simon
(Eds), Proceedings of the Prosody-Discourse Interface
Conference 2013 (IDP-2013), pp. 33-37.

Christodoulides, G.; Avanzi, M. and Goldman, J-Ph.
(2014). DisMo DisMo: A Morphosyntactic, Disfluency
and Multi-Word Unit Annotator. An Evaluation on a
Corpus of French Spontaneous and Read Speech, In
Proceedings of LREC 2014.

De Looze C.; Rauzy S. (2011). Measuring speakers’
similarity in speech by means of prosodic cues:
methods and potential. In Proceedings of Interspeech
2011, pp. 1393-1396.

Eddelbuettel, D; François, R. (2011). Rcpp: Seamless R
and C++ Integration. Journal of Statistical Software,
40(8), pp. 1-18.

Mertens, P. (2004). The Prosogram: Semi-Automatic
Transcription of Prosody based on a Tonal Perception
Model. In B. Bel & I. Marlien (Eds.) Proceedings of
Speech Prosody 2004, Nara, Japan.

R Core Team (2013). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org.

Schmidt, T.; Wörner, K. (2009). EXMARaLDA –
Creating, analysing and sharing spoken language
corpora for pragmatic research. Pragmatics 19(4), pp.
565–582.

34

