
Improvements to Dependency Parsing Using Automatic Simplification of Data

Tomáš Jelínek
Charles University

Prague, Czech Republic
Email: tomas.jelinek@ff.cuni.cz

Abstract

In dependency parsing, much effort is devoted to the development of new methods of language modeling and better feature settings. 
Less attention is paid to actual linguistic data and how appropriate they are for automatic parsing: linguistic data can be too complex 
for a given parser, morphological tags may not reflect well syntactic properties of words, a detailed, complex annotation scheme may 
be ill suited for automatic parsing.
In this paper, I present a study of this problem on the following case: automatic dependency parsing using the data of the Prague 
Dependency Treebank with two dependency parsers:  MSTParser and MaltParser.  I  will  show that  by means  of small,  reversible 
simplifications of the text and of the annotation, a considerable improvement of parsing accuracy can be achieved.
In order to facilitate the task of language modeling performed by the parser, I reduce variability of lemmas and word forms in the text.  
I modify the system of morphological annotation to make it more suitable for parsing. Finally, the dependency annotation scheme is 
also partially modified. All such modifications are automatic and fully reversible: after the parsing is done, the original data and  
structures are automatically restored. With MaltParser, I achieve an 8.3% error rate reduction.

Keywords: dependency parsing; text simplification; syntax

1.  Introduction
In  dependency  parsing,  a  slow  progress  in  parsing 
reliability  is  achieved  by  new  parsing  algorithms  and 
better feature settings. The actual linguistic data are much 
less analyzed. However, linguistic data and its annotation 
in dependency treebanks can be too complex for a given 
parser and better results can be achieved by simplifying 
data instead of developing new parsing algorithms.
In this paper, I present an experiment based on the data of 
Prague Dependency Treebank and two parsers, which has 
been  extensively  tested  on  these  data:  MSTParser  and 
MaltParser.  I  use  the  settings  of  the  parsers  which 
achieved  the  best  results.  I  automatically  modify 
(simplify) training,  test  and new data on several  levels: 
formal and lexical, morphological and syntactic. Each of 
these modifications slightly improves the accuracy of both 
parsers: MaltParser profits from these modifications more 
than MSTParser. At the end of the paper, I present some 
suggestions  how to  use  this  method for  improving  the 
parsing of other languages and treebanks.

2.  Prague Dependency Treebank
The  Prague  Dependency  Treebank  (Hajič,  2006)  is a 
corpus of Czech journalistic texts, manually annotated on 
several levels. It  comprises 1.5 million tokens annotated 
on  the  level  of  surface  syntax,  the  annotation  being 
controlled  by  a  special,  very  detailed  and  linguistically 
elaborated dependency scheme,  based on the  traditional 
Czech  dependency  syntax.  In  the  PDT  dependency 
syntactic  structure  of  a  given  sentence,  every  token 
(including punctuation) depends either on another token, 
or on an external, artificial root of the dependency tree. 

Moreover,  every  token  is  assigned  a  surface  syntactic 
function: basic (subject, object, attribute etc.), or auxiliary 
(auxiliary  verb,  preposition,  coordinating  conjunction 
etc.). Additionally, two kinds of non-dependency relations 
among elements of syntactic structure are distinguished, 
too: coordination and apposition.

Figure 1: Example of a sentence structure in PDT.

73



Figure 1 shows a complex example of such a syntactic 
structure: Pořadatelem je EKULT – nadace pro ekologii a 
kulturu ‘The  organizer  is  EKULT  –  foundation  for 
ecology  and  culture’.  The  syntactic  functions  Pred 
(predicate of the main clause), Pnom (nominal part of the 
verbonominal predicate),  Sb (subject) and  Atr (attribute) 
are basic functions; AuxP (preposition), Apos (apposition) 
and  Coord (coordination)  are  auxiliary  functions.  The 
suffixes  _Co and  _Ap denote  nodes  in  coordination  or 
apposition relation.

2.1.  Data cleanup
I used the version 2.5 of PDT (since then, PDT version 3.0 
has been published), i.e. data which have been used for 10 
years and thoroughly tested and revised. However, when I 
tested a rule-based module that focused on some specific 
linguistic phenomena, I noticed that some structures were 
annotated inconsistently, for example the word líto ‘sorry’ 
in structures as je mi líto ‘I am sorry’ was annotated in 6 
occurrences  as  Pnom,  in  3  as  Adv.  To  correct  these 
discrepancies,  I  devised  a  simple  rule-based  automatic 
tool  to  find  probably  incorrect  structures  and  incorrect 
syntactic  annotation.  Automatically  identified suspicious 
sentences were then manually revised by an independent 
linguist (not the author of this paper). Only about 0.25% 
of  nodes  were  corrected.  These  corrections  will  be 
hopefully incorporated in a later version of PDT.

3.  Dependency parsers
I  experimented  with  two  parsers  yielding  the  best 
published results on PDT: MaltParser (Nivre et al., 2006) 
and  MSTParser  (McDonald  et  al.,  2005).  I  used  the 
settings which achieved the best accuracy on Czech (both 
unpublished). I could perhaps have obtained better results 
by  tweaking  these  settings  after  every  modification  of 
data, but my aim was primarily to improve parsing results 
by modifying training and test data. More parsers will be 
tested in the near future.
Both  parsers  tested  use  automatically  morphologically 
annotated text for training and for parsing.

3.1.  MaltParser
The  best  results  for  MaltParser  to  my knowledge  have 
been  achieved  by  Daniel  Zeman (86.1% UAS /  79.8% 
LAS) with LibSVMlearner and  stacklazy  algorithm. The 
parser uses all the values of the positional morphological 
tag (POS,  number,  gender,  case etc.)  as single features. 
Both forms and lemmas are available to the parser (which 
uses CoNLL format of data).

3.2.  MSTParser
The  best  results  for  the  MSTParser  were  obtained  by 
Miroslav Spousta (85.9% UAS / 78.8% LAS). The parser 
uses only reduced morphological tags: POS and case or 
POS and subtype of POS (for POS without case) as they 
were proposed for Czech parsing by Collins et al. (1999). 
Wider  tags  (including,  e.g.,  gender  and  number) 

paradoxically  decrease  the  parser’s  accuracy.  A simple 
MST format is used, where either forms, or lemmas can 
be made available to the parser (the original setting uses 
forms, I use lemmas in some of the experiments).

4.  Data simplification
Syntactically  annotated language  data  in  a  treebank are 
very complex, tens of thousands of different word forms 
and lemmas (in the case of PDT) combine with a detailed 
syntactic annotation, which uses tens of possible syntactic 
functions  and  a  great  variety  of  dependency  relations 
(including non-projective dependency relations). Even for 
a human annotator, to annotate a new text according to a 
300-page annotation manual is demanding. For stochastic 
parsers, such a task is even more challenging, as they do 
not  ‘understand’  the  text  and  syntactic  and  semantic 
relations between words. The parsers have to guess what 
information contained in the annotated text is important 
and reliable, and what information it can discard. Often, it 
guesses  correctly,  but  the  complexity  of  the  data 
necessarily leads to errors.
The task of the parsers can be effectively made easier by 
simplifying  language  data,  by  training  parsers  to  work 
with a simplified text and by parsing new, simplified text. 
After the parsing is done, all information discarded before 
parsing  can  be  restored  from  a  backup  file.  The 
modifications  are  performed  on  several  levels:  my 
software  tool  simplifies  forms  and  lemmas,  modifies 
morphological  annotation,  changes  multiword 
expressions, and simplifies syntactic structure.

4.1.  Reduction of forms and lemmas variability
To  parse  correctly,  parsers  cannot  rely  on  morphology 
(POS, case, gender etc.) only, they need to use forms or 
lemmas of words. In the necessarily limited training data, 
however, it can only encounter a small fraction of lemmas 
of a given language, a large part of the words the parser 
encounters  in  a  new  text  are  ‘out-of-vocabulary’. 
Moreover, even if a word does occur in the training data, 
most of them will occur only once or twice, which is not 
enough to base a reliable language model on. It is possible 
to  partially  remedy  these  shortcomings  of  natural 
language data by replacing words with identical syntactic 
properties by one representative. Consider following two 
sentences:
Pět  lidí  jelo  s  Klementem  Gottwaldem  za  Stalinem  do  
Moskvy.
‘Five people went with Klement Gottwald to meet Stalin 
in Moscow.’ 
Sedm lidí jelo s Václavem Havlem za Walesou do Varšavy.
‘Seven people went with Václav Havel to meet Walesa in 
Warsaw.’
Here, both sentences have the same syntactic structure and 
morphological properties, but half of the words differ in 
forms and lemmas. In my experiment, I define groups of 
words with identical syntactic properties and replace them 
by  one  representative  for  each  group,  for  example 

74



numbers as  five,  six,  seven,  eight ... are replaced by  five; 
first  names  as  Klement,  Václav,  Vladimír,  Jan ...  are 
replaced by  Jan;  names of cities like  Warsaw,  Moscow, 
Prague,  Paris ... are replaced by Prague and so on. Both 
previously presented sentences will be transformed to the 
following sentence:
Pět lidí jelo s Janem Novákem za Novákem do Prahy.
‘Five  people  went  with  Jan  Novák  to  meet  Novák  in 
Prague.’
On the whole, members of some 80 groups of words are 
found  and  replaced,  lowering  the  number  of  different 
forms  in  the  training  data  by  19%.  More  details  of 
experiments with forms and lemmas simplification can be 
found in (Jelínek, 2013).

4.1.1.  Data sources for the simplification of forms and 
lemmas 

Most  of  the  lists  of  words  with  the  same  syntactic 
properties  used  in  the  data  simplification  method  were 
taken from existing language databases. Many such lists 
are  used  in  a  project  of  rule-based  morphological 
disambiguation  (Petkevič,  2006).  Some  properties  of 
verbs  were  derived  from  a  valency  dictionary:  PDT-
VALLEX (Urešová, 2009).
A few  lists  of  words  were  created  manually  using  a 
billion-word  corpus  of  written  Czech:  corpus  SYN 
(www.korpus.cz).

4.2.  Adapting morphological annotation to 
parsing

The morphological annotation used in PDT (Hajič, 2004) 
is  based  on  traditional  Czech  morphology,  it  was  not 
designed for  the  purposes of  parsing.  It  is  adequate for 
some  categories,  but  other  categories  are  ill  suited  for 
parsing, they either contain too much information, or are 
confusing  for  the  parser.  Pronouns,  for  example,  are 
divided  into  many  semantic  subclasses  which  do  not 
reflect syntactic properties: the subcategory of indefinite 
pronouns  contains  both  words  as  někdo  ‘someone’ and 
něco  ‘something’  which  act  as  syntactic  nouns  in  a 
sentence  (they  mostly  have  the  function  of  subject  or 
object),  and words as  nějaký  ‘some’,  jakýsi  ‘a  kind of’ 
which  act  as  syntactic  adjectives  (usually  having  the 
function of attribute). The morphological annotation can 
be  automatically  modified  to  remove  irrelevant 
morphological  information  and  add  new  distinctions 
important  for  parsing,  as  is  the  distinction  between 
syntactic nouns and syntactic adjectives.

4.3.  Simplification of syntactic annotation
The  system  of  surface  syntactic  annotation  in  PDT  is 
detailed and relatively  complicated.  In  the  treebank,  84 
different syntactic functions are used (84 combinations of 
basic syntactic functions and the suffix for coordination / 
apposition,  e.g.  Sb,  Obj,  Obj_Co,  Atr_Ap),  17  such 
combinations occur less than 10 times in all the data (the 
most frequent function, Atr, occurs 389 000 times).
For the parser, it is impossible to learn anything from the 
data  about  such  rare  cases.  Therefore,  it  is  possible  to 

improve  parsing  results  by  lowering  the  number  of 
syntactic  functions  in  the  training  data:  a  part  of  these 
simplifications  can  be  restored  after  parsing.  In  my 
experiment, for example, I completely removed combined 
syntactic functions (AtrAdv, see below) and I unified the 
suffixes for coordination and apposition.

4.3.1.  Combined syntactic functions
In  PDT,  combined  syntactic  functions  like  AtrAdv or 
ObjAtr are  used  to  express  structural  ambiguity.  Such 
functions are  not  widely used in  the data,  therefore the 
parser  is  unable  to  learn  to  use  them  correctly:  when 
parsing  test  data,  the  parser  fails  to  identify  these 
functions  in  90% –  100% cases.  Completely  removing 
these functions from the data makes it impossible for the 
parser  to  use them (we lose  these  0% – 10% correctly 
identified combined functions), but the parser cannot use 
these  functions  in  the  wrong  context  and  it  has  fewer 
functions to learn.

4.3.2.  Suffixes of syntactic functions
The  use  of  suffixes  _Co (coordination)  and  _Ap 
(apposition) is fully determined by a superordinate node 
(Coord, Apos), so it is possible to unify these suffixes for 
training and parsing and decrease in this way the number 
of functions (combinations) the parser has to work with. 
The suffixes can be restored using a rule-based module 
after the parsing is done. This simplification also slightly 
improves parsing results.

4.4.  Simplification of multiword expressions
Another way of simplifying language data for the parser is 
the  modification  of  multiword  expressions  and,  more 
generally, of frequent expressions with a fixed syntactic 
structure. There is one condition though: only one node in 
this structure can be further determined by other nodes. 
Such  a  structure  can  be  replaced  by  one  token,  a 
representative  of  the  whole  expression.  In  the  post-
processing phase, the original expression will be restored 
with its syntactic structure (which is known).
A typical example of such multiword expressions in PDT 
are  (some)  compound  prepositions.  The  annotation 
manual lists some 70 compound prepositions, but only a 
few are systematically annotated as such in the data, for 
example  na základě  ‘based on’,  v rámci  ‘within,  in the 
frame  of’.  Morphologically,  these  prepositions  are 
composed of a preposition and a noun, and parsers tend to 
treat them as other cases of prepositional phrases. These 
expressions are then replaced by one representative of the 
whole structure, e.g. na_základě, v_rámci, in both training 
and new data, and syntactic structure in the training data is 
modified appropriately. This way, the parser cannot make 
mistakes in such a structure. After the parsing is done,  the 
structure is correctly restored.
I treat  similarly some named entities such as  Frankturt  
nad Mohanem ‘Frankfurt am Main’, Ústí nad Labem ‘Ústí 
upon Elbe’.  There are a few problematic co-occurrences 
of  punctuation  and  words,  which  benefit  from  this 
approach, too. In Czech, the conjunction -li ‘if’ is attached 

75



to the verb, as in  Je-li podnik v likvidaci, musí se dražit. 
‘If the  company is in liquidation, it must be auctioned.’ 
Tokenization divides Je-li into three elements Je (verb ‘to 
be’),  -  (hyphen)  and  li (conjunction).  The  presence  of 
punctuation between the verb and the conjunction seems 
to confuse the parsers, because they parse sentences with 
this special conjunction much worse than others. If parsers 
work  with  - and li  as  one  unit,  they  resolve  these 
structures more easily.

4.5.  Rule-based modifications of syntactic 
structures

For several syntactic phenomena, a more complex, rule-
based modifications  of  syntactic  annotation or  structure 
were  necessary.  In  Czech  syntax,  for  example,  no 
complement of the verb být ‘to be’ can have the syntactic 
function of object (Obj). Several special constructions in 
PDT  are,  however,  annotated  using  the  function  Obj 
dependent on the verb  být, for example  je mi/Obj líto ‘I 
am sorry’ and je mu/Obj 30 let ‘he is 30 years old’. These 
special cases are enumerated in the annotation manual and 
are  easy  to  understand  for  a  linguist.  For  stochastic 
parsers, it is confusing. When creating its language model, 
the parser learns that it is actually possible to assign the 
function  Obj  to a node dependent on the verb  být  and it 
then  erroneously  assigns  this  function  on  many  other, 
improper occasions.
Since  the  occasions  when  Obj can  be  assigned  in  this 
context are well defined, we can completely eliminate all 
these  cases  in  the  training  data,  and  thus  we  simplify 
language  modelling  for  the  parser  and  we  can  restore 
these functions by a rule-based module after the parsing is 
done.

5.  Results
Many experiments with simplifications and modifications 
of data were tried. In two tables, I present a brief summary 
of the tests, performed with MaltParser and MSTParser on 
d-test  data  of  PDT  2.5.  I  present  both  unlabeled 
attachment  score  (UAS)  and  labeled  attachment  score 
(LAS).  The  modifications  of  parsing  and  test  data  are 
incremental  (modified data  from a  previous  experiment 
are used in the subsequent one). In the first step, I present 
the results obtained with original data and parser settings 
(by D. Zeman /  M. Spousta).  In  the following one, the 
same experiments are performed on the data with minor 
data corrections. The next step presents experiments with 
data with the simplification of word forms and lemmas. 
Morphological  annotation  better  adapted  to  parsing  is 
used on this data. The final step includes the modifications 
of syntactic annotation and of multiword expressions.
Sometimes, the increase in parser accuracy is  below the 
statistical error,  but all  the modifications on every level 
have  been  tested  several  times  with  or  without  other 
changes,  and  they  consistently  improved  parser's 
accuracy. Not all data modifications, however, resulted in 
accuracy  increase.  Some  simplifications  of  syntactic 
structure,  for  example,  even  decreased  parsers 

performance,  therefore  they  were  discarded  from  the 
simplification process.

5.1.  MaltParser results
Table 1 presents the results (UAS / LAS) of MaltParser 
with various levels of data simplifications on d-test data of 
PDT 2.5.

MaltParser UAS / LAS

original setting 86.11% / 79.80%

data clean-up 86.12% / 79.86%

simplification of forms and lemmas 86.44% / 80.58%

modification of morph. annotation 86.79% / 81.07%

modification of syntactic annotation 86.90% / 81.35%

Table 1: Results of the experiments with MaltParser

The  largest  contribution  to  accuracy  increase  in  the 
experiment  was  brought  by  the  simplification  of  word 
forms  and  lemmas  (reduction  of  forms  /  lemmas 
variability by approx. 20%). All other modifications led to 
a much smaller increase.

5.2.  MSTParser results
Table 2 presents the accuracy of MSTParser with various 
levels of data simplifications on d-test data of PDT 2.5.

MSTParser UAS / LAS

original setting 85.93% / 78.80%

data clean-up 85.94% / 78.83%

simplification of forms and lemmas 86.12% / 79.00%

modification of morph. annotation 86.29% / 79.25%

modification of syntactic annotation 86.31% / 79.45%

Table 2: Results of the experiments with MSTParser

MSTParser benefits much less from the presented method 
than MaltParser. The increase in accuracy of MSTParser 
in most  of the experiments is  two (UAS) or four  times 
(LAS) lower.

6.  Portability to other languages
The  procedure  presented  in  the  paper  can  be  easily 
adapted to other languages and treebanks. The aim is to 
simplify  language  data  as  much  as  possible,  without 
changing anything important for parsing. The best way is 
to use existing language  resources,  for  example lists  of 
words that are semantically similar and for which same 
syntactic properties can be expected.

6.1.  Simplification of forms and lemmas
Most  of  these  groups  of  words  will  be  found  among 
nouns. For example all female first nouns (Mary,  Susan, 
Helen) can be found and replaced by one substitute (e.g. 

76



Mary),  and similarly  for  names of towns, states,  rivers, 
months,  days  of  the  week  and  so  on.  Some groups  of 
adjectives  with  the  same  syntactic  properties  can  be 
probably found as well (e.g. English, French, German). A 
good target for the simplification of forms and lemmas are 
numerals: most of the subclasses of numerals (cardinals, 
ordinals,  fractions...)  can  be  simplified,  replacing  a 
potentially unlimited number of forms and lemmas by a 
few (representing each of the subclasses).

6.2.  Phonetic variants
If your parser settings use word forms, you should also 
replace all the variants of words influenced by phonetic 
context  by  their  basic  form  (e.g.  a / an;  in  Czech,  for 
example, two variants of the preposition v ‘in’ exist: v and 
ve,  the  variant  ve being used when it  is  followed by  a 
word starting with consonants v / f or a consonant cluster: 
v Praze /  ve Varšavě: ‘in Prague’ / ‘in Warsaw’; the form 
ve will be replaced by v).

6.3.  Modification of morphological annotation
Moreover,  it  should  be  analysed,  to  what  extent  your 
system  of  morphological  tagging  meets  the  needs  of 
syntactic parsing. As shown above in my brief analysis of 
the morphological tags in PDT, such systems can be either 
too detailed, or lack information about important syntactic 
properties. An appropriate modification could improve the 
results of parsing.

6.4.  Multiword expressions
If multiword expressions with always the same syntactic 
structure can be found in your treebank (a structure, where 
only the head node can be determined by other nodes), 
such  as  compound prepositions  or  idioms with  unusual 
word order, you can also replace these expressions by one 
proxy  node,  and  restore  the  original  structure  after  the 
parsing. In this way, the parser will not have to learn these 
particular structures.

6.5.  Software tool
Technically, a simple software tool should be created to 
modify language data. It should work in two modes: one 
for the training data, in which it can also modify syntactic 
structures (simplify it,  when needed),  and the other one 
for  new  and  test  data,  when  it  can  work  only  with  a 
morphologically annotated and lemmatized text, and it has 
to backup all text changes, to be able to restore the text 
after  the  parsing  is  done.  Correct  functioning  of  the 
software tool can be tested by simplifying (modifying) all 
training  and  testing  data  and  then  restoring  them:  the 
original text must be preserved.

7.  Conclusion
In  this  paper,  I  presented  a  simple  method  for  the 
improvement  of  dependency  parsing,  without  having to 
change  the  settings  of  parsers.  The  method  consists  in 
careful automatic simplification of data at multiple levels. 
Discarded linguistic information is stored in a backup file 

and is restored after parsing is done. In my experiment, I 
reduce the variability of lemmas and forms in the text, I 
adapt morphological annotation for the needs of parsing, I 
simplify  multiword  expressions  and  in  some  cases  I 
modify syntactic structure. The most efficient part of this 
method has proved to simplifying of forms and lemmas. 
The method described in the paper is language-dependent, 
but it can easily be applied to other languages, especially 
when lists of words with identical syntactic properties are 
available.

8.  Acknowledgements
This research was supported by grant no. 13-27184S of 
the Grant Agency of the Czech Republic.

9.  References
Collins, M., Hajič, J., Ramshaw, L., Tillmann, C. (1992): 

A statistical  parser  for  Czech.  In  Proceedings  of  the 
37th Annual Meeting of  the ACL.  College Park,  MD, 
USA, pp. 505--512.

Hajič,  J.  (2004):  Disambiguation  of  Rich  Inflection, 
Computational  Morphology  of  Czech.  Karolinum, 
Charles University Press, Prague, Czech Republic.

Hajič, J. (2006): Complex Corpus Annotation: The Prague 
Dependency Treebank.  In Šimková M. (Ed.),  Insight  
into  the  Slovak  and  Czech  Corpus  Linguistics. Veda, 
Bratislava, Slovakia, pp. 54--73.

Jelínek,  T.  (2013):  Improving  Dependency  Parsing  by 
Filtering Linguistic Noise. In  Proceedings of the 16th 
International Conference Text, Speech, and Dialogue,  
TSD  2013.  LNCS,  Springer  Verlag,  Heidelberg, 
Germany, pp. 288--294.

McDonald, R., Pereira, F., Ribarov, K., Hajic, J. (2005): 
Non-projective  Dependency  Parsing  using  Spanning 
Tree  Algorithms.  In  Proceedings  of  HLT/EMNLP, 
Vancouver, Canada, pp. 523--530. 

Nivre, J., Hall, J., Nilsson, J. (2006): MaltParser: A Data-
Driven  Parser-Generator  for  Dependency  Parsing.  In 
Proceedings  of  the  fifth  international  conference  on 
Language  Resources  and  Evaluation  (LREC2006). 
Genoa, Italy, pp. 2216--2219.

Petkevič,  V.  (2006):  Reliable  Morphological 
Disambiguation  of  Czech:  Rule-Based  Approach  is 
Necessary.    In:  Šimková  M.  (Ed.),  Insight  into  the  
Slovak and Czech Corpus Linguistics. Veda, Bratislava, 
Slovakia, pp. 26--44.

Urešová, Z. (2009): Building the PDT-VALLEX valency 
lexicon.  In  On-line  Proceedings  of  the  fifth  Corpus 
Linguistics Conference, University of Liverpool, UK.

77


	1.  Introduction
	2.  Prague Dependency Treebank
	2.1.  Data cleanup

	3.  Dependency parsers
	3.1.  MaltParser
	3.2.  MSTParser

	4.  Data simplification
	4.1.  Reduction of forms and lemmas variability
	4.1.1.  Data sources for the simplification of forms and lemmas 

	4.2.  Adapting morphological annotation to parsing
	4.3.  Simplification of syntactic annotation
	4.3.1.  Combined syntactic functions
	4.3.2.  Suffixes of syntactic functions

	4.4.  Simplification of multiword expressions
	4.5.  Rule-based modifications of syntactic structures

	5.  Results
	5.1.  MaltParser results
	5.2.  MSTParser results

	6.  Portability to other languages
	6.1.  Simplification of forms and lemmas
	6.2.  Phonetic variants
	6.3.  Modification of morphological annotation
	6.4.  Multiword expressions
	6.5.  Software tool

	7.  Conclusion
	8.  Acknowledgements
	9.  References

