
Introducing a web application for labeling, visualizing speech and correcting
derived speech signals

Raphael Winkelmann, Georg Raess
Institute of Phonetics and Speech Processing

Schellingstraße 3, 80799 München
raphael@phonetik.uni-muenchen.de, graess@phonetik.uni-muenchen.de

Abstract
The advent of HTML5 has sparked a great increase in interest in the web as a development platform for a variety of different research
applications. Due to its ability to easily deploy software to remote clients and the recent development of standardized browser APIs, we
argue that the browser has become a good platform to develop a speech labeling tool for. This paper introduces a preliminary version
of an open-source client-side web application for labeling speech data, visualizing speech and segmentation information and manually
correcting derived speech signals such as formant trajectories. The user interface has been designed to be as user-friendly as possible in
order to make the sometimes tedious task of transcribing as easy and efficient as possible. The future integration into the next iteration
of the EMU speech database management system and its general architecture will also be outlined, as the work presented here is only
one of several components contributing to the future system.

Keywords: EMU, web application, labeling

1. Introduction

In recent years, user-friendly systems for automatically
generating aligned phonetic transcriptions given a speech
signal and an orthographic transcription have emerged (Re-
ichel, 2012; Kisler et al., 2012; Schiel, 1999). A further
well established method in the research community is the
usage of detection algorithms for derived speech signals,
such as formant trajectories, to make manual formant trac-
ing or other forms of manual feature extraction redundant.
Although these procedures can achieve very usable results,
they still struggle to match the precision of a manual tran-
scription or a manually corrected derived signal (Schiel et
al., 2011). However, certain phonetic research requires this
manual precision. Although preexisting tools such as Praat
(Boersma and Weenink, 2013) and ELAN (Wittenburg et
al., 2006) have the ability to achieve these tasks for most
labeling needs, they lack the ability to easily integrate the
output of external algorithms and other data, such as artic-
ulator movement contours produced by electromagnetic ar-
ticulography (EMA) recordings, into their interfaces. How-
ever, such integration of external algorithms and other sup-
plementary data is often necessary to provide a visual aid
or for correction purposes.
The current EMU speech database management system
(Cassidy and Harrington, 1996; Cassidy and Harrington,
2001) achieves this by being able to read, display and
manipulate any time-discrete signal contours that can be
converted into the simple signal file format (SSFF) (Cas-
sidy, 2013). Unfortunately due to several maintainability
and other issues of the current EMU DB system, we have
made the decision to reimplement the system almost from
scratch. In doing so we are trying to keep most of the con-
cepts of the current system in place while improving on
things like usability, maintainability, scalability, stability,
speed and more.
The tool presented here is one of several components com-
prising the next iteration of EMU (see Section 5. for an

overview of all the components). Here we introduce the
EMU-webApp, which is a browser-based labeling and cor-
rection tool that offers simple mechanisms for integrating
externally produced transcripts and derived signal files such
as formant trajectories much like the current EMU DB sys-
tem.

2. The browser as the graphical user
interface

Two of the initial key requirements for writing a graphi-
cal user interface (GUI) for the next iteration of the EMU
speech database management system were to write an in-
terface that is cross-platform and as easy as possible for the
user to install. Due to dependency issues, installation is
unfortunately an issue in the current EMU DB system. The
classical approach to building cross-platform GUIs is either
using a cross-platform widget toolkit or implementing mul-
tiple versions of the same GUI to accommodate the differ-
ent platforms. The browser offers a unified solution to this
problem that fits the write-once-run-everywhere paradigm
better than most alternatives. Today most machines, in-
cluding mobile devices such as smart-phones and tablets,
already have the appropriate runtime for a web application
installed. If such a browser is available to the user, the in-
stallation process is as simple as pointing the browser to a
specific URL.
Not long ago, browsers did not have the features needed
for the implementation of our tool natively available. Only
recently have modern browsers gained the ability to imple-
ment a full client-side implementation of a speech labeling
tool. This is due to the development and standardization of
several new browser APIs as part of the HTML5 specifica-
tion.
The development of the file API (W3C, 2013a) and web
worker API (W3C, 2013d) for accessing files on the user’s
hard drive and running time-intensive tasks such as calcu-
lating and drawing a spectrum asynchronously are exam-
ples of new browser functionalities.

4129



2.1. Connection
A large benefit gained by choosing the browser as the user
interface is the ability to easily interact with a backend
server or other servers using standard web protocols, such
as http/https or websockets. Using these standard proto-
cols data can easily be shared between the backend and the
client. As simple static web servers can easily be imple-
mented in a multitude of programming languages, hosting
a private version of the client is fairly simple. If the user
does not wish to host her/his own version of the interface, a
live public version of the interface is available on the world
wide web1.
For the communication with a backend server we have
developed a simple communication protocol (see Section
4.2.) that can easily be implemented in various server-side
programming languages. Once a connection is established
the backend provides the interface with data that adheres to
the data interfaces provided by our tool (see Section 4.1.).
However, the web application can also be used in stand-
alone mode, without the need for a backend (see section
3.3.)
We are currently working on a client-side websocket server
implementation that will run within the R Project for Statis-
tical Computing (R Development Core Team, 2011). This
will allow the user to serve local data to the web application
by running a local server that implements the communica-
tion protocol (see Section 5.).

3. The interface

Figure 1: EMU-webApp displaying a bundle from the ae
corpus

The general layout of the interface (see Figure 1) consists
of two menu bars (top and bottom) containing buttons for
frequent commands, such as opening and saving files, con-
necting to a backend server and the audio and zoom con-
trols. However, users are advised to familiarize themselves
with the keyboard shortcuts to control and navigate the in-
terface, as there are certain features that can only be ac-
cessed using these. A list of the key commands can be
found in the About dialog. This dialog can be accessed by
clicking on the application icon, which is located on the
right hand side of the top menu bar.
The signal tracks are displayed beneath the top menu bar.
Although the order of the tracks can be altered by changing

1http://ips-lmu.github.io/EMU-webApp/

the order in a configuration file, the default is to visualize
the oscillogram and spectrogram one on top of the other.
Due to a flexible configuration approach it is also possi-
ble to display further tracks such as fundamental frequency
contours either as overlays on the spectrogram/oscillogram
or on separate canvases. All of the tracks can be resized as
a propotion of window space using the split screen slider.
The time-aligned levels of the currently loaded annotation
file(s) are displayed below the split screen slider.
To the left of the interface is a hideable side menu to display
the current bundles offered by the backend and to the right
a further menu to switch between different pre-configurable
views of the data.

3.1. Labeling work-flow
To ease labeling as much as possible, a lot of attention has
been given to implementing features often requested by ex-
perienced labelers. One much requested feature is the in-
tegration of an overview of the entire signal to improve the
navigation within a signal. This feature is integrated into
the bottom menu bar in the form of a scrollable mini-map
of the oscillogram (see Figure 1). Others features (most
available via keyboard shortcuts) include:

• snap selected boundary to nearest bottom boundary

• snap selected boundary to nearest top boundary

• select/move multiple segments

• add/delete time to start/end of (multiple) segments

• unlimited undos/redos of edits

• zooming while holding a boundary in specific position

• multiple views of the data (via the configuration of
perspectives)

To further aid the user the interface allows her/him to fully
pre-configure the keyboard shortcuts. Most of the default
keyboard shortcuts are centered around the W-A-S-D keys
which represent the navigation shortcuts.
To select a certain boundary the user hovers the mouse cur-
sor over a level. By doing so the cursor position is automat-
ically tracked and the nearest boundary in the current level
is calculated and automatically preselected and marked. If
the user wishes to move the boundary, she/he holds down
the shift key on the keyboard to select and move the bound-
ary to the desired position without the need for left-clicking
the mouse. The same is possible for segments, although
these are explicitly selected by clicking on the according
segment and moved by holding down the alt key. To change
the label of any given segment or event boundary, the user
simply double clicks the desired item. Generating new seg-
ment boundaries can be achieved using the Return key. A
comprehensive list of all the features can be found in the
About dialog.

3.2. Visualizing and correcting data
As formant values sometimes need to be manually cor-
rected, the web application is not only able to visualize but

4130

http://ips-lmu.github.io/EMU-webApp/


also to correct pre-calculated formant tracks. After load-
ing the files that are to be corrected, these can be displayed
as a frequency-aligned overlay over the spectrogram, an
overlay over the oscillogram or in a separate signal canvas.
The frequency-aligned spectrogram overlay is the obvious
choice for correcting formant contours (see Figure 2).

Figure 2: second formant being corrected using the formant
correction tool

Before beginning the formant correction process, the cor-
responding correction tool is chosen by pressing the 1 key
to alter the first formant, the 2 key to alter the second and
so on. Once the desired tool has been chosen, the contours
can be manually redrawn by grabbing the relevant samples
using the shift key and moving the mouse to the desired
position.
This feature is almost completely analog to correction pos-
sibilities in the current EMU speech database management
system. However, the correction work-flow is improved by
providing the user with unlimited undo/redo functionality.
This enables the labeler to toggle between all the various
changes made to the formant contours.

3.3. Modes of usage
The EMU-webApp can be used in two different modes de-
pending on the intended scenario. The first is the stand-
alone mode, the other the client mode (in a client-server
environment).
The stand-alone mode is meant as an ad-hoc solution when
small changes to a corpus/file collection have to be made.
Used in this way, the application can be used in a fairly
similar fashion to the labeler offered by Praat (Boersma
and Weenink, 2013). However, it has the ability to dis-
play externally-computed derived signals (e.g. by the
libassp library (Scheffers and Bombien, 2012)) as well
as other time parallel contours that where acquired during
the recording (e.g. EMA tongue contours). In this mode,
the labeler uses the aforementioned file API to handle the
file loading. Unfortunately, there is no browser API for
writing data back to the user’s hard drive. For security rea-
sons, browsers do not allow web applications to touch the
hard drive outside of a so-called sandbox. This means that
altered files are offered as a download to the user if she/he
wants to save the changes to disc. In future version we plan
for this to be done by dragging and dropping the respective
file to the place the user wishes to save the file.
The more flexible of the two modes is the client mode. By
being integrated into a client-server environment the inter-

face can delegate several tasks to the server. The server can
then take care of such things as file/database handling, sig-
nal processing and user management on datasets, to name
a few. This means that the labeler can be integrated into
many different setups and adapted to the requirements of
the given scenario.

4. Implementation
As per the definition of a web application, the interface is
written entirely in HTML, Javascript and CSS2. This en-
ables the complete labeling functionality to be accessed on-
line as well as offline in a browser. The offline functionality
of the EMU-webApp is achieved by using the HTML5 ap-
plication cache browser API (W3C, 2013b). To ease testing
and to enable easy integration and extendability we chose
to use the AngularJS Javascript framework (Google, 2014).

4.1. Files and data model
Although subject to change, a short overview of the data
model and the file reading capabilities are presented here.
The internal label data model is represented as a simple
Javascript object whose corresponding Javascript object no-
tation (JSON) can be seen in Listing 1. We chose to use
samples to represent our label boundary times, which is
also reflected by the interface design, to avoid confusion
caused by fractional digit precision and to have definite
sample-segment affiliations.
In future releases, the links array in the JSON representa-
tion in Listing 1 will be used to represent hierarchical anno-
tation structures known from the current EMU DB system
(see Section 5.).

Listing 1: label representation

{
"name": "msajc003",
"annotates": "path/to/msajc003.wav",
"sampleRate": 20000,
"levels": [{

"name": "Phonetic",
"type": "SEGMENT",
"items": [{
"id": 1,
"label": "V",
"sampleStart": 3750,
"sampleDur": 1390 },
...
]},

...],
"links" : [{

"fromID" : 1,
"toID" : 102
},

...]
}

For the web application to be able to convert existing label
files to the format depicted in its stand-alone mode, sev-
eral transcription file parsers are available. This includes

2The code can be found here: https://github.com/
IPS-LMU/EMU-webApp

4131

https://github.com/IPS-LMU/EMU-webApp
https://github.com/IPS-LMU/EMU-webApp


a parser for the labeling format used by the EMU DB sys-
tem (ESPS/waves+ label format) and a Praat TextGrid file
parser. The above JSON representation can of course also
be parsed directly.
The same holds true for the signal format. A Javascript
parser is available to convert the simple signal file format,
used by the current EMU and the libassp library, to the
internal Javascript object (see Listing 2 for its JSON repre-
sentation). The SSFF file format, upon which our internal
representation is based, has proven itself to be a very flexi-
ble file format: flexible enough to represent anything from
formant values (fm) and their bandwidths (bm), as in List-
ing 2, to EMA contours and entire spectrograms.

Listing 2: signal format representation

{
"ssffTrackName": "FORMANTS",
"sampleRate" = 200,
"origFreq" = 20000,
"startTime" = 0.0025,
"columns" = [
{"name": "fm",
"length": 4,
"ssffDataType": "SHORT"
"values" : [[0, 1042, 2072, 3170],

[0, 1260, 2122, 3118],
[0, 1339, 2293, 3258],
...]},

{"name": "bw",
"length": 4,
"ssffDataType": "SHORT"
"values" : [[0, 886, 371, 890],

[0, 724, 567, 826],
[0, 410, 664, 740],
...]}

]
}

The EMU-webApp can also convert the above-mentioned
label file format to either the Praat TextGrid or the ESP-
S/waves+ label format and offer them to the user as down-
loadable files. For the user this means she/he can use the
labeler in stand-alone mode to do ad-hoc labeling of Praat
TextGrid files, the ESPS/waves+ label format and the new
JSON label format shown in Listing 1.
Due to restrictions concerning the decoding flexibility of
the popular web audio API (W3C, 2013c), which always
decodes files to the system’s default sample rate, we have
made the decision to implement our own .wav file decoder.
This means that the EMU-webApp can currently only read
uncompressed mono .wav files. Further decoders might
be added in future releases.

4.2. Communication protocol
To standardize the communication between the client and
server we have developed a simple request-response com-
munication protocol. This protocol defines a set of JSON
objects for both the requests and responses. The defined
request-response actions, most of them triggered by the
client after connection, are:

• GETPROTOCOL: Check if the server speaks the same
protocol

• GETDOUSERMANAGEMENT: See if the server handles
user management (if yes→ this prompts a login dialog
→ LOGONUSER)

• GETGLOBALDBCONFIG: Request the configuration
file for the current connection

• GETBUNDLELIST: Request the list of available bun-
dles for current connection

• GETBUNDLE: Request data belonging to a specific
bundle name

• SAVEBUNDLE: Save data belonging to a specific bun-
dle name

Due to the inability to perform cross-domain request, via
regular http/https, the web application currently uses the
websocket protocol to allow the EMU-webApp to connect
to any websocket servers that implement the above pro-
tocol. In future versions we also hope to include cross-
origin resource sharing (CORS) (W3C, 2014) support into
the client. This will enable regular http/https servers that
implement the protocol and have CORS enabled to com-
municate with the EMU-webApp.

5. Future work
As mentioned, this interface will be part of a larger software
suite aiming to be the next iteration of the EMU speech
database management system. This new software suite will
enable the user to have a self-contained system on her/his
machine without having to rely on network connectivity. A
simplified overview of the future system architecture can be
seen in Figure 3.

EMU-webApp

wrassp EMU-rPackage

files comprising speechDB

Signal proc.
file/DB handling

websocket connection

Signal proc.

Figure 3: future system architecture

The system will be largely based in the R language for Sta-
tistical Computing. Two R packages (the gray items in Fig-
ure 5.) are currently being developed to complete the sys-
tem, one being the wrassp package, which as the name
implies, is a port of the libassp library to a native C ex-
tension for R. This package will be responsible for han-
dling the speech signal processing. The EMU-rPackage
will handle database manipulation and querying as well as

4132



serve as a local websocket server to communicate with the
interface presented in this paper. This infrastructure will
provide researchers with a self-contained system to query
databases, perform signal processing and statistical evalua-
tions all within the same environment. Being autonomous,
however, wrassp and the web application will also be able
to be used separately if desired.
The tool presented here is still in the early stages of devel-
opment. One of the key and most powerful features of the
current EMU DB system is the ability to annotate and query
hierarchical annotation structures. Although our annotation
format (see section 4.1.) allows items to be linked, the in-
terface is not yet able to display and edit these hierarchical
structures. In future releases we hope to accomplish this
task.
Further future efforts will include improving the stability,
extending the parsing/file-handling capabilities, optimizing
the EMU-webApp for mobile devices and more.

6. Acknowledgements
Research supported by the European Research Council
Grant (295573) to Jonathan Harrington and the CLARIN-D
project (BMBF-FKZ: 01UG1120A).

7. References
Paul Boersma and David Weenink. 2013. Praat: do-

ing phonetics by computer (Version 5.3.56)[Computer
program]. Retrieved October 9, 2013. http://www.
fon.hum.uva.nl/praat/.

Steve Cassidy and Jonathan Harrington. 1996. Emu: An
enhanced hierarchical speech data management system.
In Proceedings of the Sixth Australian International
Conference on Speech Science and Technology, pages
361–366.

Steve Cassidy and Jonathan Harrington. 2001. Multi-level
annotation in the emu speech database management sys-
tem. Speech Communication, 33(1):61–77.

Steve Cassidy. 2013. The Emu Speech Database Sys-
tem Manual: Chapter 9. Simple Signal File For-
mat. http://emu.sourceforge.net/manual/
chap.ssff.html.

Google. 2014. AngularJS. http://angularjs.
org/.

Thomas Kisler, Florian Schiel, and Han Sloetjes. 2012.
Signal processing via web services: the use case Web-
MAUS. In Proceedings Digital Humanities 2012, Ham-
burg, Germany, pages 30–34, Hamburg.

R Development Core Team, 2011. R: A Language and En-
vironment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0.

Uwe D. Reichel. 2012. PermA and Balloon: Tools for
string alignment and text processing. In Proc. Inter-
speech, page paper no. 346, Portland, Oregon.

Michel Scheffers and Lasse Bombien. 2012. libassp ad-
vanced speech signal processor, 03.

Florian Schiel, Christoph Draxler, and Jonathan Harring-
ton. 2011. Phonemic Segmentation and Labelling using
the MAUS Technique. In Proceedings of the Workshop

’New Tools and Methods for Very-Large-Scale Phonetics
Research’, University of Pennsylvania, USA.

Florian Schiel. 1999. Automatic Phonetic Transcription
of Non-Prompted Speech. In Proc. of the ICPhS, pages
607–610, San Francisco, August.

W3C. 2013a. File API. http://www.w3.org/TR/
FileAPI/.

W3C. 2013b. Offline apps. http://www.w3.org/
TR/2011/WD-html5-20110525/offline.
html.

W3C. 2013c. Web Audio API. https://dvcs.w3.
org/hg/audio/raw-file/tip/webaudio/
specification.html.

W3C. 2013d. Workers. http://www.w3.org/TR/
workers/.

W3C. 2014. Cross-Origin Resource Sharing. http://
www.w3.org/TR/cors/.

Peter Wittenburg, Hennie Brugman, Albert Russel, Alex
Klassmann, and Han Sloetjes. 2006. Elan: a profes-
sional framework for multimodality research. In Pro-
ceedings of LREC, volume 2006.

4133

http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
http://emu.sourceforge.net/manual/chap.ssff.html
http://emu.sourceforge.net/manual/chap.ssff.html
http://angularjs.org/
http://angularjs.org/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/2011/WD-html5-20110525/offline.html
http://www.w3.org/TR/2011/WD-html5-20110525/offline.html
http://www.w3.org/TR/2011/WD-html5-20110525/offline.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

	Introduction
	The browser as the graphical user interface
	Connection

	The interface
	Labeling work-flow
	Visualizing and correcting data
	Modes of usage

	Implementation
	Files and data model
	Communication protocol

	Future work
	Acknowledgements
	References

