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Abstract
A major challenge in the field of automatic recognition of emotion and affect in speech is the subjective nature of affect labels. The
most common approach to acquiring affect labels is to ask a panel of listeners to rate a corpus of spoken utterances along one or more
dimensions of interest. For applications ranging from educational technology to voice search to dictation, a speaker’s level of certainty is
a primary dimension of interest. In such applications, we would like to know the speaker’s actual level of certainty, but past research has
only revealed listeners’ perception of the speaker’s level of certainty. In this paper, we present a method for eliciting spoken utterances
using stimuli that we design such that they have a quantitative, crowdsourced legibility score. While we cannot control a speaker’s actual
internal level of certainty, the use of these stimuli provides a better estimate of internal certainty compared to existing speech corpora.
The Harvard Uncertainty Speech Corpus, containing speech data, certainty annotations, and prosodic features, is made available to the
research community.
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1. Introduction

An exciting goal in human computer interaction is that of
adding human-level emotional behavior to intelligent sys-
tems, that is, the ability to perceive a user’s emotional state
and adaptively respond to it (Cowie et al., 2001). In speech
systems in particular, there has been a lot of work in re-
cent years on detecting a broad spectrum of affective states
in speech, from core emotions (Lee and Narayanan, 2005;
Fernandez and Picard, 2005; Schuller et al., 2011) to meta-
cognitive states such as level of certainty (Liscombe et al.,
2005; Pon-Barry, 2008; Forbes-Riley and Litman, 2011;
Pon-Barry and Shieber, 2011) and engagement (Litman et
al., 2012).

A major challenge for the field of affect recognition is the
subjective nature of affect labels. The most common ap-
proach to obtaining affect labels is to measure perceived
affect, as annotated by one or more human listeners. For
example, in an existing corpus of Wizard-of-Oz tutorial
dialogues, instances of uncertainty are labeled by a sin-
gle human, the dialogue system “Wizard” (Forbes-Riley et
al., 2008). Labels of perceived certainty are by definition
subjective. We treat them as a gold standard, understand-
ing that the subjectivity makes for challenging classifica-
tion problems (Devillers et al., 2005). On the other hand,
we can consider self-reported certainty, when speakers are
asked to rate their own level of certainty.

In our prior work, we found that self-reported certainty was
often lower (rated as less certain) than perceived certainty
(Pon-Barry and Shieber, 2011). In the same vein, related
work on interpersonal stance (e.g., friendliness, flirtatious-
ness) found that in conversation dyads, self-reported af-
fect was not strongly correlated with perceived affect (Ran-
ganath et al., 2013).

For applications in educational technology, we are most in-
terested in knowing a student’s internal level of certainty.

Barring breakthroughs in neuroscience, a person’s actual
internal level of certainty cannot be determined, but in this
paper, we present a data set that provides a novel and inter-
esting proxy for internal certainty by carefully controlling
the inherent difficulty of the task leading to the person’s
level of certainty, which we call group task certainty, and
we compare it with self-reported and perceived certainty
annotations. Our proxy for internal certainty is based upon
crowdsourced judgements of handwritten image legibility.
We modify an existing affective speech elicitation proce-
dure to create speech elicitation stimuli around these im-
ages and we then collect a new corpus of uncertain speech.

2. Method

We present a methodology with two parts. First, we crowd-
source human perception judgements to obtain legibility
scores for images of handwritten digits (Section 2.1). Sec-
ond, we create speech elicitation materials incorporating
these digit images and collect speech from human subjects
in our lab (Section 2.2). The key is that we can assign each
image an intrinsic level of difficulty, based on the crowd-
sourced judgements; we assume that when participants are
trying to read the digits, their internal certainty is correlated
with the image’s level of difficulty. For each utterance, we
acquire self-reports of certainty from the subjects and per-
ceived certainty annotations as generated by a panel of hu-
man judges.

2.1. Legibility Scores for Handwritten Digits

Here, we discuss our procedure for obtaining the set of
handwritten digit images and describe a human computa-
tion approach to quantifying each image’s intrinsic ambi-
guity, which represents a measure of certainty about the
identity of the digit images averaged over the group of
participants—a measure of group task certainty. We use
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this measure as a proxy for an individual’s level of certainty.
(We address the appropriateness of such a move in Sec-
tion 5.) This proxy allows us to compare a speaker’s self-
reported certainty to the item’s intrinsic level of certainty
and verify whether self-reports are a reasonable proxy for
internal level of certainty.

We make use of the MNIST database of handwritten digits
(LeCun et al., 1998). The MNIST database contains 10,000
handwritten digit images from the United States Postal Ser-
vice.

The process of selecting handwritten digits to use in the
speech elicitation materials has three steps.

Step 1 Use an SVM classifier to identify 400 images (out
of all 10,000 images) that may be difficult to read.

Step 2 Generate legibility scores for these 400 images us-
ing Mechanical Turk.

Step 3 Select 50 images (out of the set of 400) of varying
legibility to use in the speech elicitation materials.

In the first step, we use an existing support vector machine
classifier (Maji and Malik, 2009) to classify all the images
in the MNIST database. This classifier outputs a confidence
measure along with the most likely label. We select the 400
images with the lowest confidence measures to use in the
subsequent step.

In the second step, we use Amazon’s Mechanical Turk
(Paolacci et al., 2010; Mason and Suri, 2011) to collect hu-
man judgements that we use in generating legibility scores
for these 400 images. Mechanical Turk is an online labor
market that facilitates the assignment of human workers to
quick and discrete human intelligence tasks (HITs). We di-
vided the digit images into twenty sections so that each HIT
consisted of 20 images. We instructed workers to identify
each digit using a drop-down menu. Each digit was labeled
by 100 human workers.The full instructions and the param-
eters of the HIT design are available in (Pon-Barry, 2013).
Figure 1 shows a screenshot of the Mechanical Turk HIT.

Instructions!
For each of the handwritten digit images below, identify the digit using 
the drop-down menu. Even if you are unsure, select the digit that the 
image most closely resembles. We will compare your selections (for 

certain images) with the selections of other workers to ensure quality.

Figure 1: Screenshot of the Mechanical Turk HIT for hand-
written digit classification.

Ensuring worker quality and preventing malicious behav-
ior (e.g., bots written to complete all the HITs in a batch)
is a challenge for researchers collecting data on Mechani-
cal Turk (Callison-Burch and Dredze, 2010). We took two
measures to ensure quality. First, we included a question,
such as “What is 4+2?”, to verify that the worker was a real
person. Second, we randomly included two control images
in every HIT. We verified that workers correctly identified
those digits before paying them.

We generate a legibility score for each image based on
the entropy of the human label distribution, a measure of
the uncertainty of a random variable X taking on values
x1, . . . xN defined by,

H(X) = −
N∑
i=1

P (xi)logP (xi) .

Using the labels collected on Mechanical Turk, we can
compute the maximum likelihood estimate for the proba-
bility P (xi). We take the legibility score to be 1−H(X).

Accordingly, legibility scores fall in the range [0,1]. A leg-
ibility score of 1 (entropy of 0) indicates high legibility (all
100 people select the same label). We find that 36% of im-
ages were unambiguous (legibility score = 1) and the most
ambiguous image has a legibility score of 0.19. Table 1
shows several digits of varying legibility, the frequencies
of the human labels, and the associated entropy values and
legibility scores.

In the final step, we select 50 images to use in the speech
elicitation stimuli based on the entropies of the human-label
distributions. We draw as uniformly as possible from the
binned range of entropies.

Table 1: Handwritten digits: label frequencies and entropy.

Crowdsourced Label Frequencies

Label

‘0’ - - - - 2
‘1’ - - - 5 34
‘2’ - 22 - - 9
‘3’ - - - - 20
‘4’ - - 69 - 4
‘5’ 100 - - - 15
‘6’ - 1 31 - 3
‘7’ - 77 - 58 5
‘8’ - - - - 8
‘9’ - - - 37 -

Entropy 0.00 0.25 0.27 0.36 0.81
Legibility Score 1.00 0.75 0.73 0.64 0.19

2.1.1. Image Ambiguity

When generating legibility scores, we assume that ambigu-
ous images will appear ambiguous to nearly all people. To
test this, we conducted a second experiment on Mechanical
Turk that asked 100 people whether they found an image

1979



to be ambiguous or unambiguous. Figure 2 shows the frac-
tion of people who rated an image as unambiguous versus
the image’s legibility score. The distribution confirms our
hypothesis. Images with lower legibility scores (less than
0.75) were deemed ambiguous for the majority of people.

Figure 2: For each image, the fraction of people who judged
it to be unambiguous vs. its legibility score.

2.2. Eliciting Speech with Varying Levels of Certainty

We collect speech data with emphasis on controlling a
speaker’s likely internal level of certainty as predicted by
the group task certainty. The method for eliciting un-
certain speech is a modification of the method used in a
prior round of affective speech collection (Pon-Barry and
Shieber, 2011). In that work, we did not attempt to control
the speaker’s internal level of certainty. As a result, there
was no way to verify whether a speaker’s self-reported cer-
tainty was aligned with his or her actual, internal certainty.

In the present work, the salient difference is that the speech
elicitation materials are designed in a way that controls the
level of certainty of the stimulus. This is achieved by asking
participants to engage in a task that necessitates speaking a
spontaneous utterance that incorporates reading the hand-
written digits, which we controlled using the method above
to exhibit widely varying degrees of legibility.

The materials for eliciting speech are designed so that par-
ticipants would speak the selected MNIST digit aloud, in
the context of answering a question. The handwritten digit
images are embedded in an illustration of a train route con-
necting two U.S. cities. An example train route illustration
is shown in Figure 3.

At the start of the data collection experiment, participants
read a task scenario explaining why they are deciphering
handwritten train conductor notes and answering questions
about them. (See (Pon-Barry, 2013) for details of the task
scenario.) For each train route illustration, participants are
asked a single question. The participants responds aloud,
speaking spontaneously. However, their word choice is in-
fluenced by a warm-up task where they are given answers
to read aloud. This lets us have some influence over the

length and lexical content of the utterances without the par-
ticipant explicitly reading a sentence aloud. Two example
questions and answers are shown below.

(1) Q: Which train leaves Los Angeles and at what time
does it leave?

A: Train number 7 leaves Los Angeles at 1:27.

(2) Q: Which train arrives in Dallas and at what time
does it arrive?

A: Train 2 arrives in Dallas at 9:12.

2.2.1. Procedure for Speech Elicitation

The procedure for eliciting speech and certainty self-reports
is summarized below.

1. The participant sees a train route illustration.

2. The participant hears a question about the train route
(while viewing illustration).

3. A beep is played, prompting the participant to answer.

4. The participant answers (while viewing illustration).

5. The participant rates his or her level of certainty on a
1 to 5 scale.

The procedure is an adaptation of the procedure described
in previous work (Pon-Barry and Shieber, 2011), with two
differences: (1) the questions are pre-recorded and inte-
grated into the experimental interface, and (2) the partici-
pants answer the questions spontaneously. Twenty-two par-
ticipants completed the experiment, 11 male and 11 female.

Figure 3: Speech elicitation stimulus. The handwritten
digit on train was perceived as a ‘7’ some of the time and
perceived as a ‘2’ some of the time.

3. Annotating Level of Certainty

We collect level of certainty annotations from the speaker’s
perspective and the hearer’s perspective. This is a key dis-
tinction between our corpus and other corpora that focus
on annotations of the perception of certainty. The distribu-
tion of legibility scores, certainty labels from the speaker’s
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Figure 4: Three histograms: (left) distribution of difficulty scores for the stimuli that prompted the utterances in the corpus,
(middle) distribution of certainty labels from the speaker’s perspective, (right) distribution of certainty labels from the
hearer’s perspective.

perspective, and from the hearer’s perspective are shown in
Figure 4.

We obtain certainty labels from the speaker’s perspective,
that is, self-reported certainty, during the speech elicita-
tion experiment. After answering a question, the speaker
is asked, “How certain were you about the answer you just
gave?” They indicate their certainty on a 1 to 5 Likert scale
(1=very uncertain, 5=very certain).

We obtain certainty labels from the hearer’s perspective,
that is, perceived certainty, by selecting the majority among
the judgements of a panel of six annotators, all native En-
glish speakers. Every annotator listened to and rated the
entire set of 1100 utterances. The annotators rated level of
certainty for each utterance on the same 5-point scale used
for the self-reports (1 = very uncertain, 5 = very certain).
They did not see any contextual information such as the
handwritten images.

The agreement among the six annotators highlights the sub-
jective nature of the hearer-centric affect labeling paradigm.
Across all pairs of annotators, we find an average pairwise
agreement of 54.3%, average Cohen’s kappa of 0.235, and
average Spearman correlation coefficient of 0.494. If we
look only at the pair of annotators with the highest agree-
ment, we see much higher values: pairwise agreement of
74.1%, Cohen’s kappa of 0.407, and Spearman correlation
of 0.62.

4. Harvard Uncertainty Speech Corpus

The materials described here form part of the Harvard Un-
certainty Speech Corpus, which contains speech record-
ings, level of certainty annotations, and acoustic feature
vector data. The speech elicitation materials include items
from three domains: vocabulary and public transportation
(described in previously published work (Pon-Barry and
Shieber, 2011)), and the handwritten digits domain de-
scribed here. In total, the Harvard Uncertainty Speech Cor-
pus has 1700 utterances and 148.79 minutes of speech. The
speech recordings are available upon request for research
purposes. The level of certainty annotations, acoustic fea-
ture vector data, and speech elicitation materials are avail-
able for download through the Dataverse Network (http:
//dvn.iq.harvard.edu/dvn/dv/ponbarry).

There are three main benefits of the corpus. First, it con-
tains certainty annotations from the speaker’s point of view
(self-reports) as well as annotations from the hearer’s point
of view (listener judgements). Second, the difficulty of
the questions can be controlled. Third, the corpus con-
tains several instances of specific words and phrases such
as “train one” or “train two”. These phrases are spoken
multiple times by each speaker, with differing levels of cer-
tainty. Figure 5 shows the spectrograms of three utterances
from the same speaker saying “train two” while feeling un-
certain, neutral, and certain. This allows for the analysis
of subtle differences in prosodic expressivity (for example,
(Pon-Barry and Nelakurthi, 2014)).

5. Discussion

Our initial analysis suggests that self-reported certainty and
group task certainty are more strongly correlated than per-
ceived certainty and group task certainty. The correlation
coefficient for the former is r = 0.818, while the latter is
r = 0.687. Given that self-reported certainty is “closer” to
a speaker’s internal level of certainty than perceived cer-
tainty, this finding goes some way toward validating the
assumption that the speaker’s internal level of certainty is
closely associated with the group task certainty.

Of course, group task certainty is not the same as inter-
nal level of certainty. First, internal level of certainty may
depend on various aspects of the task, not only how un-
certain the particular manipulated stimulus component of
the task is for the individual. However, the particular task
used here was designed so that all aspects other than in-
terpretation of the ambiguous digit were straightforward
to accomplish and did not vary in difficulty across stim-
uli. Second, how uncertain the stimulus component of the
task is for the individual may differ from how uncertain the
stimulus component of the task is for the group. For in-
stance, in the digit identification task, it could be the case
that a digit possessed high group task uncertainty (that is, a
low legibility score) not because each individual participat-
ing in the crowdsourced annotation was uncertain about the
digit identification, but because each individual was quite
certain about identifying the digit differently. Though in-
trospection may indicate this possibility as implausible, it
cannot be ruled out; eliminating the possibility would re-
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Figure 5: Three instances of a single speaker saying “train two” with varying certainty: certain (left), neutral (middle) and
uncertain (right). The pitch estimate (blue line) is overlaid atop the spectrogram.

quire knowing the internal level of certainty of the annota-
tors, thereby begging the question. Barring breakthroughs
in neuroscience or parapsychology, we are unlikely to see
approaches to determining true internal level of certainty.
In the meantime, this new measure of certainty based on
intrinsic task ambiguity may prove useful as a proxy.

This work addresses an issue central to human language
technologies and affect recognition: what are the best prac-
tices with respect to measuring speaker affect and speaker
state? For speaker uncertainty, there is evidence that adapt-
ing to uncertainty can improve learning, but also that ac-
curately detecting uncertainty is a bottleneck for fully-
automated adaptive systems (Forbes-Riley and Litman,
2011). We believe that a speaker’s perception of certainty is
the measure we ought to care about, despite the challenges
associated with measuring it.

We have presented a method for acquiring, along with such
self-reports and annotator labelings, information about the
actual source for the level of certainty, allowing us to inves-
tigate the relationship between these external and internal
types of annotation. We do so in the context of examining
uncertainty, though the method may be applicable to other
forms of affect as well, ones where the source of the affec-
tual state is manipulable.
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