
Extracting a bilingual semantic grammar from FrameNet-annotated corpora

Dana Dannélls, Normunds Gruzitis

Språkbanken, University of Gothenburg

Department of Computer Science and Engineering, University of Gothenburg

Institute of Mathematics and Computer Science, University of Latvia

dana.dannells@svenska.gu.se, normunds.gruzitis@{cse.gu.se, lumii.lv}

Abstract

We present the creation of an English-Swedish FrameNet-based grammar in Grammatical Framework. The aim of this research is to

make existing framenets computationally accessible for multilingual natural language applications via a common semantic grammar

API, and to facilitate the porting of such grammar to other languages. In this paper, we describe the abstract syntax of the semantic

grammar while focusing on its automatic extraction possibilities. We have extracted a shared abstract syntax from ~58,500 annotated

sentences in Berkeley FrameNet (BFN) and ~3,500 annotated sentences in Swedish FrameNet (SweFN). The abstract syntax defines 769

frame-specific valence patterns that cover 77,8% examples in BFN and 74,9% in SweFN belonging to the shared set of 471 frames. As

a side result, we provide a unified method for comparing semantic and syntactic valence patterns across framenets.

Keywords: FrameNet, computational grammar, natural language generation, multilinguality, Grammatical Framework

1 Introduction

Over the last decade, the exploitation of lexical-semantic

resources like FrameNet (Ruppenhofer et al., 2010) has

been the focus of attention for a range of NLP applications

such as semantic parsing (Das et al., 2014), information ex-

traction (Moschitti et al., 2003) and natural language gen-

eration (Roth and Frank, 2009). FrameNet which is organ-

ised according to the principles of frame semantics (Fill-

more, 1985) is an attractive candidate for solving advanced

NLP tasks because it provides a benchmark for represent-

ing a large amount of word senses and word usage patterns

through the linguistic annotation of corpus examples.

As a result, the work on building FrameNet-like resources

for languages other than English has emerged. Today there

are available computationally oriented framenets for Ger-

man, Japanese, Spanish (Boas, 2009) and Swedish (Borin

et al., 2010). Other initiatives exist for Chinese, Hebrew,

Hindi, Italian, Latvian, Polish, Russian, as well as for other

languages.

The development of the wide coverage Berkeley FrameNet

(BFN) has been a labour intensive task (Fillmore et al.,

2003). The effort of conducting a framenet for a new lan-

guage is somewhat easier because the conceptual backbone

of BFN can be shared among languages. However, al-

though new framenets often leverage from BFN, they are

mostly not aligned and unified at the lexical and grammat-

ical level. Each framenet uses its own annotation format,

grammatical types and functions, and word sense invento-

ries. By integrating framenets not only at the lexical level

but also at the grammatical level, one would gain access to

a powerful computational multilingual NLP resource.

In this paper, we address the integration at the grammat-

ical level, describing automatic extraction of the abstract

syntax of a currently bilingual but potentially multilingual

FrameNet-based grammar. To define the grammar, we use

Grammatical Framework (GF), a formalism and a resource

grammar library for implementing multilingual application

grammars. While we focus on English and Swedish, the

same approach can be applied for extracting and compar-

ing frame semantic grammars for other languages.

This paper is structured as follows. In Section 2, we in-

troduce BFN and Swedish FrameNet, and explain the role

of GF. In Section 3, we describe and discuss our design

of the abstract syntax of a FrameNet-based grammar. In

Section 4, we present experiment series we carried out to

compare the effects of various choices made in the gram-

mar extraction, and evaluate the final results. We conclude

the paper in Section 5.

2 Background

2.1 Berkeley FrameNet (BFN)

FrameNet (Fillmore et al., 2003) is a unique lexical knowl-

edge base that is based on the theory of frame semantics

(Fillmore, 1985).1 According to this theory, a semantic

frame which represents different cognitive scenarios con-

sists of various semantic slots (roles) called frame ele-

ments (FE), and is evoked by a target word called lexical

unit (LU). A semantic frame carries valence information

about different syntactic realizations of FEs and about their

semantic characteristics. Syntactic and semantic valence

patterns are derived from FrameNet-annotated corpora.

Frames are described by two types of FEs: core elements

and non-core elements. Core FEs uniquely characterize the

frame and syntactically correspond to verb arguments, in

contrast to non-core FEs (adjuncts) which can be instanti-

ated in many other frames. As an example, consider the

semantic frame Desiring given in Table 1.

The BFN version 1.5 defines >1,000 frames. Each frame

is evoked by specific LUs. For example, some of the

LUs evoking the frame Desiring are: ambition.n.6702,

crave.v.6596, craving.n.6597, desire.v.6413, desire.n.6414,

eager.a.6546, feel like.v.7430, want.v.6412, yearn.v.6599,

where the number is the sense identifier.

BFN provides information about the semantic and syntac-

tic valence of LUs. For example, consider valence patterns

for the verb to want given in Table 2, where the syntactic

annotations include phrase types, e.g. noun phrase (NP),

prepositional phrase (PP), verb phrase (VP), and shallow

1https://framenet.icsi.berkeley.edu/

2466



Desiring

Definition: An Experiencer desires that an Event occur. In

some cases, the Experiencer is an active partici-

pant in the Event, and in such cases the Event it-

self is often not mentioned, but rather some Focal

participant which is subordinately involved.

Core: Event, Experiencer, Focal participant,

Location of Event

Non-core: Cause, Degree, Duration, Manner, Place,

Purpose of Event, Reason, Role of focal

participant, Time, Time of Event

Table 1: The definition and FE sets of the frame Desiring.

Examples Valence patterns

40 Event Experiencer
(22) VPto.Dep NP.Ext

14 Experiencer Focal participant
(10) NP.Ext NP.Obj

(1) PP[by].Dep NP.Ext

Table 2: Some semantic patterns and some of their syntactic

realizations found in BFN for want.v evoking Desiring.

grammatical functions: external argument (Ext), first ob-

ject (Obj), general dependent (Dep).

In this paper, we consider only those frames for which there

is at least one corpus example where the frame is evoked

by a verb. BFN comprises 556 such verb frames that are

evoked by ~3,200 LUs in >68,500 annotated sentences.

2.2 Swedish FrameNet (SweFN)

Swedish FrameNet is being developed as a part of a large

project at Språkbanken (Borin et al., 2010).2 The resource

has been expanded from BFN, and thus mostly uses the

same inventory of frames and FEs. For example, the de-

scription of the frame Desiring shown in Table 1 is the

same also in SweFN. Note, however, that ~50 additional

frames that are not used in BFN have been introduced in

SweFN, and ~15 BFN frames have been modified.

LUs in SweFN are linked to SALDO, the Swedish as-

sociation lexicon (Borin et al., 2013). Some LUs that

evoke the frame Desiring are: känna för.vb.1 ‘to feel like’,

längta.vb.1 ‘to yearn’, vilja.vb.1 ‘to want’, åtrå.vb.1 ‘to de-

sire’, begärelse.nn.1 ‘wish’, åtrå.nn.2 ‘desire’, where the

number is the sense identifier.

All sentences in SweFN are syntactically annotated with

MaltParser (Nivre et al., 2007). Table 3 shows some se-

mantic valence patterns and their syntactic realizations for

the verb känna för. The syntactic patterns include morpho-

syntactic tags, e.g. noun (NN), verb (VB), infinite form

(INF), and dependency labels, e.g. verb group (VG), sub-

ject (SS), object (OO).

As of February 2014, SweFN contains >900 frames of

which 638 are evoked by ~2,300 verb LUs in >3,700 anno-

tated sentences.

2http://spraakbanken.gu.se/swefn/

Examples Valence patterns

1 Event Experiencer
(1) VB.INF.VG NN.SS

2 Experiencer Focal participant
(2) NN.SS NN.OO

Table 3: Semantic patterns and their syntactic realizations

found in SweFN for känna för.vb evoking Desiring.

2.3 Grammatical Framework (GF)

The presented FrameNet-based grammar is being devel-

oped in GF, a categorial grammar formalism specialized for

multilingual (parallel) grammars (Ranta, 2004). One of the

key features of GF grammars is the division between an

abstract syntax and concrete syntaxes. The abstract syntax

defines the language-independent structure (the semantics)

of an application grammar or a resource grammar library,

while the concrete syntaxes define the syntactic and lexical

realization of the abstract syntax for particular languages.

Remarkably, GF is not only a grammar formalism or a

specialized functional programming language. It also pro-

vides a general-purpose resource grammar library (RGL)

for nearly 30 languages that implement the same abstract

syntax, a shared syntactic API (Ranta, 2009).3 The use of

the shared types and functions allows for rapid and rather

flexible development of multilingual application grammars

without the need of specifying low-level details like inflec-

tional paradigms, agreement and word order.

In GF, features and constituents of phrases are stored in

objects of record types, and functions are applied to such

objects to construct phrase trees. In the abstract syntax,

both argument types and the value type of a function are

separated by right associative arrows, i.e. all functions are

curried. For example, in the application grammar for an

on-line store, a function Wish might be declared:

fun Wish : Person → Product → Status

The above function returns a phrase of type Status that

is computed from two arguments of types Person and

Product respectively. The exact behaviour of the function

is defined in concrete syntaxes. For example, in the En-

glish grammar (and similarly in Swedish), one could, first,

specify that the types Person and Product map to the RGL

type NP (noun phrase) and that Status maps to Cl (clause).

Second, the following RGL constructors could be applied

to define the linearization of the function Wish:

lincat Status = Cl
lincat Person,Product = NP

lin Wish pers prod =
mkCl pers (mkV2 (mkV “want”)) prod

Regarding FrameNet, its conceptual, language-independent

layer (frames and frame elements) can be defined in an ab-

stract syntax, while the language-specific lexical layer can

be defined in concrete syntaxes. The current syntactic API

3http://www.grammaticalframework.org/

2467



of GF can be used for generalizing and unifying the gram-

matical types and constructions used in different framenets.

The resulting FrameNet-based grammar, in turn, provides a

frame semantic abstraction layer – a semantic API – to the

syntactic RGL. Such approach has been proposed before

(Gruzitis et al., 2012), but this is the first attempt to imple-

ment it on a wide coverage.

3 A FrameNet-based grammar in GF

3.1 The abstract syntax design

To keep the representation simple, the current design of the

abstract syntax is focused on natural language generation.

The resulting grammar would not be appropriate e.g. for a

semantic role labelling task, i.e., for parsing directly with

the semantic grammar because at this stage we do not limit

the set of verbs that can evoke a particular frame, and we do

not limit the set of prepositions that can be used for a partic-

ular FE if it is realized as an adverbial modifier. However,

the current design allows for using the resulting grammar

for parsing indirectly via an application grammar that uses

it as an API, specifying appropriate verbs and appropriately

formed modifiers.

The grammar consists of three main modules: an FE mod-

ule, a frame module and an LU module.

The FE module lists all core and potentially non-core FEs

that belong to the verb frames declaring them as semantic

categories (types) in the grammar. Although the concep-

tion of FrameNet is that core FEs are unique to the frame,

even though their names are not unique across frames, we

do not make any semantic difference in this module – FEs

are implicitly made frame-specific in the frame module. We

subcategorize FEs by different syntactic RGL types that can

be used to realize them either in the same frame or across

frames. The mapping to RGL types is specified in a shared

concrete syntax (in a similar way that is illustrated in Sec-

tion 2.3), but this information is also encoded by a suffix in

each FE name to keep the names unique.

The distinction between core and non-core FEs is made by

adding the prefix Opt to each non-core FE. The same FE

name can appear with and without this prefix, if across dif-

ferent frames it is declared as both core and non-core.

The following example shows some FE declarations that

are relevant to the frame Desiring:

cat Event VP
cat Experiencer NP
cat Focal participant NP
cat Focal participant Adv
cat Opt Degree Adv

Note that Experiencer NP is used (in a different

meaning), for instance, in frames Emotion heat and

Experiencer focus, while Event is used, for instance,

as Event Adv in Participation and as Event NP in

Preventing. Focal participant is typically realized as an

NP in Desiring, but some verbs, e.g. to yearn, require it

as a prepositional phrase, hence this FE is subcategorized

using the syntactic types NP and Adv. While Degree is a

non-core FE in Desiring as well as in many other frames,

it is a core FE, for instance, in Control, therefore it appears

both with and without the prefix Opt in the full list, if both

core and non-core FEs are being considered.

Also note that in GF, the type Adv (adverbial modifier) cov-

ers both adverbs and prepositional phrases (PP), and there

is no separate type for PPs.

The frame module declares frame valence patterns as

functions (henceforth called frame functions) that take one

or more FEs and one verb as arguments. These are com-

bined into a clause.

Function names include pattern numbers as suffixes be-

cause is is often necessary to separate different valence pat-

terns of the same frame into different functions, for exam-

ple, in cases when some FEs are mutually exclusive. More-

over, we differentiate functions that return clauses in the

passive voice from functions that return active voice clauses

because FEs that are subjects in the active voice become ob-

jects in the passive voice and vice versa.4 Some examples

of frame function signatures regarding the frame Desiring
are listed below. These functions represent common va-

lence patterns found in both BFN and SweFN:

fun Desiring P1 Act :
Focal participant NP → Experiencer NP →
V2 → Clause

fun Desiring P1 Pass :
Focal participant NP → Experiencer NP →
V2 → Clause

fun Desiring P2 :
Event VP → Experiencer NP → V2 → Clause

Each function takes either an intransitive, a transitive or a

ditransitive target verb as an argument of type V, V2 or V3
respectively. The required type, in general, depends on the

valence pattern. Verbs are defined in the language-specific

LU modules.

Frame functions return objects of type Clause that differs

form the type Cl in RGL. Clause is a record type consist-

ing of two fields – {np : NP; vp : VP} – whose types are

RGL types. It is is a deconstructed Cl where the subject NP

is separated from the rest of the clause. The motivation for

this is to allow for nested frames and to allow for adding ex-

tra modifiers to the VP before making a Cl object of the NP

and VP parts. An example of nested frames would be the

use of the function Desiring P2: the FE Event VP would

be realized by another frame (e.g. by the frame Motion in a

sentence expressing that someone wants to go somewhere),

but only the VP part of the nested frame would be used to

fill Event VP.

Note that the word order is not considered in the abstract

syntax, therefore FEs in the function type signatures are

given in the alphabetical order (c.f. Tables 2 and 3). The tar-

get verb is always given as the last argument. The language-

specific word order is specified in the concrete syntaxes.

The LU module declares a verb sense inventory. Lexemes

and their inflectional paradigms for verb senses are spec-

ified in the concrete syntaxes. The concrete lexicons also

4In highly inflected languages, the syntactic function would

not change, but this would be reflected by a different word order.

2468



specify valences for the subject and/or object FEs that de-

pend on the verb.

In BFN and SweFN, different approaches are used to iden-

tify LUs. A theoretically simple way to unify and align

the lexicons via the abstract syntax would be by using En-

glish as a meta-language and by including frame names in

LU meta-names as sense identifiers. However, LUs be-

tween BFN and SweFN are not directly aligned. Although

there have been some research on aligning LUs in BFN and

SweFN with synsets in Princeton’s WordNet (Ferrández et

al., 2010; Borin and Forsberg, 2014), such indirect align-

ment currently does not cover many translation equivalents

between BFN and SweFN, and among other framenets.

Aligning LUs between framenets is a separate issue which

is not addressed in this paper, therefore a framenet-specific,

monolingual abstract LU module is currently generated for

each language.

Each LU is represented as a function that takes no argu-

ments and returns a verb of type V, V2 or V3. To distin-

guish between different verb senses, we add the name of

the frame to each LU function name, e.g.:

fun go V Motion : V
fun go V Becoming : V

Note that function names do not include framenet-specific

sense identifiers, however distinguishing part of speech

(POS) tags which correspond to RGL types are still in-

cluded despite the different value types:5

fun åtr̊a V2 Desiring : V2
fun åtr̊a N Desiring : N

We assume that LUs evoking the same frame use a shared

set of syntactic valence patterns, but not necessarily every

LU uses every valence pattern. An alternative approach

would be making valence patterns LU-specific by merging

the frame module into the LU module. This would also al-

low for eliminating the LU argument in the frame building

functions, limiting the possible LU-frame mappings.

In the long term, it would be preferable to switch to the

more precise LU-valence patterns but, again, LUs between

BFN and SweFN and among other framenets are not di-

rectly aligned, and the lexicons vary in terms of cover-

age depending on the underlying corpora. Altogether, this

would make it difficult to provide a wide coverage shared

abstract syntax.

3.2 Automatic extraction scenarios

There are several decisions that have to be made in the

automatic extraction of a FrameNet-based grammar, more

specifically, the extraction of a semantic resource grammar

library built on top of the syntactic RGL:

1. Provide one function per frame and per grammatical

voice that takes all core and possibly non-core FEs as

arguments so that any argument is optional, i.e. can

be an empty phrase, or provide several functions per

frame – one for each typical valence pattern extracted

from a corpus.

5The nominal LU is given just for an illustration. Compare

this to the example LUs given in Sections 2.1 and 2.2.

2. Include non-core FEs as arguments in the frame func-

tions, or do not include.

3. Keep only the intersection of valence patterns (frame

functions) extracted from different framenets, or keep

the union.

In this paper:

1. We split the set of core FEs into two or more valence

patterns (alternative frame functions) according to the

corpus evidence. It is often practically impossible or

uncommon that all core FEs could be used in the same

sentence. For instance, Area is mutually exclusive

with five other core FEs in the frame Motion, and

these five other adverbial modifier FEs normally are

not used altogether as well.

2. We do not consider the inclusion of non-core FEs be-

cause it is the core FEs that make the frame unique

and different from other frames (Ruppenhofer et al.,

2010). For adding non-core FEs (adjuncts), the appli-

cation grammar developer will have to fall back to the

API of the syntactic RGL (see the design motivation

for Clause in Section 3.1).

3. We consider only the shared valence patterns between

BFN and SweFN as we are primarily interested in

multilingual applications and, thus, in functions whose

implementation can be generated for all languages.

Although currently we focus only on the extraction of the

abstract syntax of a FrameNet-based grammar, the uniform

intermediate data that is extracted for generating the ab-

stract syntax contains sufficient information for generating

the concrete syntaxes afterwards.

4 Extracting the abstract syntax from

FrameNet-annotated corpora

4.1 Sentence patterns

The first step in the extraction of common valence patterns

for a multilingual grammar is to convert the FrameNet-

annotated sentences into more general and uniform sen-

tence patterns. By sentence patterns we mean sequences of

FEs that are subcategorized by the interlingual RGL types

(see the FE module in Section 3.1).

There is no unified annotation model used across framenets.

BFN and SweFN use not only different XML schemas and

POS tagsets; they also use different approaches for anno-

tating the syntactic structure of a sentence.

In BFN, a phrase-structure approach has been taken for

specifying a phrase type (PT) for each FE as a whole. Shal-

low grammatical functions (GF) of FEs are specified as

well: an external argument (a phrase outside the VP of the

target verb) which is typically the subject; the first object,

either direct or indirect (in the case of the active voice); a

general dependent.

In SweFN, a dependency approach has been taken: all

grammatical annotations, i.e. morpho-syntactic descrip-

tions and dependency relations, are specified at the word

level, and no PTs are specified for whole FEs.

A simplified excerpt from the BFN corpus for the LU

want.v evoking the frame Desiring is:

2469



<sentence ID="732945">

<text>Traders in the city want a change.</text>

<annotationSet>

<layer rank="1" name="BNC">

<label start="0" end="6" name="NP0"/>

<label start="20" end="23" name="VVB"/>

<label start="25" end="25" name="AT0"/>

</layer>

</annotationSet>

<annotationSet status="MANUAL">

<layer rank="1" name="FE">

<label start="0" end="18" name="Experiencer"/>

<label start="25" end="32" name="Event"/>

</layer>

<layer rank="1" name="GF">

<label start="0" end="18" name="Ext"/>

<label start="25" end="32" name="Obj"/>

</layer>

<layer rank="1" name="PT">

<label start="0" end="18" name="NP"/>

<label start="25" end="32" name="NP"/>

</layer>

<layer rank="1" name="Target">

<label start="20" end="23" name="Target"/>

</layer>

</annotationSet>

</sentence>

A simplified excerpt from the SweFN corpus for the verb

vilja.vb that evokes the frame Desiring is:6

<sentence id="ebca5af9-e0494c4e">

<w pos="JJ" ref="1" dephead="2" deprel="DT">

Nästa

</w>

<w pos="NN" ref="2" dephead="3" deprel="TA">

gång

</w>

<w pos="VB" ref="3" deprel="ROOT">

skulle

</w>

<element name="Experiencer">

<w pos="PN" ref="4" dephead="3" deprel="SS">

jag

</w>

</element>

<element name="LU">

<w msd="VB.AKT" ref="5" dephead="3" deprel="VG">

vilja

</w>

</element>

<element name="Event">

<w msd="VB.INF" ref="6" dephead="5" deprel="VG">

ha

</w>

<w pos="RG" ref="7" dephead="8" deprel="DT">

sju

</w>

<w pos="NN" ref="8" dephead="6" deprel="OO">

sångare

</w>

</element>

</sentence>

For each sentence in both BFN and SweFN, a semi-

heuristic detection of the grammatical voice and, conse-

quentially, the subject and/or object FE (if any) is per-

formed. Then for each FE in a sentence, its language-

specific grammatical type is generalized into an RGL type.

The following generalization rules are applied in BFN:

6A description of POS, MSD and dependency tags used in

SweFN is available here: http://stp.lingfil.uu.se/

˜nivre/swedish_treebank/

1. PP AND Obj → NP

2. PP OR AVP OR AJP → Adv

3. NP AND NOT(Subj OR Obj)) → Adv

4. VPto → VP

In SweFN, the generalization is done in a similar way,

based on the grammatical annotations of the first con-

stituent of an FE. If the first constituent is and adjective

or participle, the head word’s dependency relation is con-

sidered; if it is a coordinating conjunction, next constituent

is analysed instead.

Note that currently we do not consider a number of other

PTs found in BFN: other kinds of VP (finite, bare stem,

participial, gerundive) and PP (if the preposition governs

a wh-interrogative clause or is followed by a gerund ob-

ject), and all kinds of (sub-)clause PTs (Ruppenhofer et al.,

2010). Sentences containing such FEs are ignored (~14%).

Similarly in SweFN, if a sentence contains an FE that is

realized as a subclause, the sentence is ignored (~4%).

Regarding the VPto type in BFN, currently it is always

generalized to VP assuming that it is the object even though

it might be a modifier, e.g. “want to solve it” vs. “work

to solve it”. While it is problematic to distinguish these

cases in BFN that follows the phrase-structure approach,

this distinction is specified in SweFN that follows the de-

pendency grammar approach. Here we could benefit from

the multilingual perspective finding complementary infor-

mation available in one framenet when processing another.

A characteristic of BFN is that FEs which are missing in

the sentence are still annotated if the grammar allows or

requires the omission, or the identity/type of an FE is un-

derstood from the context (Ruppenhofer et al., 2010). Such

FEs would be potentially interesting to consider, however,

as they have no grammatical annotations, we ignore them

keeping the rest FEs in the sentence pattern.

Some of the extracted sentence patterns from BFN for the

frame Desiring are the following:

Desiring Act Event_NP.Obj Experiencer_NP.Subj

Desiring Act Experiencer_NP.Subj Event_NP.Obj

Desiring Act Experiencer_NP.Subj Event_NP.Obj

Desiring Act Experiencer_NP.Subj Event_Adv[for]

Desiring Act Event_VP

Desiring Act Experiencer_NP.Subj Event_VP

Desiring Pass Event_NP.Subj Experiencer_NP.Obj

For each accepted corpus example, one line is produced in

the output specifying the frame, the grammatical voice and

the list of expressed FEs according to their word order in

the sentence. In addition to the RGL types, we also specify

the syntactic function of each FE if is realized as an NP, and

we keep track of prepositions that are used to realize PPs.

A reference to the target LU and the sentence identifier is

not shown but is included as well.

The same format is used for representing SweFN exam-

ples, and the same processor is then run in all the remaining

steps, including the generation of the abstract syntax.

4.2 Experiment series

The uniform sentence patterns are summarized and grouped

into valence patterns ignoring the word order and preposi-

tions. As an example, a partial summary of active voice

patterns for the frame Desiring in BFN is:

2470



Event_VP Experiencer_NP.Subj : 53

Experiencer_NP.Subj Event_VP 51

Event_VP Experiencer_NP.Subj 2

Event_NP.Obj Experiencer_NP.Subj : 38

Experiencer_NP.Subj Event_NP.Obj 26

Event_NP.Obj Experiencer_NP.Subj 12

Event_Adv Experiencer_NP.Subj : 23

Experiencer_NP.Subj Event_Adv[for] 20

Experiencer_NP.Subj Event_Adv[after] 3

Event_VP : 1

Event_VP 1

The above summary shows the typical semantic and syntac-

tic valence patterns for the frame. For the abstract syntax,

we consider only the generalized patterns. The specific sen-

tence patterns, including the word order for linearizing Adv
FEs, will later guide the generation of concrete syntaxes.

To estimate pros and cons of the choices made in Sec-

tions 3.2 and 4.1, we run a series of experiments:

0.0 Extract sentence patterns using framenet-specific syn-

tactic types and skipping null FEs (baseline 0).

1.0 In addition to 0.0, skip examples containing unconsid-

ered grammatical types (baseline 1).

1.A Skip repeated FEs, then 1.0.

1.B Skip non-core FEs, then 1.A.

2.0 In addition to 1.0, generalize grammatical types ac-

cording to GF RGL (baseline 2).

2.A Skip repeated FEs, then 2.0.

2.B Skip non-core FEs, then 2.A.

3.0 In addition to 2.0, skip once-used valence patterns.

3.A Skip repeated FEs, then 3.0.

3.B Skip non-core FEs, 3.A.

What concerns repeated FEs, there are ~4,000 examples in

BFN and >200 in SweFN where more than one chunk is

annotated by the same type of FE, mostly due to coordi-

nation, wh-words making discontinuous PPs in questions,

and anchors of relative clauses (if a frame is evoked in a

relative clause). In Settings x.A, only one FE of the same

type is kept. If repeated FEs are of different RGL types, the

whole example is skipped.

Regarding non-core FEs, there are >24,500 instances in

BFN examples and >2,400 in SweFN that are skipped in

Settings x.B. This reduces the average number of FEs per

pattern from 3 to 2.

The results are summarized in Tables 4 and 5. We are pri-

marily interested in Settings 2.B which are rather optimal

for both BFN and SweFN: the number of covered frames

slightly decreases but it makes the resulting patterns more

prototypical and significantly reduces the number of func-

tions to be generated in the abstract syntax, the API. For a

large corpus like BFN, skipping once-used valence patterns

would help reducing noise but, for a relatively small corpus

like SweFN, it would not be reasonable.

4.3 Shared valence patterns

To find a set of valence patterns that are shared between

BFN and SweFN, we compared the outcome of both

framenets in Settings 2.B. Additionally, we included Set-

tings 3.B for BFN. It turns out that the pair of BFN 3.B and

SweFN 2.B produces a proper subset of frames / valence

patterns if compared to BFN 2.B and SweFN 2.B.

S
et

ti
n
g
s

F
ra

m
es

Valence
patterns

Sentence
patterns

Corpus
examples

total
per

frame
total

per
val.
patt.

total
per

sent.
patt.

0.0 556 20623 37 26427 1.3 68577 2.6

1.0 552 16932 31 22424 1.3 59073 2.6

1.A 550 14830 27 20350 1.4 57902 2.8

1.B 550 5626 10 8378 1.5 58085 6.9

2.0 552 14811 27 22191 1.5 59073 2.7

2.A 550 12799 23 20286 1.6 58423 2.9

2.B 550 5079 9 8339 1.6 58431 7.0

3.0 500 5835 12 13215 2.3 50097 3.8

3.A 498 5498 11 12985 2.4 51122 3.9

3.B 503 3277 7 6537 2.0 56629 8.7

Table 4: Frame-specific pattern extraction from BFN. Sen-

tence patterns preserve the word order and prepositions.

Valence patterns disregard both.

S
et

ti
n
g
s

F
ra

m
es

Valence
patterns

Sentence
patterns

Corpus
examples

total
per

frame
total

per
val.
patt.

total
per

sent.
patt.

0.0 638 3404 5.3 3435 1.0 3697 1.1

1.0 636 3269 5.1 3300 1.0 3546 1.1

1.A 627 3122 5.0 3153 1.0 3359 1.1

1.B 629 2759 4.4 2813 1.0 3398 1.2

2.0 636 2829 4.4 2967 1.0 3543 1.2

2.A 632 2729 4.3 2877 1.1 3438 1.2

2.B 632 1866 3.0 2029 1.1 3460 1.7

3.0 308 472 1.5 610 1.3 1186 1.9

3.A 305 465 1.5 613 1.3 1174 1.9

3.B 462 714 1.5 877 1.2 2308 2.6

Table 5: Frame-specific pattern extraction from SweFN.

The comparison is first done for the sets of verb frames (Ta-

ble 6) and then for the sets of valence patterns that belong

to the shared set of frames (Tables 7 and 8).

Valence patterns are compared at two levels: considering

only the semantic types of FEs and considering both the se-

mantic and the syntactic types. The difference indicates the

variation due to alternative syntactic realizations in terms

of the RGL types. For example, the following semantic

valence pattern of the frame Desiring is realized by two

shared semantic-syntactic patterns:

Experiencer Focal_participant

Experiencer_NP Focal_participant_Adv

Experiencer_NP Focal_participant_NP

Valence patterns are compared in two ways: by exact match

(Table 7) and by subsumption, a fuzzy match (Table 8).

Pattern A subsumes pattern B if: A.frame = B.frame,

A.voice = B.voice (if comparing syntactic types), and

B.FEs ⊆ A.FEs. If a pattern of Framenet1 is subsumed

by a pattern of Framenet2, it is added to the intersection

(and vice versa). In the final intersection, patterns which

are subsumed by other patterns are removed. This approach

2471



Settings

BFN:SweFN

Frames

BFN SweFN BFN\SweFN SweFN\BFN BFN∪SweFN BFN∩SweFN
2.B:2.B 550 632 57 (10%) 139 (22%) 689 493 (72%)

3.B:2.B 503 632 46 (9%) 175 (28%) 678 457 (67%)

Table 6: Comparison of frames in BFN and SweFN. Symbols \, ∪ and ∩ denote the set operations difference, union and

intersection. E.g. comparing BFN 2.B and SweFN 2.B, for 139 frames there are verb-evoked examples only in SweFN.

Settings

BFN:SweFN

Semantic valence patterns Final

BFN SweFN BFN\SweFN SweFN\BFN BFN∪SweFN BFN∩SweFN Patterns Frames

2.B:2.B 2374 1210 1418 (60%) 254 (21%) 2628 956 (36%) 615 466

3.B:2.B 1768 1123 932 (53%) 287 (26%) 2055 836 (41%) 551 433

Settings

BFN:SweFN

Semantic-syntactic valence patterns Final

BFN SweFN BFN\SweFN SweFN\BFN BFN∪SweFN BFN∩SweFN Patterns Frames

2.B:2.B 3212 1446 2279 (71%) 513 (35%) 3725 933 (25%) 655 440

3.B:2.B 2184 1344 1374 (63%) 534 (40%) 2718 810 (30%) 575 408

Table 7: Comparison of valence patterns in BFN and SweFN: by the exact match. Compare with Table 8.

is backed up by the design of the semantic grammar which

accepts an empty phrase as an argument to a frame function

if the corresponding FE is not expressed in the sentence.

The fuzzy match results in 10% more patterns that cover

5% more frames if comparing only the semantic types, and

17% more patterns that cover 7% more frames if comparing

the semantic-syntactic types.

For the frame Desiring, there are three shared valence pat-

terns included in the final abstract syntax:

Event_VP Experiencer_NP

Experiencer_NP Focal_participant_Adv

Experiencer_NP Focal_participant_NP

This covers all patterns found in SweFN, however, several

patterns found only in BFN are not included, like:

Event_Adv Experiencer_NP Focal_participant_NP

Event_NP Experiencer_NP

Event_VP Experiencer_NP Focal_participant_NP

The shared FE module declares 423 semantic-syntactic

types: 291 of type NP, 126 of type Adv and 6 of type VP.

If considering only semantic types, there are 349.

4.4 Evaluation

We evaluate the resulting abstract syntax by counting the

number of examples in BFN and SweFN whose sentence

patterns belong to the final set of shared frames and are cov-

ered by the final set of shared semantic-syntactic valence

patterns. The final sets are extracted applying Settings 2.B

for both framenets using both the exact and the fuzzy com-

parison alternatively. Corpus examples are represented by

sentence patterns according to Settings 2.0 disregarding re-

peated and non-core FEs, word order and prepositions.

Additionally, we measure coverage by the shared semantic

patterns (disregarding syntactic types) to estimate the upper

limit that could be reached by expanding the syntactic vari-

ation in the final set of semantic-syntactic patterns, intro-

ducing no additional semantic pattern. To estimate the up-

per limit that could be reached by expanding the semantic

variation in the set of semantic patterns, we measure cover-

age by the shared set of frames (disregarding valences).

The results are summarized in Table 9. With a total number

of just 769 valence patterns (frame function signatures), the

abstract syntax covers 77.8% of BFN examples that belong

to the shared set of 471 frames (72.6% of all BFN exam-

ples). For SweFN, the ratio is 74.9% and 58.4% respec-

tively. The huge drop of coverage relative to all examples

in SweFN is due to many frames that have verb-evoked ex-

amples only in SweFN (Table 6).

Coverage by the semantic patterns is ~10% higher for BFN

and ~15–18% higher for SweFN. The upper limit that could

be reached by the shared set of frames (considering all ex-

amples) is 93.4% for BFN and 78% for SweFN. This shows

that the extracted abstract syntax covers common frames

and valence patterns. Moreover, the most frequent frames

and patterns are already included by the exact match; the

fuzzy match gives only a slight improvement.

5 Conclusion

We have presented the extraction of the abstract syntax of

currently bilingual but potentially multilingual FrameNet-

based grammar. The acquired abstract syntax is compact

but comprehensive, and the initial results are very promis-

ing. Despite the relatively small SweFN corpus, the shared

semantic and syntactic valence patterns cover most exam-

ples in both corpora. The resulting grammar approximates

the actual grammars and, in general, examples are cov-

ered by paraphrasing. By including more framenets into

comparison, the intersection among framenets would de-

crease but the resulting patterns should become more ac-

curate and prototypical. We have also observed that the

grammar would not expand much if common non-core FEs

were added.

Our method for comparing framenets at the grammar level

provides additional means for checking quality, consistency

and coverage of a FrameNet-annotated corpus; we logged

lots of ill-annotated examples in both BFN and SweFN.

2472



Settings

BFN:SweFN

Semantic valence patterns Final

BFN SweFN BFN\SweFN SweFN\BFN BFN∪SweFN BFN∩SweFN Patterns Frames

2.B:2.B 2374 1210 842 (35%) 142 (12%) 2628 1644 (63%) 678 488

3.B:2.B 1768 1123 515 (29%) 165 (15%) 2055 1375 (67%) 610 451

Settings

BFN:SweFN

Semantic-syntactic valence patterns Final

BFN SweFN BFN\SweFN SweFN\BFN BFN∪SweFN BFN∩SweFN Patterns Frames

2.B:2.B 3212 1446 1693 (53%) 402 (28%) 3725 1630 (44%) 769 471

3.B:2.B 2184 1344 955 (44%) 415 (31%) 2718 1348 (50%) 674 435

Table 8: Comparison of valence patterns in BFN and SweFN: by the fuzzy match. Compare with Table 7.

Types Match
BFN SweFN

By patterns By frames By patterns By frames

Semantic
Exact 48351 87.7% (81.8%) 55111 (93.3%) 2533 92.4% (71.5%) 2742 (77.4%)

Fuzzy 48831 88.0% (82.7%) 55518 (94.0%) 2602 92.5% (73.4%) 2812 (79.4%)

Syntactic
Exact 41464 76.4% (70.2%) 54259 (91.9%) 1993 75.2% (56.3%) 2652 (74.9%)

Fuzzy 42897 77.8% (72.6%) 55166 (93.4%) 2069 74.9% (58.4%) 2763 (78.0%)

Table 9: The proportion of examples in BFN and SweFN whose sentence patterns belong to the final set of shared frames

and are covered by the final set of shared semantic / semantic-syntactic valence patterns (Tables 7 and 8, Settings 2.B:2.B).

The ratio relative to all examples is given in parenthesis. Coverage considering only frames is given additionally.

While focusing on the automatic extraction of the gram-

mar, the concise outcome allows for manual adjustments

afterwards, such as adjusting the few VP and Adv cases.

The next task is to generate concrete syntaxes for English

and Swedish. We also intend to include more languages

and more syntactic types, such as subclauses, as well as

consider verbal nouns as target LUs.

6 Acknowledgements

This research has been supported by the Swedish Research

Council under grant No. 2012-5746 (Reliable Multilingual

Digital Communication: Methods and Applications), by

the Centre for Language Technology in Gothenburg, and

by the Latvian National Research Programme in Informa-

tion Technology (project No. 5).

7 References

Boas, Hans C., editor. (2009). Multilingual FrameNets in

Computational Lexicography. Mouton de Gruyter.

Borin, Lars and Forsberg, Markus. (2014). Swesaurus; or,

The Frankenstein approach to Wordnet construction. In

Proceedings of the 7th Global WordNet Conference.

Borin, Lars, Dannélls, Dana, Forsberg, Markus,

Toporowska Gronostaj, Maria, and Kokkinakis, Dim-

itrios. (2010). The past meets the present in Swedish

FrameNet++. In Proceedings of the 14th EURALEX

International Congress, pages 269–281.

Borin, Lars, Forsberg, Markus, and Lönngren, Lennart.

(2013). SALDO: a touch of yin to WordNet’s yang. Lan-

guage Resources and Evaluation, 47(4):1191–1211.

Das, Dipanjan, Chen, Desai, Martins, André F. T., Schnei-

der, Nathan, and Smith, Noah A. (2014). Frame seman-

tic parsing. Computational Linguistics, 40(1):9–56.

Ferrández, Óscar, Ellsworth, Michael, Muñoz, Rafael, and

Baker, Collin F. (2010). Aligning FrameNet and Word-

Net based on semantic neighborhoods. In Proceedings of

the 7th International LREC Conference, pages 310–314.

Fillmore, Charles J., Johnson, Christopher R., and Petruck,

Miriam R. L. (2003). Background to Framenet. Inter-

national Journal of Lexicography, 16(3):235–250.

Fillmore, Charles J. (1985). Frames and the semantics

of understanding. In Quaderni di Semantica Sign Lan-

guage Studies, 6(2):222–254.

Gruzitis, Normunds, Paikens, Peteris, and Barzdins, Gun-

tis. (2012). FrameNet resource grammar library for GF.

In Proceedings of the 3rd Workshop on Controlled Natu-

ral Language, volume 7427 of LNCS, pages 121–137.

Moschitti, Alessandro, Morarescu, Paul, and Harabagiu,

Sanda M. (2003). Open domain information extraction

via automatic semantic labeling. In Proceedings of the

16th International FLAIRS Conference, pages 397–401.

Nivre, Joakim, Hall, Johan, Nilsson, Jens, Chanev, Atanas,

Eryigit, Gülsen, Kübler, Sandra, Marinov, Svetoslav,

and Marsi, Erwin. (2007). MaltParser: A language-

independent system for data-driven dependency parsing.

Natural Language Engineering, 13(2):95–135.

Ranta, Aarne. (2004). Grammatical Framework, a type-

theoretical grammar formalism. Journal of Functional

Programming, 14(2):145–189.

Ranta, Aarne. (2009). The GF resource grammar library.

Linguistic Issues in Language Technology, 2(2).

Roth, Michael and Frank, Anette. (2009). A NLG-based

application for walking directions. In Proceedings of

the 47th ACL and the 4th IJCNLP Conference (Software

Demonstrations), pages 37–40.

Ruppenhofer, Josef, Ellsworth, Michael, Petruck, Miriam

R. L., Johnson, Christopher R., and Scheffczyk, Jan.

(2010). FrameNet II: Extended Theory and Practice. In-

ternational Computer Science Institute.

2473


