Disambiguating Verbs by Collocation:
Corpus Lexicography meets Natural Language Processing

Ismail El Maarouf, Vit Baisa, Jane Bradbury, Patrick Hanks
University of Wolverhampton, Masaryk University, University of Wolverhampton, University of Wolverhampton
i.el-maarouf @wlv.ac.uk, xbaisa@fi.muni.cz, J.Bradbury3 @wlv.ac.uk, patrick.w.hanks @ gmail.com

Abstract
This paper reports the results of Natural Language Processing (NLP) experiments in semantic parsing, based on a new semantic resource,
the Pattern Dictionary of English Verbs (PDEV) (Hanks, 2013). This work is set in the DVC (Disambiguating Verbs by Collocation)
project aimed at expanding PDEV to a large scale. This project springs from a long-term collaboration of lexicographers with computer
scientists which has given rise to the design and maintenance of specific, adapted, and user-friendly editing and exploration tools.
Particular attention is drawn on the use of NLP deep semantic methods to help in data processing. Possible contributions for NLP
include pattern disambiguation, the focus of this article. The present article explains how PDEV differs from other lexical resources and
describes its structure in detail. It also presents new classification experiments on a subset of 25 verbs. The SVM model obtained a

micro-average F1 score of 0.81.

Keywords: Corpus Pattern Analysis, Word Sense Disambiguation, Lexical Semantics

1. Introduction

This paper reports the results of Natural Language Process-
ing (NLP) experiments in semantic parsing, based on a new
semantic resource, the Pattern Dictionary of English Verbs
(PDEV) (Hanks, 2013). This work is set in the DVC (Dis-
ambiguating Verbs by Collocation) project!, a project in
corpus lexicography aimed at expanding PDEV to a large
scale. This project springs from a long-term collaboration
of lexicographers with computer scientists which has given
rise to the design and maintenance of specific, adapted, and
user-friendly editing and exploration tools. Particular at-
tention is drawn on the use of NLP deep semantic methods
to help in data processing. Possible contributions for NLP
include pattern disambiguation, the focus of this article.
The present article explains how PDEV differs from other
lexical resources and describes its structure in detail (sec-
tion 2). Section 3 is concerned with pattern disambiguation.
Contributions and perspectives are discussed in section 4.

2. Background
2.1. Corpus Pattern Analysis

PDEV is the output of Corpus Pattern Analysis (CPA;
(Hanks, 2004)), a technique in corpus lexicography for
mapping meaning onto words in text. CPA analyses the
prototypical syntagmatic patterns with which words in use
are associated. Patterns emerge from the analysis of cor-
pus concordance lines in search for contextual clues which
characterize elements of a pattern and which distinguish a
pattern from another. Only in a second step is a “mean-
ing” mapped onto a pattern: CPA is driven by syntagmatic
patterns, not meaning.

Lexical resources such as PDEV face several issues, mainly
corpus evidence, sense granularity, and entry coverage.

e One challenge for lexical resources is to report senses
which are actually used in corpora: PDEV is syn-
chronized with a subpart (spoken language documents

"http://clg.wlv.ac.uk/projects/DVC/

have been excluded) of the British National Corpus?
(BNC).

e Sense divisions are difficult to make and to agree
on: PDEV lists patterns observable in corpora, and to
which only one meaning can be associated.

e Large coverage of entries is hard to achieve: PDEV
only contains about 1000 verb entries. The aim of the
DVC project is to scale that figure up to 3000, about
half of the estimated number of English verbs.

2.2. PDEV

PDEV is maintained with three main tools: the Sketch En-
gine3 (Kilgarriff et al., 2004), the CPA editor and the PDEV
database*. The corpus used is the BNC, a large reference
corpus containing various text types in British English (100
million words).

Lexicographers extract typical phraseological patterns from
corpora by clustering corpus tokens (tagging them) accord-
ing to the similarity of their context. The similarity is evalu-
ated in different steps, and consists mostly of syntactic and
semantic analysis.

e Syntactic analysis involves the identification of
the main structures such as idiomatic expres-
sions, phrasal uses, transitive/intransitive pat-
terns, causative/inchoative alternations, and argu-
ment/adjunct discrimination.

e These structures are then iteratively refined, split or
joined with others through the analysis of the seman-
tic features shared by collocates in each argument po-
sition. For example, Semantic Types (ST; e.g. [[Hu-
man]], [[Building]], [[Event]]) are used to represent
the prototypical properties shared by the collocates

http://www.natcorp.ox.ac.uk/
*https://www.sketchengine.co.uk
*http://deb.fi.muni.cz/pdev

1001

nb | % Pattern & primary implicature

1 | 7.14% [[Plant]] blossom [NO OBJ]
[[Plant]] produces flowers or masses of flowers
2 92.86% | [[Eventuality | Psych | Human]] blossom [NO OBIJ] (into [[Anything = Good]])

[[Eventuality | Psych | Human]] develops in a promising way or into something that is expected or desired

Table 1: Patterns for the verb blossom

found in a specific pattern position. Semantic catego-
rization is not an obvious task: it requires to identify
semantic values shared by arguments, as well as cases
of regular polysemy (Pustejovsky, 1995), and decide
for a relevant level of generalization.

Patterns can be described according to five types of argu-
ments: Subject, Object, Complement, Adverbial, and Indi-
rect Object. Each can be further detailed using determiners,
semantic types, contextual roles, and lexical sets:

e Determiners are used to account for distinctions be-
tween “take place” and “take his place”.

e Semantic types account for distinctions such as “build-
ing [[Machines]]” and “building [[Relationship]]”.

e Contextual roles account for distinctions such as
“[[Human=Film Director]] shoot” and “[[Hu-
man=Sports Player]] shoot”.

e Lexical sets account for distinctions such as “reap the
whirlwind” and “reap the harvest”.

Table 1 shows an example of the PDEV entry of the verb
to blossom. The first pattern (example 1) is characterized
as an intransitive use, having the semantic type [[Plant]]
as subject. The main feature which discriminates it from
the second pattern is the ST of the subject ([[Eventuality]],
[[Psych]], or [[Human]]). Pattern 2 also includes an
optional prepositional phrase as an additional context clue.

(1) The Times noted fruit trees which had begun to blos-
som. ..
(2) The silk trade blossomed in Blockley. . .

Pattern 2 (example 2) illustrates an alternation of seman-
tic types. It means that in the whole set of lines tagged as
“blossom 2”, subjects are either [[Eventuality]], [[Psych]]
or [[Human]]. A ST provides the relevant semantic value
of all words in context. They are, in practice, controlled
generalizations of corpus observations. Semantic alterna-
tions are used to limit the over-generalization which would
result from selecting the highest common node in the onto-
logy.

Each pattern is additionally described with (i) a primary
implicature which elaborates the meaning of the pattern,
relevant information such as the register, or the domain of
use of the pattern, and (ii) percentages. Percentages are ob-
tained by dividing the number of lines tagged with the pat-
tern number over the size of the sample (usually 250 lines).

3. Pattern disambiguation

PDEV has not yet been used in NLP applications, but it
could contribute to a large number of them. Preliminary
experiments have been made on previous releases of the
resource to learn PDEV pattern taggers automatically (see
Holub et al., Popescu, El Maarouf et al. 2013).

3.1. Word Sense Disambiguation

Pattern disambiguation is related to Word Sense Disam-
biguation (WSD). As each pattern is linked to a set of cor-
pus lines, PDEV can be used as a WSD resource, like the
SemCor? corpus based on WordNet®. WSD tasks (Navigli,
2009) require systems to identify the senses of a word in
a corpus, on the basis of a list of senses (e.g. WordNet
synsets) used in a sample of tagged data. The task, in the
case of PDEV, would rather be called Pattern Disambigua-
tion (PD), in which systems should discriminate pattern
numbers, rather than sense IDs. However, the systems, fea-
tures, and models may be completely different from those
used in WSD.

PDEV does not yet compare to the coverage of entries in
Wordnet (if WordNet contains 150,000, it is 150 times big-
ger), but the PDEV corpus compares to SemCor, the largest
corpus tagged with WordNet synsets, in terms of the num-
ber of tagged tokens: PDEV contains more than 120,000
and SemCor contains the double, about 230,000. The Sem-
Cor corpus contrasts with the PDEV tagged corpus in that
it is fully tagged (content words) whereas the latter is a tar-
geted lexical sample. Both corpora compare in terms of
text type variety and date, but differ in terms of variety of
English and total size.

PD systems could be particularly relevant to Statistical Ma-
chine Translation, where there is a growing need in multi-
lingual, but also monolingual, semantic tools and resources.
Work on phrase-based SMT, such as (Carpuat and Wu,
2007), suggest that work on PD, rather than word disam-
biguation, may improve SMT systems performance. The
following subsections describe experiments led in PD.

3.2. Experiment setting

Pattern disambiguation involves identifying appropriate
features from the corpus or external resources, and train-
ing a system to predict each verb-specific pattern.

To enable in-depth error analysis, the experiment described
here was carried out on a small set of verbs (25 verbs), with
high frequency in the BNC, and with a range of different
pattern numbers. The created dataset contains 20,336 verb
tokens in use, and was split with stratified sampling.

Shttp://www.cse.unt.edu/-rada/downloads.
html#semcor
*https://wordnet.princeton.edu

1002

The main evaluation metric used was F-score (F1, eq. 4).
As pattern disambiguation is a multi-label classification
task, it is equally important to know how a system performs
across the dataset, as it is to know how well it discrimi-
nates each class. A lot of verbs in the dataset have a highly
skewed distribution: the baseline applies the most frequent
class found in the training set to the test set and often gets a
high F1, although it does not perform any pattern discrim-
ination. To reflect this dual aspect, F1 can be averaged in
two ways:

e Micro-average gives equal weight to each verb token 7
of the test set 7', and favours systems with the highest
number of correct returns (eq. 1-3).

e Macro-average gives equal weight to each verb class
k of the class set C, and penalizes systems which only
return results for a small number of classes (eq. 5).

T
ZL=|1 TP
sIe+Fp) D

with TP = true positives, FP = false positives

Zyﬂ TP

S +FN) @

with TP = true positives, FN = false negatives

Precision, ;. =

Recall,,,;. =

Micro-F1 = 2% Prcic?sionmic X Recallpic 3)
Precisionm;c + Recallpy;c

2 X Precision X Recall

F1 = 4
Precision + Recall @)
1 |C|
Macro-F1 = il > Fly, 5)
k=1

Two systems have been tested on this experiment: a Sup-
port Vector Machine-based classifier and a boostrapping al-
gorithm based on distributional similarity.

3.3. The Support Vector Machine model

Support Vector Machines (SVM) have been chosen for this
task because they generally achieve the best results in WSD
(Lee and Ng, 2002). The implementation is based on the
Weka’ SMO module, which approaches polynominal clas-
sification by a 1 VS 1 method (pairwise).

Parameter optimisation has been performed through a stan-
dard grid search using a linear kernel (more complex
methods such as polynomial kernel and radial base func-
tions did not show any improvements in preliminary exper-
iments). The hyperparameter C has been tested with the
values {0.1,1,10,100} on each verb training dataset (5-fold
cross-validation) and the most accurate models have been
selected for testing.

The corpus was parsed with the Stanford CoreNLP
module®, in order to retrieve syntactic dependencies
(De Marnefte et al., 2006), POS (Toutanova and Manning,
2000) and named entity tags (Finkel et al., 2005). Lemma,

"nttp://www.cs.waikato.ac.nz/ml/weka/
8http://nlp.stanford.edu/software/
corenlp.shtml

ROOT
det

-Root- The silk trade blossomed in Blockley
1 2 3 4 5 6
the silk trade blossom in Blockley
DT NN NN VBD IN NNP
D N N Vv | N
o} o (o} o o} LOCATION

Figure 1: Dependency graph of example 2

Feature id | Dependency structure | Category Example

1 KWIC NE KNE|O
KWIC Lemma KL|blossom

3 KWIC POS KP|VBD
4 KWIC Relation None
5 Governor NE None
6 Governor Lemma None
7 Governor POS None
8 Governor Relation GR|ROOT
9 Dependent NE DNE|nsubj|O
10 Dependent Lemma DL |nsubj|trade
11 Dependent POS DP|nsubj|NN
12 Dependent Relation DR |nsubj
13 Dependent NE DNE |prep-in| LOCATION
14 Dependent Lemma DL |prep-in|Blockley
15 Dependent POS DP|prep-in|NNP
16 Dependent Relation DR |prep-in
17 Sub-dependent NE DDNE]|det|O
18 Sub-dependent Lemma DDL|det|the
19 Sub-dependent POS DDP|det|DT
20 Sub-dependent Relation DDR|det
21 Sub-dependent NE DDNE|nn|O
22 Sub-dependent Lemma DDL|nn|silk
23 Sub-dependent POS DDP|nn|NN
24 Sub-dependent Relation DDR|nn

Table 2: Features extracted from example 2

Feature nb of verbs gloss
DDP|dobj|PRP 25 pronoun as a direct object of a dependent
DP|conj|VB 25 verb linked with a conjunction
DDNE|mark|O 25 null Named Entity as a subordinating conjunction
KR|dep 25 dep as a relation of the KWIC
KR|rcmod 25 remod as a relation of the KWIC
KR |pcomp 25 pcomp as a relationof the KWIC

Table 3: Examples of extracted features

Parts Of Speech, Named Entities and dependency relation
names (collapsed), where relevant, have been extracted
for four classes of dependency positions: target token,
immediate governor, immediate dependent, and dependent
of the dependent. Table 2 lists the features extracted from
example 2 (illustrated in Fig. 1). Only those features which
have been identified in the training set of more than 2 verbs
are kept, that is, 4934 features in total (some features are
illustrated in Table 3). This criterion was set to extract
features which generalise across verbs.

3.4. The bootstrapping model

The second system is a solution available in the Sketch En-
gine (Kilgarriff and Rychly, 2010). This method boostraps
from an existing automatic thesaurus (Grefenstette, 1994;
Lin, 1998) to assign a label to a given verb token. The the-
saurus is based on a regular grammar which identifies col-
locates linked to a verb through a syntactic relation (such
as subject). More formally, dependency triples of the form
[|w,r,w'||, where w is a lemma linked to another lemma
w’ by a relation r, are filtered by the grammar. Each triple

1003

||w,r,w’\| i H*v*ﬂ*H

!/ !/
AScore(w,r,w") = log o] T s] log(|Jw, r,w'|] + 1) (6)
Dist(w,w') = 2 (tuples tuple,)€ {tuplewntuple,, } A% + ASj — (AS; — AS; /50 @)
ZtupleiE{tupleiutuplej}ASi
score, j = Z Z max (Distw,wf - Z(wm)) (8)
(w,r) (w’,r) Z(w,r)
verb pattern | train test Zlac‘roi;we‘ragg i\’[lc‘ro-gvel"agg

arm 4 493 122 0.14 | 0.75 | 0.62 || 0.57 | 0.74 | 0.66
arouse 3 623 156 0.32 | 0.57 | 0.39 || 0.95 | 0.89 | 0.94
arrest 3 1647 412 0.32 | 0.73 | 0.83 || 0.97 | 0.90 | 0.98
beg 13 423 108 0.02 | 0.52 | 0.58 || 0.27 | 0.71 | 0.77
blow 48 783 197 0.00 | 0.38 | 0.30 || 0.20 | 0.61 | 0.58
break 43 826 205 0.00 | 0.46 | 0.29 || 0.13 | 0.71 | 0.54
breathe 16 458 116 0.03 | 0.49 | 0.31 || 0.44 | 0.69 | 0.66
call 15 685 171 0.02 | 0.56 | 0.56 || 0.35 | 0.60 | 0.80
Cross 20 613 154 0.02 | 0.49 | 0.33 || 0.49 | 0.66 | 0.63
cry 12 794 198 0.05 | 0.49 | 0.49 || 0.60 | 0.55 | 0.81
enlarge 3 413 102 0.29 | 0.41 | 0.85 || 0.88 | 0.74 | 0.94
explain 5 389 97 0.12 | 0.84 | 0.67 || 0.59 | 0.82 | 0.88
forge 7 367 92 0.05 | 0.32 | 0.37 || 0.35 | 0.50 | 0.48
import 4 747 187 0.24 | 0.37 | 0.37 || 0.95 | 0.80 | 0.95
laugh 8 935 233 0.08 | 0.47 | 0.78 || 0.64 | 0.42 | 0.88
object 3 719 180 0.30 | 0.76 | 0.85 || 0.89 | 0.67 | 0.97
rush 9 609 152 0.06 | 0.36 | 0.53 || 0.55 | 0.67 | 0.79
say 3 366 91 0.30 | 0.63 | 0.65 || 0.91 | 0.86 | 0.93
sleep 11 941 236 0.07 | 0.55 | 0.51 || 0.81 | 0.63 | 0.91
smile 8 532 132 0.10 | 0.53 | 0.49 || 0.79 | 0.46 | 0.86
smoke 4 652 163 0.25 | 0.13 | 0.50 || 0.98 | 0.52 | 0.97
speed 8 483 122 0.10 | 0.16 | 0.22 || 0.77 | 0.84 | 0.89
talk 13 739 184 0.05 | 0.35 | 0.25 || 0.71 | 0.39 | 0.81
throw 32 398 104 0.01 | 0.59 | 0.32 || 0.19 | 0.75 | 0.64
wake 4 630 157 0.13 | 0.50 | 0.82 || 0.52 | 0.76 | 0.89

[AVERAGE || 11.96 | 650.6 | 162.84 [0.12 [0.50 [0.52 [[0.62 | 0.68

| 0.81

Table 4: Results for the pattern disambiguation task
A is the baseline, B is the bootstrapping model, and C is the SVM model

is weighted with an association score based on the set of
extracted triples, as described in equation 6. The thesaurus
is the output of the application of a distance measure de-
scribed in equation 7 between words w; sharing similar tu-
ples ||r, w'|| (Rychly and Kilgarriff, 2007).

The boostrapping algorithm uses the scores from the the-
saurus to predict a label for each token. For each verb to-
ken v of the test set, it compares its contexts (r,w’) to the
contexts (r,w) labelled as k in the training set. The score
for each token results from the sum of the contexts having
the best score as described in equation 8.

Two thresholds have been tested, minscore, the minimal
score returned by the algorithm, and mindiff, the minimal
difference between the best score and the second best score.

3.5. Results

Table 4 shows the results obtained for both the bootstrap-
ping system and the SVM classifier on the 25 verbs (se-
lecting only normal examples from the corpus) in terms of
both macro-average and micro-average F1. When a sys-
tem gets the best score, it is shown in bold face. SVM (C)
is clearly the best system overall verbs in terms of micro-
average reaching 0.81 on average across the task. The base-
line remains unbeaten for two verbs (for which one pat-
tern almost completely covers the set of patterns), smoke
(A=0.98) and arouse (A=0.95), with a difference of only 1
point in F1 from SVM (respectively 0.97 and 0.94). The in-
verse case also exists, where SVM beats the baseline from
a short point; this is the case for arrest and say, with a draw
for import.

1004

The bootstrapping system (B=0.68) is slightly better than
the baseline (A=0.62), even if it does not beat the baseline
on half of the verbs (12/25). The best combination for this
system is mindiff = 0.01, thus a low difference between the
first two scores returned by the algorithm, and minscore =
0.9, thus a high score threshold. It is also worth noting that
it is the best model on for seven verbs (arm, blow, break,
breathe, cross, forge, throw), although the scores hardly
reach 0.75. Among those verbs are those having a high
number of patterns (over 20), which suggest that the boot-
strapping approach scales better than SVM as the tagset
Srows.

This seems to be confirmed when we consider macro-
average scores, which are much lower, and where SVM
and bootstrapping systems achieve similar performance on
average (0.52 and 0.50). The degradation of performance
observed for both models indicates that the bootstrapping
system is not as much affected by the skewed distribution
as the SVM is. To finish, these systems do not achieve iden-
tical scores on each verb but can be considered, to some
extent, complementary.

4. Error analysis

Detailed error analysis revealed that the main reason for the
discrepancy between macro- and micro- averages is data
size. Especially it is the size of training for each pattern
which causes systems to score O in F1 on a verb pattern.
This concerns about 40% of the patterns for both systems
(115 for BS and 126 for SVM). The average number of
examples for zero-scored patterns is 4.6 for BS and 2.9 for
SVM. This means that the macro-scores would be higher if
the systems were only evaluated on patterns for which there
exists at least, say, 10 occurences of training data.

Figure 2 provides an additional view into how data size
influence systems’ performance. It represents the macro-
average on portions of the data, separated according to
the number of examples in total for each pattern. The
chart shows three things. First, half of the patterns are
tagged with 10 or less examples in total (0 < x < 5 and
5 < x < 10 on the graph). Second, the curves show that
F1 improves as the number of examples augments; this is
more relevant for SVM than for BS. Third, on average, BS
performs much better on patterns with 20 or less examples,
while SVM performs better for patterns with more than
20 examples. This suggests that combining those two sys-
tems is worth considering, e.g. by using ensemble learning
methods for model selection.

None of the system really uses semantic features: SVM
Named Entities is as far as it gets in terms of semantics,
and distributional similarity cannot be said to be seman-
tics strictly speaking. However distributional similarity has
proven to be beneficial, since it improved pattern disam-
biguation on several occasions. One of the reasons for er-
rors in the bootstrapping model is its high dependency on
the grammar, which has a lower coverage than the stanford
dependency parser. This directly affects the bootstrapping
model, which has a higher precision than recall (see Ta-
ble 5).

— b of
0.9 patterns

——&—— MacroF1
08 BS

----¥---- MacroF1
SVM

0=x<5 5sx<10 10sx<15 15sx<20 20sx<25 25sx<50 50=x

ranges of nb of examples

Figure 2: F1 scores according to data size

In addition, the SKE grammar, on which the bootstrapping
approach is based, filters out pronouns, which could be
a crucial discriminating feature between transitive and in-
transitive uses of a verb. Therefore, possible improvements
will come from using a dependency parser to produce word
sketches and integrate it in the bootstrapping approach. Fi-
nally, we believe that performing ontological groupings,
e.g. using the CPA ontology, or SUMO attributes as in
(Popescu, 2013), is worth investigating, since some patterns
from the same verb share identical syntactic structure and
only vary in terms of the semantic type of an argument.

Conclusions and perspectives

This article has focused on the task of pattern disambigua-
tion in the context of the Pattern Dictionary of English
Verbs. Two models have been tested on a set of 25 highly
frequent verbs covering more than 20,000 tagged sentences.
The first is a SVM implementation making use of the Stan-
ford parser dependencies. The second is a bootstrapping
approach based on a distributional thesaurus, available in
the Sketch Engine.

Results obtained on the first model were satisfying in terms
of micro-average F1, with the SVM reaching 0.81. How-
ever scores drop significantly when considering macro-
average, which suggested that systems could be biased by
the skewed distribution of labels. In-depth study of the data
however revealed that the main reason for this drop is the
low number of training examples for a significant number
of patterns.

These results also need to be confirmed on an analysis of a
larger set of verbs but are comparable to the ones obtained
in WSD tasks. Although more experiments need to be per-
formed, we hope that they will stimulate the use of PDEV
in NLP applications where WSD is used, such as statistical
machine translation.

5. Acknowledgements

This work was supported by AHRC grant [DVC,
AH/J005940/1, 2012-2015] and by the Ministry of Educa-
tion of Czech Republic within the LINDAT-Clarin project
LM2010013.

1005

model micro-average macro-average
precision | recall | fl | precision | recall | fl
SVM 0.81 0.81 | 0.81 0.54 0.51 | 0.52
BS 0.86 0.57 | 0.68 0.61 0.47 | 0.50

Table 5: Results in terms of precision and recall for the pattern disambiguation task

6. References

Carpuat, M. and Wu, D. (2007). How phrase sense dis-
ambiguation outperforms word sense disambiguation for
statistical machine translation. In [Ith International
Conference on Theoretical and Methodological Issues in
Machine Translation (TMI 2007), Skovde.

De Marneffe, M.-C., MacCartney, B., Manning, C. D.,
et al. (2006). Generating typed dependency parses from
phrase structure parses. In Proceedings of LREC, vol-
ume 6, pages 449-454.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information extrac-
tion systems by gibbs sampling. In Proceedings of the
43rd Annual Meeting on Association for Computational
Linguistics, pages 363-370. Association for Computa-
tional Linguistics.

Grefenstette, G. (1994). Explorations in Automatic The-
saurus Discovery (The Springer International Series in
Engineering and Computer Science). Springer.

Hanks, P. (2004). Corpus pattern analysis. In Euralex Pro-
ceedings, volume 1, pages 8§7-98.

Hanks, P. (2013). Lexical Analysis: Norms and Exploita-
tions. MIT Press.

Kilgarriff, A. and Rychly, P. (2010). Semi-automatic dic-
tionary drafting. In de Schryver, G.-M., editor, Oxford
Handbook of Innovation. Menha Publichers, Kampala.

Kilgarriff, A., Rychly, P., Smrz, P., and Tugwell, D. (2004).
The sketch engine. Information Technology, 105:116.

Lee, Y. K. and Ng, H. T. (2002). An empirical evalua-
tion of knowledge sources and learning algorithms for
word sense disambiguation. In Proceedings of the ACL-
02 conference on Empirical methods in natural language
processing - Volume 10, EMNLP 02, pages 41-48,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Lin, D. (1998). Automatic retrieval and clustering of simi-
lar words. In Proceedings of the 17th international con-
ference on Computational linguistics-Volume 2. Associ-
ation for Computational Linguistics.

Navigli, R. (2009). Word sense disambiguation: A survey.
ACM Comput. Surv., 41(2):10:1-10:69.

Popescu, O. (2013). Learning corpus pattern with finite
state automata. In ICSC 2013 Proceedings.

Pustejovsky, J. (1995). The Generative Lexicon. MIT
Press.

Rychly, P. and Kilgarriff, A. (2007). An efficient algorithm
for building a distributional thesaurus (and other sketch
engine developments). In Proceedings of the 45th An-
nual Meeting of the Association for Computational Lin-
guistics Companion Volume Proceedings of the Demo

and Poster Sessions, pages 41-44, Prague, Czech Re-
public. Association for Computational Linguistics.

Toutanova, K. and Manning, C. D. (2000). Enriching the
knowledge sources used in a maximum entropy part-of-
speech tagger. In Proceedings of the 2000 Joint SIG-
DAT conference on Empirical methods in natural lan-
guage processing and very large corpora: held in con-
Jjunction with the 38th Annual Meeting of the Association
for Computational Linguistics-Volume 13, pages 63-70.
Association for Computational Linguistics.

1006

