
SLMotion – An extensible sign language oriented video analysis tool

Matti Karppa∗, Ville Viitaniemi∗, Marcos Luzardo∗, Jorma Laaksonen∗, Tommi Jantunen†

∗Department of Information and Computer Science,
Aalto University School of Science, Espoo, Finland,

firstname.lastname@aalto.fi

†Sign Language Centre, Department of Languages,
University of Jyväskylä, Finland,
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Abstract
We present a software toolkit called SLMotion which provides a framework for automatic and semiautomatic analysis, feature extraction
and annotation of individual sign language videos, and which can easily be adapted to batch processing of entire sign language corpora.
The program follows a modular design, and exposes a Numpy-compatible Python application programming interface that makes it easy
and convenient to extend its functionality through scripting. The program includes support for exporting the annotations in ELAN
format. The program is released as free software, and is available for GNU/Linux and MacOS platforms.
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1. Introduction
SLMotion is a general purpose video analysis software
toolkit that we have developed for analysing sign language
corpora. The software allows researchers to perform differ-
ent kinds of analyses on pre-existing video footage via non-
invasive computer vision methods. This could be used, e.g.,
to verify theoretical statements concerning sign language
phonetics, or be used as an assisting tool for semiautomatic
or automatic annotation of pre-existing video corpora.
Our software consists of two major parts: a generic con-
trol framework that enables users to conduct experiments
and analysis projects using Python scripts, and a library of
independent analysis components that can be used as parts
of such projects. While our use of the software has been
limited to the analysis of sign language corpora (Karppa
et al., 2012; Karppa et al., 2011; Viitaniemi et al., 2013;
Luzardo et al., 2013), the framework itself does not con-
tain inherent limitations that would prevent its application
to other domains of video analysis, such as research of ges-
tures or non-verbal interaction between speakers of spoken
languages.
The usefulness of the software comes from the framework
which allows the users to share their work with colleagues.
The modular design of the component framework allows
creation of self-contained components that can be applied
to other projects in a plug & play manner. Scripting with the
Python Application Programming Interface (API) enables
users to share the scripts they have made and allows recy-
cling of old projects. Users without a background in pro-
gramming may choose to use premade scripts that accom-
plish their desired tasks. Such scripts could, for example,
define processes that annotate sequences of visual silence
or lack of motion, measure velocities of the articulators,
typically the hands, or create annotations corresponding to
eye blinks.
The source code of the software, and Ubuntu Linux and
MacOS X binaries are publicly available for download free

of charge at http://research.ics.aalto.fi/cbir/
software/ along with more extensive technical documen-
tation. The software is licensed under the very permissive
FreeBSD licence, so it can be used for commercial work in
addition to academic settings.
The rest of the paper is organised as follows: Section 2. dis-
cusses some related work. Section 3. describes the system
and its capabilities. Section 4. lists some of the work where
we have implemented our methods within the framework
described here. Section 5. concludes the paper.

2. Related work
A lot of work on computer-vision based approaches to-
wards sign language analysis has surfaced in the recent
years. This also includes large corpora, the appropriate
analysis of which without automatic tools would be an in-
surmountable task. For example, in (Forster et al., 2012),
the authors describe a sign language recognition and trans-
lation corpus based on weather forecasts signed in German
Sign Language. They also describe experiments with hand
and head tracking on the videos in the corpus. In (Charles et
al., 2013), an automatic system is described for estimating
human pose in long sequences of sign language video.
However, to the authors’ best knowledge, no free software
alternatives exist to SLMotion. This is because SLMotion
works at a higher level of abstraction; it provides a frame-
work for implementation and experimentation. Most re-
lated work that has been released to the public in the form
of software has focused on narrower, domain-specific prob-
lems, and in many cases the proposed methods could be
considered to be implemented as components within our
system. Very little work can be found that operates at the
same level of abstraction.
The AVATecH project (Auer et al., 2010) has had similar
aims at creating interchangeable components with a stan-
dardised interface for the purpose of automatic or semi-
automatic annotation of audio/video corpora. Similarly,
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Figure 1: SLMotion execution model. The components
only interact with one another through the black board. The
Python script controls the execution at the top level, but it
cannot directly influence the behaviour of the components
once they have been initialised.

in (Lenkiewicz et al., 2012), the tracking of the hands and
the head has been explored within the AVATecH project.
However, to our knowledge, the described recognisers are
not free in the free software sense, which may be consid-
ered a limiting factor. Also, based on an assessment of the
description in (Lenkiewicz et al., 2012), our scripting sys-
tem could give the more technically-oriented user a more
fine-grained level of control without sacrificing the simplic-
ity of use, should the associated components be designed
properly.

3. System description
3.1. Framework architecture
Overall, the most important design principle behind SLMo-
tion has been extensibility. This has yielded a modular
structure that makes it possible to add new functionality in
the form of self-contained components.
The execution model follows a black board model and is
shown in Fig. 1. At the core is a component chain, i.e. a
succession of self-contained processing tasks that are run
for the input video one after another. Ideally, each compo-
nent performs only one task at a time and is unaware of any
other components in the chain. The only way for the com-
ponents to interact with one another is through the black
board which acts as an abstract data repository. The com-
ponents will store their own results there and likewise load
the results of previous components if they should depend
on them. The components provide a range of metadata re-
garding their requirements and the results they provide for
other components so that the system can often verify that
all necessary data will be available in time and tell the user
what component might provide the missing data.
On a higher level, the initialisation of the component chain
is performed by a Python script that runs in an embedded
Python interpreter. The program exposes an API that al-
lows the user to initialise the components to their desired
settings, set up the desired visualisations for video output,

select which features to extract, manipulate the resulting
data on the black board, or feed in data from an external
source to the black board. The interface is also Numpy1-
compatible which should make a wide range of numeri-
cal methods accessible. The state of the analysis can also
be stored into a file as a “blackboard dump” and loaded
back again. The dumps can be used for processing large
videos in pieces, or performing multiple analyses on the
same video without having to recompute results common
to each task.
Listing 1 shows a simple example of a possible Python
script that could be run with SLMotion. The second tex-
tual line shows that the SLMotion API is accessed simply
as a Python module. This is followed by the initialisa-
tion of the component chain with the setComponents
function. Components are created by passing a list of
Component objects to the function. The Component
objects act as component specifications. They include the
name of the component and the parameters, passed as a
dictionary with parameter names as keys and arguments
as values. This behaviour is seen, for example, with the
StaticElmSkinDetector component where the pa-
rameter model is set. The component chain in Listing 1
will first perform Viola-Jones face detection, skin detec-
tion using a pre-trained Extreme Learning Machine (ELM)
model, connected blob extraction to find contiguous pixel
areas in the skin mask, and finally locating the hand using
the preceeding results. The actual processing is triggered
by a call to the process function. Finally, the visuali-
sation options are set so that the results computed by the
script are used to draw the location of the hand as a rect-
angle superimposed on the input frame. The result can be
seen in Fig. 2. The final lines demonstrate how the result
data can be accessed from Python side. In this case, the re-
sult would be a simple list of four integers, describing the
rectangle. The output, corresponding to Fig. 2 where a sin-
gle frame was used as input, would have been [267 194
63 122].
While the architecture gives the developer a lot of flexibility
with design, it places certain limitations on the data that can
be processed. Most importantly, since the video is scanned
from the beginning to the end multiple times, and the dif-
ferent components are run independently of one another, all
results must be preserved in the main memory over the en-
tire duration of the process. This can be a challenge if some
of the components produce large matrices for each frame in
the video, as the memory requirements can grow very large.
This may limit the length of videos that are processed with
certain components. In order to alleviate this effect, SLMo-
tion can transparently apply Zlib compression to matrices.
This is particularly effective in the case of binary matrices,
such as skin masks. It is not possible to give numerical es-
timates about maximum lengths of videos that can be pro-
cessed since the limit is affected by the amount of RAM
in the system, the resolution of the video, and most impor-
tantly the results that the components require. Components
that only provide data in the order of kilobytes per frame
can practically handle arbitrarily long videos. On the other

1http://www.numpy.org/

1887



Listing 1: A Python script example.
1 #!/usr/bin/python

3 from slmotion import *
import cv2

5

# create the component chain
7 setComponents([Component(’FaceDetector’),

Component(’StaticElmSkinDetector’,
9 {’model’: ’elm_skin_balanced.txt’}),

Component(’BlobExtractor’, {’minblobsize’: 1}),
11 Component(’HandLocator’, {’padding’: 5})])

13 process()

15 setVisualisation(’showFrame; showRect handlocation’)
outputVideo()

17

# this is a simple example of how to access the results from Python end
19 for i in range(len(framesource)):

print blackboard.get(’handlocation’, i)

Figure 2: The hand location as detected with the script in
Listing 1.

hand, with components that create dense and poorly com-
pressible matrices of size comparable to the input frame
size, the practical limit may, in the case of high definition
video input, be on the order of few minutes. Fortunately,
even in the worst case, it is usually possible to process any
video in pieces.
Also, since components expect random access to video
frames, running independent components in parallel within
one process is currently not supported, but luckily this prob-
lem can be overcome in corpus processing by the fact that
multiple separate processes can be run on parallel. Exper-
iments conducted with parallelisation within a single pro-
cess showed that the I/O overhead presented a major bot-
tleneck, choking performance. This is made worse by the
fact that in a lot of cases it is not possible to reliably fetch
a given, arbitrary frame from the video stream. Experience
has shown that the common video libraries tend to become

confused with exact frame indexing if seek to a random
frame is requested, so the only way to ensure that frame
numbering is consistent is by scanning the video from the
very beginning one frame at a time until the desired frame
has been reached. However, when processing video corpora
where several independent video files are to be processed
in a similar manner, the limitations with parallel processing
can be overcome by simply performing the computations in
a distributed manner. The scripts can be applied as such on
several independent processes, each processing one video
at a time, possibly on different computers on a computa-
tional cluster.

3.2. User interface
SLMotion comes with two user interfaces: a Command-
Line Interface (CLI) that is used by default and a graphi-
cal frontend for the command-line interface. The Graphi-
cal User Interface (GUI) offers a fast and convenient way
to use the program for analysing individual videos. If the
user has a Python script at hand – either his or her own, or
possibly from the community – all the user needs to do is to
select the script, the video file to process and any required
output files. The GUI has been implemented with the Qt
library and can be seen in Fig. 3.
Advanced users may find the command line interface con-
venient for tasks such as automatic corpus processing. The
CLI allows for external scripting, e.g., to run the same
processing task on multiple files in parallel on a com-
putation cluster. We have experimented with this set-
ting with our in-lab Condor cluster, consisting of some
100 workstations or 400 CPU cores. The process de-
scribed in (Karppa et al., 2011) was run in less than 24
hours for the entire Suvi corpus of the Finnish Sign Lan-
guage dictionary, consisting of some 5500 videos of dic-
tionary signs and example sentences. For example, in
order to run the script presented in Listing 1, supposing
that the script is stored as hand location test.py,
the user might create the image seen in Fig. 2 to a file

1888



Figure 3: The graphical user interface (GUI).

called hand location.png by analysing a file called
input.png by issuing the following command:

$ slmotion input.png \
--script hand_location_test.py \
-o hand_location.png

Interface like this should be familiar to UNIX users, making
scripting straightforward.

3.3. Interfacing with external systems
The default input format consists of either video files or im-
age sequences. SLMotion also supports Kinect recordings
via the OpenNI library, and the depth information is acces-
sible to the analysis components in the same way as the
ordinary RGB video data.
As to output, the standard way SLMotion stores features it
has extracted from the data is via comma-separated value
(CSV) files. If it should be necessary, no restrictions are in
place to prevent the user from making more complicated or
specialised file formats accessible through Python scripts.
The program can also perform various visualisations of the
input data at different stages of analysis, and the visualisa-
tions can be stored in a video file. These visualisations may
include, e.g., drawing binary maps of some low-level pro-
cessing stage, such as skin detection, or it may be the draw-
ing of circles around detected facial landmark points. Vi-
sualisations like this may provide a more intuitive access to
computational processes and their results. They may help
the researcher make sense of numerical results, or they can
be used to assist human inspection, perhaps by highlight-
ing important details of the video, such as blinks or other
detected events. Most importantly, they allow the human
observer to perform a sanity check on the key parts in the
video analysis used to produce the results: the computa-
tional methods are never perfect, but a human can often
tell immediately if misdetections or other erroneous results
have been produced, which may distort the numerical end
results.
The program also works in conjunction with ELAN2 (Wit-
tenburg et al., 2006) which is the standard annotation tool
in sign language research. The CSV files created by SLMo-
tion can be included in ELAN projects as such. In addition,
the program can create ELAN-compatible EAF annotation
files according to user-specified rules, typically depending

2http://tla.mpi.nl/tools/tla-tools/elan/

on the values of the features extracted. An example of au-
tomatically generated annotations with our visual silence
detector in ELAN can be seen in Fig. 4.
With minor modifications, it could be possible to adapt the
program to work as an ELAN video recogniser. However,
the recogniser API of ELAN places some limitations: the
EAF file format does not offer a support for directly link-
ing time series to the annotation files, making the numerical
data less useful than it could be. Also, while the recogniser
API can be used to emulate our GUI, transferring data be-
tween the programs is somewhat tedious, and the number of
annotation tiers that will be added must be fixed on ELAN
end while SLMotion could handle an arbitrary number of
tiers.

3.4. Component library
We provide a range of native C++ components with SLMo-
tion. Most of these components are directly related to
the applications listed in Section 4. We try to make
all the code we have used available to the public for
scrutiny. Most importantly, this includes our original work,
such as the hand-head occlusion detector described in (Vi-
itaniemi et al., 2013) and the head pose estimator described
in (Luzardo et al., 2013). The former attempts to de-
tect the locations where one of the hands occludes the
face, and the latter attempts to recover the head pose in
terms of yaw, pitch, and roll angles. These are available
as components called FaceOcclusionDetector and
HeadPoseEstimator, respectively. For the latter com-
ponent, pre-trained Support Vector Machine (SVM) models
are provided along with the program package.
We have also implemented ourselves some applications
of methods described in the literature. For example, as
parts of the method described in (Karppa et al., 2011),
we have implemented a variant of Kanade-Lucas-Tomasi
(KLT) tracker (Shi and Tomasi, 1994), building heavily on
the parts already implemented in the OpenCV library. The
component is available in the library as KLTTracker.
Within the same work, we also implemented a compo-
nent for tracking Active Shape Models (ASM) (Cootes et
al., 1995), trained to track the silhouettes of skin-coloured
blobs in the image corresponding to the hands and the head.
This component is available as AsmTracker. The li-
brary also includes auxiliary components, often needed as
a prerequisite by one of the more advanced components.
These include BlobExtractor, which extracts the con-
tiguous pixel regions, the shape of which is tracked by
the previously described AsmTracker component. Other
helper components include skin detectors based on Extreme
Learning Machines (ELM) (Huang et al., 2006), among
others.
We also provide wrappers for some pre-existing third party
libraries. These include components for performing face
detection using the OpenCV implementation of the Viola-
Jones cascade classifier (Viola and Jones, 2001). We also
have a component for facial landmark detection using the
flandmark library by Uřičář et al. (Uřičář et al., 2012). We
also have recently added support for generating synthetic
hand images with the LibHand (Šarić, 2011) library. This is
related to upcoming work on hand configuration estimation.
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The Python API also provides a lightweight interface for
users to create components of their own without having to
touch the source code of the program itself. Examples are
provided for getting started. This is a particularly appeal-
ing approach in the case of the simpler components, such as
the VisualSilenceDetector, which detects time se-
quences where no motion occurs by the means of difference
images. An example of the application of this component
can be seen in Fig. 4 where the video has been automati-
cally annotated for visual silence.

4. Applications

We have successfully applied the developmental versions
of SLMotion in several publications. The initial application
was with the method we presented in (Karppa et al., 2011)
and focused on kinematic analysis of hand and head move-
ments. The method was built on tracking interest points
with the KLT method (Shi and Tomasi, 1994), and simul-
taneously tracking the silhouette of skin-coloured regions
using ASMs (Cootes et al., 1995). The components used in
this work, including Viola-Jones face detection (Viola and
Jones, 2001), skin detection, and KLT and ASM trackers,
are included in the component library (cf. Section 3.4.). Al-
though the method may not be very robust, it can be used as
an example of how the modular structure of our framework
can be applied to such multistage processes.
The head movement data produced with SLMotion
for (Karppa et al., 2011) was used in (Puupponen, 2012)
to analyse the Finnish Sign Language head movements
from phonetic and linguistic perspectives. (Karppa et al.,
2011) was followed by an application of the same method
to footage that was simultaneously recorded with motion
capture equipment for reference. We performed correlation
and regression analysis on the data obtained by our method,
and it turned out to perform surprisingly well, despite ex-
pected deficits with recovery of depth information. These
results were presented in (Karppa et al., 2012).
More recently, we have implemented methods for hand-
head occlusion detection within our framework in (Vi-
itaniemi et al., 2013). There we describe a method based on
a fusion of local video properties and global hand tracking.
The method was tested for locating hand-head occlusions
with a corpus of videos from the Suvi, the on-line dictio-
nary of Finnish Sign Language (Finnish Association of the
Deaf, 2003), and produced promising results. The method
has also been used as part of our baseline solution to the
sign spotting benchmark setting, based on the aforemen-
tioned dictionary video material, described in (Viitaniemi et
al., 2014). The baseline solution builds on Dynamic Time
Warping (DTW) (Rabiner and Juang, 1993) matching of
spatial non-face skin distribution histograms. All experi-
ments were conducted with SLMotion.
We have also experimented with head pose estimation.
In (Luzardo et al., 2013) we described a method based on
SVMs for estimating the head pose in terms of yaw, pitch
and roll angles. The method was tested with the Point-
ing04 data set (Gourier et al., 2004). These methods are
also available in the component library.

5. Conclusion
With a public release, we hope to create a community of
users who contribute to the development, create new com-
ponents of their own, and share their scripts with us and
other users. We will actively continue to develop SLMo-
tion, adding new features as we go along with new work
within the context of computer analysis of sign language.
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