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Abstract
The process of annotating text corpora involves establishing annotation schemata which define the scope and depth of an annotation
task at hand. We demonstrate this activity in Argo, a Web-based workbench for the analysis of textual resources, which facilitates
both automatic and manual annotation. Annotation tasks in the workbench are defined by building workflows consisting of a selection
of available elementary analytics developed in compliance with the Unstructured Information Management Architecture specification.
The architecture accommodates complex annotation types that may define primitive as well as referential attributes. Argo aids the
development of custom annotation schemata and supports their interoperability by featuring a schema editor and specialised analytics for
schemata alignment. The schema editor is a self-contained graphical user interface for defining annotation types. Multiple heterogeneous
schemata can be aligned by including one of two type mapping analytics currently offered in Argo. One is based on a simple mapping
syntax and, although limited in functionality, covers most common use cases. The other utilises a well established graph query language,
SPARQL, and is superior to other state-of-the-art solutions in terms of expressiveness. We argue that the customisation of annotation
schemata does not need to compromise their interoperability.
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1. Introduction
Annotation schemata define the scope and technical de-
tails of an annotation task and enable the creation of de-
rived work in the form of other language resources such as
lexica and ontologies. The Unstructured Information Man-
agement Architecture (UIMA) (Ferrucci and Lally, 2004)
provides a framework for defining expressive annotation
schemata, known as type systems, and facilitates the in-
teroperability of analytics that abide by such type sys-
tems. UIMA is an Apache Software Foundation open-
source project and is commonly utilised for the process-
ing of language resources. Notable examples of UIMA
component repositories include U-Compare (Kano et al.,
2010), DKPro (Gurevych et al., 2007), cTAKES (Savova
et al., 2010), JCoRe (Hahn et al., 2008), and BioNLP-
UIMA (Baumgartner et al., 2008).
UIMA defines common interfaces and data structures that
are exchanged between analytics (or processing compo-
nents). Data structures strictly conform to one or more type
systems that are used in a processing pipeline. UIMA pro-
vides a built-in, top-level type system that consists of prim-
itive types (e.g., integer, string, boolean) as well as complex
types, i.e., types that contain features. Features may be any
of the primitive types as well as references to other com-
plex types. Developers are free to extend any of the com-
plex types, which makes UIMA flexible enough to encode
schemata for a variety of syntactic and semantic annota-
tion tasks including syntax parse trees, dependency graphs,
named entities, entity relationships, coreferences and dis-
course analyses. U-Compare is an example of a library of
components that conform to a single, all-in-one type sys-
tem (consisting of nearly 300 types) that supports all of the
aforementioned tasks.
On the other hand, the freedom of defining own type sys-
tems contributes to the creation of closed component repos-
itories where components are interoperable (support same

type systems) within a repository, but not outside of it,
despite sharing conceptual similarities. For instance, the
coreference phenomenon may be structurally represented
as a linked list or an array of coreferring mentions. A
component producing coreferences as linked lists cannot
be then directly connected to a component that consumes
coreferences as arrays.
In this paper we demonstrate Argo, a UIMA-based tool
that supports multiple, heterogenous type systems and ad-
dresses the problem of type system alignment. Argo (Rak
et al., 2012) is a Web-based workbench for the analysis
of textual resources, which facilitates both automatic and
manual annotation. The workbench is equipped with an
ever-increasing library of elementary processing compo-
nents that can be arranged by users to form meaningful
processing units (or workflows). The processing compo-
nents range from data serialisers and deserialisers to syn-
tactic and semantic annotators. Automatic processing may
be manually validated owing to the Manual Annotation Ed-
itor component that, if present in a workflow, pauses the
execution of the workflow and expects manual intervention
from a user. The user may then create new or modify exist-
ing annotations through a flexible graphical user interface.
The type system alignment is accomplished in Argo by
including specialised analytics in workflows. The work-
bench currently features two such components, namely,
Type Mapper and SPARQL Annotation Editor. The choice
between the two boils down to trading simplicity for func-
tionality.
We also introduce a graphical type system editor, a new fea-
ture of Argo that allows users to create ad hoc annotation
schemata. The editor features the semi-automatic recogni-
tion of types from user-supplied data in several widely-used
formats.
The remainder of this paper is organised as follows. The
next section provides the overview of Argo. Section 3 in-
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Figure 1: Main interface of Argo. The selected view shows a list of user’s workflows.

troduces the two type mapping analytics and Section 4 de-
scribes the type system editor, which is followed by a use
case in Section 5. Section 6 briefly presents related work,
whereas Section 7 concludes the paper.

2. System Overview
Argo is a multi-user and collaborative system. The Web-
based graphical interface provides users with access to
creating workflows, executing them and tracking their
progress, a document storage (a user’s space for upload-
ing files for processing and downloading results), and the
newly introduced type system editor. A screenshot of the
main interface is shown in Figure 1.
Users create workflows using a diagramming editor shown
in Figure 2. Each block represents a processing compo-
nent and each connector represents the flow of data be-
tween components. Argo enables multiple branching and
merging points in a workflow, thus logically parallelising
flows. The components are categorised into collection read-
ers, analytics, and writers (a special subgroup of analyt-
ics). Readers and writers deserialise and serialise, respec-
tively, data in various formats. They include generic for-
mats such as plain text, XMI (XML Metadata Interchange)
and RDF, as well as domain- and task-specific formats. For
instance, Kleio Search fetches data from a remote Web ser-
vice, CRF Writer produces a statistical model file, and Ref-
erence Evaluator outputs a tab-separated values file con-
taining effectiveness evaluation metrics. Analytics are pro-
cessing components whose role is to modify the input data
structures and pass them onto the succeeding components
in a workflow. They include syntactic, semantic and utility
components that range from tokenisers and sentence detec-
tors to constituent tree and dependency parsers to various
named entity and relationship recognisers to external re-

source linkers to customisable machine learning-based tag-
gers for advanced users. Each workflow begins with a col-
lection reader that is followed by one or more analytics and
may terminate with one or more writers. An example of
such a workflow is shown in Figure 2.

3. Type System Interoperability
Argo currently features nearly a dozen publicly available
type systems. They include the comprehensive U-Compare
type system, several generic systems that encode struc-
tures such as events (complex relationships) and machine
learning-related types, as well as domain-specific type sys-
tems such as biological and chemical typologies.
The available components in Argo support one or more of
the type systems. A problem arises when a workflow in-
volves components which do not share the same type sys-
tems and yet are meant to communicate, i.e., pass data
structures between each other. For instance, the BioC
Writer component serialises biologically relevant entity and
relationship annotations in a specific, XML-based format
and supports only the purpose-built BioC type system. In
order to save data from, e.g., the Anatomical Entity Tag-
ger component that produces named entities defined in the
U-Compare type system, the annotations need to be tran-
scribed from one format to the other. In platforms such
as U-Compare, this has been resolved programmatically
by building components that transcribe annotations from
one type system to another. This solution, however, re-
quires software development skills and is not scalable with
a growing number of type systems.
In order to alleviate this problem, solutions based on (cas-
caded) finite state transducers, or transcription rules, have
been introduced. For each transcription rule, a pattern is
matched against a stream of existing feature structures, and
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Figure 2: Workflow diagramming window.

if a match is found, new structures are created.
Ruta (formerly known as TextMarker) (Kluegl et al., 2009)
is currently the most comprehensive UIMA analytic that
includes its own language for creating rules and offers
Eclipse-based tooling. Similar rule-based analytics include
uima-map (Hernandez, 2012) that uses a tailored syntax en-
coded in XML, and PEARL (Pazienza et al., 2012) that
utilises SPARQL-like constructs in otherwise proprietary
syntax.
In Argo, the type system alignment is supported by two
components, Type Mapper and SPARQL Annotation Edi-
tor. The former is a dedicated rule-based analytic for tran-
scribing feature structures between types, whereas the latter
is a general-purpose annotation editor that utilises SPARQL
for manipulating feature structures (Rak and Ananiadou,
2013).
Type Mapper, although similar in concept to the other rule-
based solutions, provides a very simplistic syntax for rudi-
mentary type conversions. Despite its limitations, its func-
tionality covers most common uses cases. The most ba-
sic transcription solely requires specifying the names of
two types. The analytic will create a new feature struc-
ture of a destination type for each feature structure of a
source type and automatically copy common features be-
tween the structures. Additional functionality includes con-
ditional transcriptions, custom transcriptions of features or
feature paths, and executing predefined functions. Exam-
ples of the Type Mapper’s syntax and capabilities are given
in Figure 3.
The SPARQL Annotation Editor is a processing compo-
nent that enables the transcription of annotations using a
well-defined and widely-used language, SPARQL 1.1, that

# Example 1: Basic transcription
com.example.LabelledEntity  ->  org.example.NamedEntity;

# Example 2: Conditional transcription with feature mapping
com.example.Person where confidence > 0.8  
    ->  org.example.NamedEntity,
    "Person" -> category,
    confidence -> metaData/confidence

Figure 3: Examples of type transcriptions with Type Map-
per.

allows for both querying and manipulating RDF graphs.
The component facilitates the transcription by 1) represent-
ing data structures as an RDF graph, 2) performing a user-
defined SPARQL query that modifies the graph, and 3) con-
verting the modified graph back to the UIMA representa-
tion. A user-defined query involves statements that rewrite
annotations in the source type system to the destination
type system. Figure 4 shows examples of SPARQL queries
that perform the same transcriptions that are shown in Fig-
ure 3. In comparison, SPARQL syntax is more verbose than
the Type Mapper syntax as the SPARQL Annotation Edi-
tor does not enjoy the implicit automatic functionality the
Type Mapper has. On the other hand, the SPARQL An-
notation Editor does not suffer the limitations of the other
component or any other rule-based transcriptor. SPARQL’s
random data access, as well as data modification, manipu-
lation and filtering capabilities make the language far more
expressive. The examples and analysis of advanced tran-
scriptions using the SPARQL Annotation Editor, such as
one-to-many and chain-array conversions, are given in (Rak
and Ananiadou, 2013).
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX tcas: <uima:ts:uima.tcas.>
PREFIX org: <uima:ts:org.example.>
PREFIX com: <uima:ts:com.example.>

# Example 1: Basic transcription
INSERT {
  _:namedEntity a org:NamedEntity ;
     tcas:Annotation:begin ?begin ;
     tcas:Annotation:end ?end .
  ?view rdfs:member _:namedEntity .
}
WHERE {
  ?view a <uima:aux:View> ;
     rdfs:member ?labelledEntity .
  ?labelledEntity a com:Person ;
     tcas:Annotation:begin ?begin ;
     tcas:Annotation:end ?end .
}

# Example 2: Conditional transcription with additional
#              feature mapping
INSERT {
  _:metaData a org:MetaData ;
     org:MetaData:confidence ?confidence .
  _:namedEntity a org:NamedEntity ;
     tcas:Annotation:begin ?begin ;
     tcas:Annotation:end ?end ;
     org:NamedEntity:metaData _:metaData .
  ?view rdfs:member _:namedEntity .
}
WHERE {
  ?view a <uima:aux:View> ;
     rdfs:member ?labelledEntity .
  ?labelledEntity a com:Person ;
     tcas:Annotation:begin ?begin ;
     tcas:Annotation:end ?end .
     com:Person:confidence ?confidence
  FILTER(?confidence > 0.8)
}

Figure 4: Examples of type transcription with SPARQL
Annotation Editor.

If the limited functionality is of no concern, users would
choose the Type Mapper over the SPARQL Annotation Ed-
itor due to its syntax’s brevity as well as speed, since the lat-
ter incurs costly conversions between data representations.

4. Type System Editor
To further facilitate the ad hoc creation of annotation
schemata, we introduced a type system editor that features
a graphical user interface for easy definition of new types.
The editor is available directly in the Argo application and
its primary purpose is to allow human annotators to define
their custom, task-specific type systems that they can use
for manual annotation.
The editor fully supports the UIMA specification of defin-
ing type systems. This includes the extension of ex-
isting types, the definition of primitive and referential
features, and the description of types and their fea-
tures. As an example, Figure 5 demonstrates the def-
inition of type LinkedEntity and three of its sub-
types, Process, Chemical, and GeneOrGeneProduct.
The LinkedEntity type itself extends the built-in
Annotation type (available in the uima.tcas names-

pace). The selected type defines four features, three of
which (sofa, begin and end) come from the ances-
tors’ types. The features begin, end and id are prim-
itive features (respectively, two integers and a string),
whereas the sofa feature has the complex value type,
uima.cas.Sofa, that represents a subject of analysis by
including the original text as well as its meta data.
To accelerate the definition of custom type systems, we
have been developing automatic type recognition plugins
whose purpose is to create an initial version of a type
system directly from data supplied by a user. Currently,
we support IOB/IOBES CoNLL column format, BioNLP
Shared Task event definition format, and Document Type
Definition (DTD).

5. Use Case

We demonstrate the interoperability and customisation of
annotation schemata by invoking the use of Argo in the
recently concluded BioCreative IV User Interactive Track.
The defined, biology-related task involved the annotation
of concepts relevant to metabolic processes, namely, chem-
ical compounds (CCs), genes or gene products (GGPs) and
action words. In addition to the tagging of text spans cor-
responding to these concept types, the human annotators
were asked to link the text spans to identifiers in external
resources where possible (Rak et al., 2013).
The main requirement of the track was the capability to as-
sist a domain expert in the annotation task by the provi-
sion of annotations automatically generated by text mining
tools. The workflow in Argo involved two named entity
recognisers (NERs), namely, GENIA Tagger (Tsuruoka et
al., 2005) for annotating GGPs and OscarMER (Kolluru et
al., 2011) for annotating CCs and action words. The two
NERs comply with two different type systems, respectively,
the U-Compare and Oscar type systems.
To facilitate the harmonisation of the annotations coming
from the different components in the workflow, we de-
fined the Metabolic Process type system (presented in Fig-
ure 5) specifically for this annotation task1. This simple
type system has the LinkedEntity type for any span-
of-text annotation, whose id feature can be assigned an
identifier from the relevant external resource. It is ex-
tended by the more specific types Process, Chemical and
GeneOrGeneProduct, corresponding to our concept types
of interest. With the inclusion of a SPARQL Annotation
Editor component in the workflow, the complex annotations
from the OscarMER and GENIA Tagger components (in-
volving a large number of features which were of no inter-
est to human annotators) were aligned with the simplified,
human annotator-friendly Metabolic Process type system.
By designing a simple, intuitive, custom type system we
eliminated the need to inelegantly merge two completely
disparate type systems and allowed Argo to present to the
annotators only those annotation types and features which
were relevant to the task.

1The Metabolic Process type system had been developed out-
side Argo since the editor had not been available at that time.
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Figure 5: Type system editor.

6. Related Work
Other notable natural language processing platforms
that feature rich graphical user interfaces include U-
Compare (Kano et al., 2010) and GATE (Cunningham et
al., 2002), both available as standalone Java applications.
The former, similarly to Argo, supports UIMA, but involves
only a handful of programmatic annotation transcriptions
between type systems and does not include a type system
editor. Argo additionally features user collaboration and
interactive components. GATE includes a suite of text pro-
cessing and annotation tools and allows users to define their
own annotation schemata using only direct XML Schema
syntax. The expressiveness of types in GATE is also in-
ferior to those in UIMA, e.g., GATE types do not support
type inheritance nor referential features. A comprehensive
comparison of UIMA, GATE and several other frameworks
is given by Bank and Schierle (Bank and Schierle, 2012).
Like Argo, Egas (Campos et al., 2013) is a Web-based, col-
laborative annotation tool that allows a superuser to define
annotation types; however, the types are limited to named
span-of-text annotations and named binary relationships
between them. In contrast, Argo fully supports UIMA type
system specification which accommodates types consisting
of both primitive and referential features and therefore fa-
cilitates the encoding of schemata for a broader variety of
annotation tasks.

7. Conclusions and Futre Work
Fixed and well-defined annotation schemata facilitate the
interoperability of processing resources. However, unified,
universal and all-embroiling schemata are unlikely to ever
materialise due to variations in requirements, scope, con-
ceptualisation and applicability. Additionally, manual an-
notation requires less complex and more human annotator-
friendly schemata. Argo addresses these issues by intro-
ducing annotation transcription components that ultimately

facilitate the alignment of schemata, and a graphical type
system editor that allows a human annotator to define an-
notation task-tailored types whilst preserving structural in-
tegrity and reusability of annotations guaranteed by the
UIMA framework.
As future work, in order to enhance users’ experience, we
are planning to provide a graphical user interface for the
Type Mapper, which will release users from having to learn
the type mapping syntax, as well as introduce more formats
that the type system editor is able to automatically create
schemata from.
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