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Abstract 

Phone-aligned spoken corpora are indispensable language resources for quantitative linguistic analyses and automatic speech systems. 
However, producing this type of data resources is not an easy task due to high costs of time and man power as well as difficulties of 
applying valid annotation criteria and achieving reliable inter-labeler’s consistency. Among different types of spoken corpora, 
conversational speech that is often filled with extreme reduction and varying pronunciation variants is particularly challenging. By 
adopting a combined verification procedure, we obtained reasonably good annotation results. Preliminary phone boundaries that were 
automatically generated by a phone aligner were provided to human labelers for verifying. Instead of making use of the visualization of 
acoustic cues, the labelers should solely rely on their perceptual judgments to locate a position that best separates two adjacent phones. 
Impressionistic judgments in cases of reduction and segment deletion were helpful and necessary, as they balanced subtle nuance 
caused by differences in perception. 
 
Keywords: Inter-pausing unit, reduced words, forced alignment, human verification 

 

1. Introduction 
Spoken corpora with signal-aligned phone boundary 
annotation are indispensable language resources for 
quantitative speech analyses and automatic speech 
systems. Well-annotated spoken corpora in various 
languages have proved to be useful for studying 
pronunciation variants and developing automatic speech 
systems, for instance the Switchboard Corpus, the 
Buckeye Corpus, the Spoken Dutch Corpus, and the 
Corpus of Spontaneous Japanese (Greenberg et al., 1996; 
Pitt et al., 2005; Raymond et al., 2002; Oostdjik, 2000; 
Maekawa, 2003). Moreover, knowledge about speech 
variability has successfully improved recognition error 
rates of ASR systems (Liu, 2004; Tsai et al., 2007). This 
type of phone-aligned data was also used for evaluating 
the performance of automatic segmentation systems 
(Wang et al., 2008).  
However, the problem with producing phone-aligned 
spoken corpora lies not only in the high cost of time and 
man power, if the labeling is purely done by hand. It is 
also difficult to assess the applicability and granularity of 
annotation criteria and to achieve high inter-labeler’s 
consistency. In the case of automatic processing such as 
applying a recognizer or an aligner to produce boundary 
alignment, the equivalence to human perceptual judgment 
is often doubtful. In particular, the thresholds for 
recognizing segment deletion based on acoustic features, 
which are adopted by system developers, may not always 
correspond to those set and shared by human (Wester et 
al., 2001).  
This is the main reason why we adopted a combined 
verification approach to construct phone boundary 
annotation for a conversational speech corpus. Phone 

boundaries that were automatically generated by an 
aligner were verified by human labelers. The labelers did 
not exactly label the phone boundary, but to give 
judgments whether the separation of two adjacent phones 
is perceptually acceptable for them. New boundaries were 
only assigned, when the labelers disagreed with the 
original locations and were in the opinion that the new 
ones can better separate the two adjacent phones. 
The organization of this paper is as follows. Section 2 
describes the dataset and the annotation procedure. The 
principles and results of the verification experiment are 
presented in section 3, followed by a general discussion 
and conclusion. 

2. Automatic forced alignment 

2.1 Dataset 
The 42-hour Taiwan Mandarin Conversational Corpus 
(the TMC Corpus)1 has been constructed at the Institute 
of Linguistics, Academia Sinica (Tseng, 2013) accounting 
for three different corpus scenario settings (free 
conversation, task-oriented and map task dialogues). The 
TMC Corpus contains 500K orthographically transcribed 
Chinese words. Speaker turn boundaries are annotated in 
PRAAT format by the transcribers (Boersma & Weenink, 
2012). A dataset of 3.5 hours of speech extracted from the 
TMC Corpus was used for the present study. It consists of 
702 long speaker turns produced by 7 male and 9 female 
speakers. Boundaries of syllables and individual instances 
listed in Table 1 are annotated in PRAAT, which are used 
later as cues for segmenting the original speech data into 

                                                           
1 Details about the TMC Corpus please refer to the official 
website http://mmc.sinica.edu.tw. 
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inter-pausing units. 

Types Total 
Ordinary syllables 52,314
 
Silence 1,465
Speech-like paralinguistic sounds:    

laughing while speaking 
1,408

Noise-like paralinguistic sounds:                       
inhaling, breathing, coughing, etc. 

3,108

 
Syllable fragments 601
Foreign words 57
Fillers (with one or more than one syllables) 428
Discourse particles (originated from Mandarin 
Chinese or other Chinese dialects) 

1,410

Total 60,791
Table 1: Data overview.  

2.2 Phone boundary annotation: The procedure 
As discussed in the introduction session, both automatic 
generation and human labeling have advantages and 
disadvantages. The procedure we suggest in this paper 
tries to reduce the cost and to raise the level of agreement 
in the sense of human perception. The procedure is 
illustrated in Figure 1. Since we chose long speaker turns, 
a pre-segmentation of the sound files into smaller units 
was necessary. Silent pauses, speech-like and noise-like 
paralinguistic sounds that were marked in our dataset 
were used as segmentation cues to obtain inter-pausing 
units (IPU) (Bigi & Hirst, 2012; Schuppler et al., 2011).  

 

Figure 1: A combined annotation procedure. 

IPUs that did not contain Mandarin Chinese at all, but 
dialects spoken in Taiwan, were excluded from our final 
dataset. As a result, 5,276 IPUs were used for the phone 
boundary verification experiment. The average length of 
IPUs is 10.4 syllables, approximately equivalent to seven 
words in Mandarin Chinese. Making use of the sound and 
the transcript, we first ran the automatic phone aligner to 
obtain an initial version of phone boundaries. 
Subsequently, the boundaries were verified by human 
labelers. After a satisfactory rate of boundary deviation 

between the labelers was achieved, the final dataset was 
automatically derived from the verified boundaries with 
no human intervention. 

2.3 Phone set 
Acoustic models trained and decoded in continuous 
speech recognition systems developed for Mandarin 
Chinese are often based on INITIAL and FINAL 
components (Tsai et al., 2007). INITIAL and FINAL 
correspond to onset and rhyme in phonological terms. 
That is, a FINAL may consist of a nucleus and a coda 
consonant, implying a higher level than the level of 
phones. If the acoustic information is learned or trained 
from this level, it would not be possible to account for 
pronunciation variant in extremely reduced words such as 
those with a deleted nucleus, but the coda is present. Thus, 
we decided to use phone as the decoding unit. Previous 
corpus-based study on syllable contraction in Mandarin 
conversational speech showed that the reduction of 
multi-syllabic sequences resembles a spectrum of reduced 
phonetic representations with syllable merger as its target 
form (Tseng, 2005). Applying the general contraction 
rules, a considerable number of pronunciation variants 
involving (at least) disyllabic words that are reduced to 
different degrees should be predictable based on the 
canonical form. Ranging from consonant deletion, nuclei 
merging, to syllable merger, these pronunciation variants 
that are often found in conversational speech, cannot be 
properly taken into account, if only INITIAL and FINAL 
are distinguished for syllables. 
Conventionally, a Mandarin Chinese syllable has the form 
of CGVX with C denoting a consonant onset, G a glide, V 
a vowel, and X a consonant coda (Duanmu, 2000; Ho, 
1996). A set of 22 consonants presented in terms of the 
place of articulation in Table 2 can occupy the onset 
position, except for //. Only the nasals /n/ and // can 
appear in coda position. Our inventory set also contains 
two glides /j/ and /w/, and 15 vowels including 
monophthongs and diphthongs /i, , u, ¨, y, a, o, ´, e, ‘, ai, 
ei, au, ou, ye/. 

Bilabial   p ph m  

Labiodental f     

Dent-alveolar  t th n l 
Alveolar  s  ts   tsh   
Retroflex ʂ  tş   tşh  Ω 
Alveolo-palatal   t   th   

Velar x k  kh   

Table 2: Mandarin consonants. 

2.4 Training a phone aligner 
To construct the phone aligner, we first built acoustic 
models for individual phones found in ordinary syllables. 
For the other instance types listed in Table 1, we built 
acoustic models for each of them, except for fillers and 
discourse particles, because their phonetic representations 
can be categorized into distinct types systematically. For 
fillers, we accounted for three different acoustic models 
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by considering the nasality and the length in syllables: 
two filler types for monosyllabic instances, one with and 
one without a nasal coda, and one type for multi-syllabic 
fillers irrespective of the presence of a final coda. Four 
acoustic models were trained for discourse particles. One 
was applied to high frequency particles; one to particles 
originated from a Chinese dialect (Southern Min) that is 
dominantly spoken in Taiwan; and two to Mandarin 
Chinese particles that were grouped together according to 
the degree of similarity in syllable structure. 
As a result, 51 tri-states acoustic models were used for 
training our aligner with the HTK toolkit (Young et al., 
2006). The models, facilitated by the already annotated 
syllable boundaries, were trained at a frame shift of 5ms 
and a window length of 15ms, where for each frame, 13 
MFCCs (the mel-scaled cepstral coefficients C0-C12) and 
their first and second order derivatives (39 features) were 
calculated. For the current phone aligner, fundamental 
frequency is not taken into account, although pitch-related 
features may play an important role in understanding and 
processing Chinese lexical tones. With a frame shift of 
5ms and no skipping three emitting states of models, the 
phones will be assigned a minimum length of 15ms within 
manually pre-determined syllables. For the verification 
experiment, the results of applying 5,276 IPUs of data to 
our phone aligner were converted to a PRAAT readable 
format (Boersma & Weenink, 2012) with the transcript 
information on one tier and the aligned phone boundaries 
on the other, as illustrated in Figure 2. 

 
Figure 2: PRAAT format for human verification. 

3. Human verification of boundaries 
The 3.5-hour speech dataset contains in total 133,339 
phones. We used 10% for the training phase and 90% for 
the evaluation phase. The summary in terms of phone 
categories is given in Table 3. Six labelers with prior 
experiences with speech data annotation were grouped 
into three pairs (A, B, and C). We ran a training phase to 
acquaint our labelers with the verification criteria. The 
training data was divided into three subsets. Each subset 
was verified by two labelers in the same group, i.e. all data 
were examined by two labelers. Mutual discussion among 
labelers was allowed in the training phase to achieve a 
common consensus. The threshold we set for a 

satisfactory inter-labeler’s consistency was that 85% of 
the verified phone boundaries should not deviate more 
than 20ms within each pair of labelers. The labelers did 
not start with the actual experiment until they achieved 
the consistency threshold. In the evaluation phase, no 
discussion was allowed. The entire experiment period 
including the training and evaluation phases last three 
months. 
 

Phone categories Occurrences 
Monophthongs 39,097 
Nasals 17,951 
Glides 15,369 
Plosives 14,685 
Diphthongs 13,218 
Retroflex 9,021 
Affricates 7,351 
Filler+para. sounds 7,067 
Approximant 3,095 
Fricatives 2,995 
Lateral 2,080 
Particles 1,410 
Total 133,339 

Table 3: Phones in the dataset 

3.1 Phone boundary verification 

3.1.1. Separation of two adjacent phones 

The essential, but also the most difficult, issue for labeling 
phone boundaries in natural speech is the transition from 
one phone to the other. No concrete rule was instructed to 
the labelers how they should deal with the inter-segmental 
transition. They should only rely on their perceptual 
judgments to decide on a location that best separates two 
adjacent phones. Thus, visualized acoustic cues such as 
pitch, spectrogram and intensity information were not 
provided to the labelers. They made their decisions based 
on the listening only. On the one hand, the perceptual 
judgment of the labelers served as additional modification 
to the acoustically based alignment result. On the other 
hand, as our data have been verified by two labelers, the 
perceptual discrepancy between the labelers is regarded as 
a kind of balance of individual perceptual differences.  

3.1.2. Allophones 
When words were correctly transcribed in the text, but the 
labelers with a sensitive hearing perceived allophonic 
differences, they should ignore the allophonic variation, 
as it does not affect the word meaning. On the one hand, it 
was not the goal of this study to do narrow transcription. 
On the other hand, it would be difficult to keep up a high 
inter-labeler consistency rate, if allophonic differences in 
the dataset are to be considered consistently.   

3.1.3. Marking deletion 
What should the labelers do, if phones that should appear 
in the canonical form are not heard in the speech? In this 
case, the words were correctly transcribed, but some of 
the phones were audibly not present. This is a known, 
difficult problem labelers are often encountered with, 
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when they are to determine phone boundaries in natural, 
continuous speech such as conversational speech. To 
preserve all phone labels generated by the forced aligner 
for later automatic processing and result analysis, as well 
as to reduce the effort of locating a boundary for 
non-existing phones, we designed a function in PRAAT to 
help labelers mark deletion. If a phone was absent for 
labelers, they were instructed to use the Deletion function 
that automatically minimize absent phones to an interval 
of 5ms, as shown in the very bottom of the menu in Figure 
2. Using this function, the deletion is annotated without 
spending unnecessary time for determining the extremely 
difficult boundaries.  
The examples shown in Figure 3a-c are three variants of 
the disyllabic word ranhou /ʐan xou/ (‘then’). Figure 3a 
shows an instance of ranhou with all phones present. In 
Figure 3b, the coda nasal /n/ was marked as deleted by the 
labelers, whereas Figure 3c shows both the nasal coda of 
the first syllable and the onset of the second syllable are 
not present.  
 

 

Figure 3a: No deletion in ranhou /ʐan xou/. 

 

Figure 3b: Deletion of /n/ in ranhou /ʐan xou/. 

 

Figure 3c: Deletion of /n/ and /x/ in ranhou /ʐan xou/. 

3.1.4. Transcription errors 
In the case of transcription errors, that is, when the content 
of the speech did not exactly match with that transcribed 
in the text, the labelers had to add marks to the phones of 
the entire sequence. Speech errors, homograph errors, and 
non-Mandarin words were dealt with in the same way. In 
total, they made up about 1% of the entire dataset. The 
evaluation of the experiment result did not account for 
these phones. 

3.2 Experiment results 

3.2.1. Verification results 

The verification results of three labeler pairs are shown in 
Table 4. In each of the three pairs, more than 90% of the 
phone boundaries assigned by the two labelers deviated 
from each other with an interval less than 20ms. In the 
calculation of deviation, we compared the ending 
boundary of each phone. The deviation in the evaluation 
phase was reduced compared to that in the training phase. 
Furthermore, to closely observe the verification results, 
Figure 4 summarizes the results in terms of boundary 
deviation at a time step of 5ms. The results are similarly 
distributed across the three pairs, suggesting a successful 
training phase and a good inter-labelers’ consistency. 

Labelers Training set Evaluation set
phones < 20ms  phones < 20ms

Pair A 4,832 87.75% 47,057 92.95% 

Pair B 4,541 90.71% 44,497 92.16% 

Pair C 4,609 86.90% 26,665 93.68% 

Total 13,982 88.43% 118,219 92.82% 
Table 4: Labelers’ consistency. 

 
Figure 4: Phone boundary deviation. 

3.2.2. Phones with severe deviation  
Table 5 lists the results of phone categories that caused 
deviations larger than 20ms. Glides /j, w/, monophthongs 
/a, ə/, and the lateral /l/ were more problematic than the 
other phone categories. These phone categories caused a 
large boundary discrepancy between the labellers in more 
than 10% of the phones. Contrastively, fricatives, 
plosives, and affricates were less problematic with regard 
to boundary annotation. One possible reason for this 
result may lie in different transition types of phone 
categories. While the transition in sonorants is continuous 
and non-abrupt, fricatives, plosives, and affricates are 
more clearly presented in acoustic configuration that 
leads to a more successful alignment of the phone aligner.  
 

Phone categories Phones (>20ms deviation)
No. (% in dataset) 

Glides 1,821 (11.85%)
Monophthongs 4,162 (10.65%)
Lateral 219 (10.53%)
Approximant 240 (7.75%)
Diphthongs 912 (6.9%)
Nasals 1,184 (6.6%)
Retroflex 547 (6.06%)
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Particles 84 (5.96%)
Plosives 646 (4.4%)
Affricates 267 (3.63%)
Fricatives 83 (2.77%)
Filler+para. sounds 93 (1.32%)
Total 10,258 (7.8%)

Table 5: Phones annotation with a large deviation. 

3.2.3. Phones marked as deleted 
Table 6 lists the occurrences of phone categories that were 
marked deleted by at least one labeler, with information 
about the percentages in the overall data. As a result, 
3,690 phones in our dataset were marked as not present 
(deleted), making up 2.8% of the overall data. Among the 
3,690 phones, only about 20% were not audible for both 
labelers, suggesting that the thresholds each person sets 
for phone deletion vary individually. It was more likely 
for the approximant /x/, the lateral /l/, and the glides /j, w/ 
to be marked deleted. For the nasal /n/, 445 out of the 497 
deleted occurrences are located in coda position. Only 52 
occurrences of the deleted /n/ are in onset position. 
Among 536 deleted monophthongs, 214 were Schwa.  

Phone categories Deletion 
No. (% in dataset)

Glides 881 (5.73%)
Nasals 578 (3.22%)
Monophthongs 536 (1.37%)
Plosives 441 (3.00%)
Approximant 313 (10.11%)
Retroflex 301 (3.34%)
Affricates 206 (2.80%)
Fillers+para. sounds 160 (2.26%)
Lateral 113 (5.43%)
Fricatives 94 (3.14%)
Diphthongs 65 (0.49%)
Particles 2 (0.14%)
Total 3,690 (2.8%)

Table 6: Phone omission. 

3.3 Final dataset 
For producing the final dataset, the middle position of the 
boundaries assigned by the labelers was calculated and 
taken as the final phone boundary with no further human 
intervention.  

4. Discussion 
Utilizing our phone-aligned dataset, a wide range of 
research works concerning conversational speech is 
possible. For instance, deleted phones in reduced spoken 
words are normally judged and identified by phonetically 
trained experts, often with a focus on phone sequencing 
instead of the contextual information such as the 
perception of spoken words. As we have marked deleted 
phones in the experiment, we are able to identify what 
kinds of words are more likely to be reduced by observing 
words in which at least one phone was marked deleted. 
Reduced words with omitted segments normally also 
cause obvious difficulties for automatic speech systems to 
recognize or to align. Besides, location relative to the 
position in the IPUs also provides contextual information 

about the surface form of words and possibly also the 
discourse structure associated with these words.  
Table 7 lists ten words that have the highest percentage 
rates of deletion in our dataset. In the TMC Corpus, these 
words are among the top 100 most frequent words (Tseng, 
2013). As shown in Table 7, different preferences for IPU 
positions are found. It is more likely for yinwei (because) 
and ranhou (then) to be reduced in IPU initial position. 
Dui tends to be reduced in both IPU initial and medial 
positions, but less likely in IPU final position. The rest of 
words are more likely to be reduced, when they are in IPU 
medial position. Concerning the deleted phones, we found 
some systematic distributions.  
When a word contains glides, it is usually the glide that is 
deleted, e.g. wo, women, jiu, and dui. In the case of 
disyllabic words, it is usually the onset of the second 
syllable that is deleted, e.g. ranhou, xianzai, and shihou. 
But for disyllabic words with a plural suffix, the 
preference for segment deletion differs. The Schwa and 
the coda of the second syllable (the suffix) tend to be 
deleted and the bilabial nasal onset of the suffix tends to 
be preserved. For monosyllabic words like dui and de, 
though both with a plosive onset consonant, the reduction 
forms are quite different. De is a structural particle that is 
usually preceded by a head, while dui is a preposition that 
is usually followed by a head, or a predicate that has a 
function of acknowledgement. The frequently reduced 
segment in de is the onset (the onset is in the juncture 
between the head and de), but the glide in dui. These 
preliminary observations with regard to deletion point out 
the interrelationship between reduction degree, IPU 
position (i.e. position in a spoken discourse), and the 
phonological property of segments. To closely study 
reduced forms in different IPU positions, we are currently 
conducting a free phone decoding experiment to 
automatically generate phone sequences for individual 
words and then select the prototypical pronunciation 
variants. Phonological and phonetic rules of segment 
deletion will be compared in a systematic way. 

 
IPU

initial
IPU 

medial 
IPU 
final 

No. in 
dataset

Total
deletion

tamen (they) 10 77 (47%) 6 165 56%

ranhou (then) 93 (28%) 66 (20%) 8 328 51%

yinwei (because) 91 (32%) 39 (14%) 12 287 49%

jiu (then, so) 9 63 (28%) 5 226 34%

shihou (time) 0 69 (30%) 8 229 34%

xianzai (now) 14 78 (18%) 6 433 23%

dui (for, yes) 48 (9%) 48 (9%) 6 509 20%

de (structure part.) 0 104 (17%) 5 598 18%

women (we) 49 184 (13%) 7 1,460 16%

wo (I) 11 61 (5%) 8 1,362 6%
Total 325 789 71 5,597 21%

Table 7: Deletion in different prosodic positions. 

5. Conclusion 
While expert opinions on fine details may play a decisive 
role in phonetic analysis, it is also important to make 
available large-scale well-annotated spoken language 
resources. Phonetic representations of spoken words may 
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largely deviate from their canonical forms in 
conversational speech. By adopting a combined 
procedure of automatic phone alignment and perceptual 
verification, we constructed a phone-aligned dataset of 
conversational speech with relatively low cost of human 
power, but relatively high annotation quality. 
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