The CMU METAL Farsi NLP Approach

Weston Feely' Mehdi Manshadi* Robert Frederking! Lori Levin'
fLanguage Technologies Institute, Carnegie Mellon University, Pittsburgh, PA
{wfeely, ref, 1lsl}@cs.cmu.edu

*Department of Computer Science, University of Rochester, Rochester, NY
mehdih@cs.rochester.edu

Abstract
While many high-quality tools are available for analyzing major languages such as English, equivalent freely-available tools for
important but lower-resourced languages such as Farsi are more difficult to acquire and integrate into a useful NLP front end. We report
here on an accurate and efficient Farsi analysis front end that we have assembled, which may be useful to others who wish to work
with written Farsi. The pre-existing components and resources that we incorporated include the Carnegie Mellon TurboParser and
TurboTagger (Martins et al., 2010) trained on the Dadegan Treebank (Rasooli et al., 2013), the Uppsala Farsi text normalizer PrePer
(Seraji, 2013), the Uppsala Farsi tokenizer (Seraji et al., 2012a), and Jon Dehdari’s PerStem (Jadidinejad et al., 2010). This set of tools
(combined with additional normalization and tokenization modules that we have developed and made available) achieves a dependency
parsing labeled attachment score of 89.49%, unlabeled attachment score of 92.19%, and label accuracy score of 91.38% on a held-out
parsing test data set. All of the components and resources used are freely available. In addition to describing the components and

resources, we also explain the rationale for our choices.

Keywords: Farsi (Persian), Natural Language Processing, Dependency Parsing

1. Introduction

As part of the Carnegie Mellon University METAL
multi-lingual metaphor understanding project, we needed
to analyze large corpora of written Farsi sentences. Since
this was one small part of a large project, we did not have
sufficient internal resources to develop significant Farsi
tools ourselves. We therefore sought out freely available
Farsi resources, combined them, compared components
when more than one was available and developed a few
missing pieces ourselves. This resulted in a set of tools
with dependency parsing labeled attachment score of
89.49%, unlabeled attachment score of 92.19%, and
label accuracy score of 91.38% on a held-out parsing test
data set. In the overall metaphor detection system, the
results of the dependency parser were used as input to our
Conventionalized Conceptual Metaphor (CCM) detector
(Levin et al., 2014), as well as other detectors.

We must emphasize that most of the tools described here
were developed by others, but by selecting and combining
these tools with the additional small tools that we devel-
oped, we have produced an accurate and efficient Farsi
analysis front end that may be useful to others who wish
to work with written Farsi. All the components are freely
available.

We describe below the Farsi resources that we are using,
along with the rationale for our choices. To avoid sus-
pense: we are using the Carnegie Mellon TurboParser and
TurboTagger (Martins et al., 2010) trained on the Dadegan
Treebank (Rasooli et al., 2013), with both the Uppsala Farsi
text normalizer PrePer (Seraji, 2013) and our CMU text
normalizer (Feely, 2013), the Uppsala Farsi tokenizer (Ser-
aji et al., 2012a), our CMU Farsi verb tokenizer (Manshadi,

2013) and Jon Dehdari’s PerStem (Jadidinejad et al., 2010).

2. Farsi Treebank

As the primary data resource for developing our system, we
chose the Dadegan Persian Dependency Treebank (Rasooli
et al., 2013), a 29,982 sentence dependency-parsed tree-
bank, which we currently use to train our Farsi TurboParser
and TurboTagger. The Dadegan treebank was developed
mostly on newswire text and uses its own part-of-speech
formalism and dependency label formalism. We obtain
very accurate parses and tags using this treebank, when
tested on a subset of the treebank’s sentences (see numbers
below). Notably, this treebank’s tokenization scheme
combines verbs together with their affixes and auxiliaries,
which poses a difficult NLP task for our Farsi tokenizer
(Manshadi, 2013) (see below). To explain with a parallel
English example, this is like treating “should have tried” as
a single English token, rather than as two auxiliaries and an
inflected form of the verb “try”. But due to its large size, we
decided to use the treebank and cope with this idiosyncrasy.

3. Farsi processing components

3.1. Farsi Parser

The dependency parser we use is the Carnegie Mellon
TurboParser (Martins et al., 2010), a parsing toolkit created
by Noah Smith’s group here at Carnegie Mellon, which
allows for training a dependency parser on any CONLL-
format treebank. We have used this toolkit extensively
in the METAL project to train several iterations of our
Farsi parser (as well as using it for Spanish and English),
producing increasingly accurate results as we obtain more
data and adjust the training settings of the parser. We split

4052

the Dadegan treebank’s 29,982 sentences into a randomly
selected 90% of the sentences for training and 10% of the
sentences for testing. Our final accuracy on the randomly
selected held-out test set, from the Dadegan treebank:

’ Score Type \ Score

|

39669 /44327 = 89.49 %
40866 / 44327 =92.19 %
40507 / 44327 =91.38 %

Labeled attachment score
Unlabeled attachment score
Label accuracy score

Table 1: Our Farsi Dependency Parser Scores

The parsing scores above are the standard metrics for
evaluating dependency parsers, which are automatically
created by the evaluation script provided by TurboParser
(Martins et al., 2010). Our scores are based on the gold
standard treebank dependencies from our randomly-
selected held-out test set from the Dadegan Treebank
(Rasooli et al., 2013).

For POS tagging, we used TurboTagger, the part-of-speech
tagger toolkit that comes with TurboParser. We trained
our Farsi tagger on the same training set as our parser,
and tested the tagger on the same test set as our parser.
TurboTagger provides very accurate POS tagging, with
Tagging Accuracy of 95.6% on our randomly selected
held-out test set.

3.2. Other Farsi NLP Components

For training, we applied the Uppsala Farsi text pre-
processing tools provided by Uppsala University (Seraji,
2013) on the Dadegan treebank, to normalize spacing be-
tween Farsi words and their affixes. We then used our own
Farsi text normalizer (Feely, 2013), which removes Arabic
and Persian diacritics and normalizes variant forms of the
Farsi letter “ye” to a single unicode representation. We
also used PerStem (Jadidinejad et al., 2010) on the tokens
in the entire treebank, to produce a new set of lemmas for
the Dadegan treebank. This normalization produces input
suitable for the TurboTagger and TurboParser described
above.

The following figures are an example of a single Farsi
sentence as it passes through each step of our NLP pipeline.
In the processing of new Farsi text, we apply the tools in
the following order: Uppsala normalizer, CMU normalizer,
Uppsala tokenizer, CMU verb tokenizer, PerStem, and then
TurboTagger and TurboParser.

Figure 1: Original Farsi Sentence

This is the original text for our Farsi sentence. It has
not been processed in any way, save for the sentence

segmentation that extracted this sentence from its origi-
nal document. The translation and gloss for this sentence is:

ha kamar-e towlid ra Sekaste
PL back-GEN production ACC broken

siyasat
policy

Table 2: Gloss of Farsi example sentence
“The policies have broken the back of the production.”

The following figures show how this sentence is processed
by the different components of our NLP pipeline.

Figure 2: Text Normalized Farsi Sentence

In the above figure 2, we have run both the Uppsala text
normalizer PrePer (Seraji, 2013) and our own Farsi text
normalizer (Feely, 2013) on the sentence. The Uppsala
text normalizer maps any Arabic-specific characters
to their Persian unicode equivalents, changes Western
digits to their Persian equivalents, and most importantly
normalizes the space characters appropriately, so that
full spaces between a words and its affix are changed to
zero-width-non-joiner characters (ZWNJ) (Seraji, 2013).
In this particular sentence, the space between the word for
policy “siyasat” and the following plural marker “ha” is
normalized by PrePer into a ZWNIJ character. Our own
normalizer would additionally remove diacritics from the
sentence, which aids in producing an accurate parse in our
final step, but since this sentence has no such diacritics,
the normalization effects in this sentence come solely from
PrePer.

Figure 3: Tokenized Farsi Sentence

In the above figure 3, the same Farsi sentence has now
been tokenized using the Uppsala Farsi tokenizer (Seraji
et al., 2012a), to split the punctuation off of the words in
the sentence. Then, our Farsi verb tokenizer (Manshadi,
2013) has been applied to join the main verb in the
sentence (broken ‘“Sekaste”) with its surrounding affixes
and auxiliaries (has “ast”) using underscores, in order to
form a single token (has broken “Sekaste ast”). This aids in
our later parsing step, by matching the tokenization style
of the Dadegan Treebank (Rasooli et al., 2013).

In the below Figure 4, the sentence has been re-formatted
to have one word per line, in CONLL-format to prepare for
dependency parsing. The words are numbered in the first

4053

Token Stem CPOS FPOS DEP LABEL
1 PRSI IV [VO

2 S S B T

3 agi g B R

4 b b B L

5) aiuSs o) ailSs

6.

Figure 4: Stemmed Farsi Sentence

column, so the tokens are placed in the second column.
Additionally, PerStem (Jadidinejad et al., 2010) has been
run on each word and the corresponding stem for each
word is placed in the following column three. Note that the
stem for the first word (policies “siydsatha”) is incorrect.

Token Stem CPOS FPOS DEP LABEL
1 O L N IANM 4PREDEP
2 S SN IANM 1MOZ

3 g adgN IANM 2MOZ

4 b LPOSTP POSTP 50BJ

5 wl_m ml_a.’L..Sq;uV ACT O0ROOT
6. PUNC PUNC 5PUNC

Figure 5: Parsed Farsi Sentence

The above Figure 5 shows the final output of our system,
after TurboTagger and TurboParser (Martins et al., 2010)
have been run on our sentence. The Farsi part-of-speech
tags produced by TurboTagger are now in the fourth
and fifth columns of the CONLL-format parse. Our
part-of-speech tagger produces the fine-grained part-of-
speech tags (e.g. “IANM” for inanimate noun) in the fifth
column, which we deterministically map back to a set of
coarse-grained part-of-speech tags (e.g. “N” for noun)
which we put into the fourth column. These coarse-grained
part-of-speech tags help us attain our best parsing accura-
cies. Our part-of-speech tag set comes from the Dadegan
Persian Dependency Treebank (Rasooli et al., 2013). You
can find documentation for these part-of-speech tags in the
treebank’s documentation.

The syntactic dependencies produced by TurboParser are
in the sixth column and the labels for these dependencies
are in the seventh column. Again, the set of syntactic
dependency labels comes from the Dadegan Persian
Dependency Treebank (Rasooli et al., 2013). You can
find documentation for this dependency label set in the
treebank’s documentation. Note that the parse for this
sentence is incorrect; our parser is not perfect and notably
has trouble with noun-noun compounds in Farsi, which
occur often in sentences like this.

We will now describe each of our NLP tools in some more
detail.

3.2.1. Uppsala Farsi Pre-processing tools

Includes a sentence segmenter and a text normalizer
(Seraji, 2013), and a Farsi tokenizer (Seraji et al., 2012a).
We use the Uppsala text normalizer to normalize Farsi
whitespace characters and their Farsi tokenizer to normal-
ize Farsi nouns and adjectives. We use the Uppsala text
normalizer together with our own text normalizer, because
the combination of the two produced the best parsing
results and the most consistent text normalization scheme
between the Dadegan treebank and new data.

3.2.2. CMU Farsi text normalizer

A Python script created by our CMU team, to normalize
Farsi text by removing diacritics (which are helpful to
human readers, but only complicate and confuse automatic
processing) and adjusting character variants to their most
common forms, to allow our other NLP tools to work on
less sparse tokens. This step is applied to our Dadegan
treebank before training TurboParser, as well as to new
data, to ensure consistency in training and testing data. It
is available online (Feely, 2013). We use the Uppsala text
normalizer together with our own text normalizer, because
the combination of the two produced the best parsing
results and the most consistent text normalization scheme
between the Dadegan treebank and new data.

3.2.3. CMU Farsi Verbal Morphology Tokenizer

A tokenizer created by one of our Farsi team consultants,
designed to group together Farsi verbs with their surround-
ing affixes and auxiliaries into a single token (Manshadi,
2013). This is a necessary pre-processing step for raw
text, due to the nature of the Dadegan treebank, which
keeps verbs together with their affixes and auxiliaries, as
described above. To ensure an accurate parse, we apply
this tokenizer as well as the Uppsala tokenizer, which ac-
curately tokenizes Farsi nouns and adjectives when parsing
raw text. We tested the accuracy of our verbal morphology
tokenizer by using it to reproduce the verb tokenization of
the randomly selected held-out parsing test set we chose
from the Dadegan treebank, using a de-tokenized version
of the treebank’s test set sentences. Our tool recreates the
exact verb tokenization of the Dadegan treebank, when
applied to this detokenized test set (100% precision on our
test set). This tool is no longer under active development,
but it accounts for the majority of the possible tense,
aspect, and moods for Farsi verbs (including many of those
not present in our test set).

3.2.4. PerStem Stemmer

A freely-available Farsi stemmer created by Jon Dehdari
(Jadidinejad et al., 2010). We currently use this to create
Farsi lemmas from our tokens, since the ‘“dictionary”
form of verbs is required by our down-stream metaphor
detection pipelines (CCM, etc.) The current version of
PerStem does not perform very well producing lemmas for
our Farsi tokens. It was our hope to replace this stemmer
with a more accurate Farsi lemmatizer of our own design,

4054

but this work is no longer under active development.

4. Future Work

Our CMU Farsi verbal morphology tokenizer is no longer
under active development, but we have accounted for
a majority of the possible Farsi verb forms, in order
to ensure accurate parses for new texts. One further
experiment using this work would be to retrain our parser
on the Uppsala Persian Dependency treebank (Seraji
et al., 2012b), once the size of the Uppsala treebank is
large enough to match the accuracy of our parser trained
on the Dadegan treebank. This resource is described below:

4.1. Uppsala Persian dependency treebank
(UPDT)

A 6,000 sentence dependency parsed treebank created by
Uppsala University (Seraji et al., 2012b), suggested to us
recently by our sponsor. This treebank is used to train the
freely-available Uppsala Farsi parser (Seraji et al., 2012c¢),
which has a dependency parsing labeled attachment score
of 68.68%, unlabeled attachment score of 74.81%, and
label accuracy score of 80.64% (compare to our results
above). Although much smaller than the Dadegan treebank
(Rasooli et al., 2013), this treebank has the benefit of not
grouping together verbs and their auxiliaries into a single
token. This would reduce the burden on our Farsi tokenizer
to produce complex verb tokens, but the treebank’s small
size so far does not yet allow it to produce better parsing
performance. A planned future direction for Farsi is to see
whether we can apply this better scheme to the much-larger
Dadegan Treebank; alternatively, a larger Uppsala treebank
may be released eventually.

5. Conclusion

In conclusion, our Farsi text pre-processing, part-of-speech
tagging, and dependency parsing approach produces highly
accurate tags and parses on our randomly selected held-out
test data set. We have supplemented available Farsi
resources by creating the additional text processing tools
(our text normalizer and verbal morphology tokenizer)
necessary to use these tools to produce accurate parses on
new Farsi texts. All of our tools are freely available online,
in addition to the previously freely available tools that we
used to create this Farsi front-end. It is our hope that this
natural language processing front end will be used in future
projects, whether related to metaphor detection or other
natural language processing tasks.

6. Acknowledgements

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Defense US Army
Research Laboratory contract number W911NF-12-C-
0020. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. Disclaimer:

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of TARPA, DoD/ARL, or the U.S.
Government.

7. References

Weston Feely. (2013). Open-source dependency parser,
part-of-speech tagger, and text normalizer for Farsi
(Persian). https://github.com/wfeely/farsiNLPTools. Ac-
cessed 03-2014.

Amir Hossein Jadidinejad, Fariborz Mahmoudi, and Jon
Dehdari. (2010). Evaluation of Perstem: A Simple and
Efficient Stemming Algorithm for Persian. In Peters, C.,
Nunzio, G. D., Kurimo, M., Mandl, T., Mostefa, D.,
Peas, A., and Roda, G., editors, Multilingual Information
Access Evaluation 1. Text Retrieval Experiments, vol-
ume 6241 of Lecture Notes in Computer Science, pages
98101. Springer, Heidelberg.

Lori Levin, Teruko Mitamura, Brian MacWhinney, Davida
Fromm, Jaime Carbonell, Weston Feely, Robert Frederk-
ing, Anatole Gershman and Carlos Ramirez. (2014). Re-
sources for the Detection of Conventionalized Metaphors
in Four Languages. In Proceedings of the Ninth Lan-
guage Resources and Evaluation Conference (LREC),
Reykjavik, Iceland.

Mehdi Manshadi. (2013). Farsi Verb Tokenizer.
https://github.com/mehdi-manshadi/Farsi- Verb-
Tokenizer. Accessed 03-2014.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro
M. Q. Aguiar, and Mério A. T. Figueiredo. (2010). Tur-
boParsers: Dependency Parsing by Approximate Varia-
tional Inference. In Proceedings of Empirical Methods
in Natural Language Processing (EMNLP).

Mohammad Sadegh Rasooli, Manouchehr Kouhestani, and
Amirsaeid Moloodi. (2013). Development of a Persian
Syntactic Dependency Treebank. In Proceedings of The
2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL HLT), Atlanta, GA, USA.

Mojgan Seraji, Bedta Megyesi, Joakim Nivre. (2012). A
Basic Language Resource Kit for Persian. In Proceed-
ings of the 8th International Conference on Language
Resources and Evaluation (LREC), Istanbul, Turkey.

Mojgan Seraji, Bedta Megyesi, Joakim Nivre. (2012).
Bootstrapping a Persian Dependency Treebank. Pub-
lished as a Journal in Special Issue of the Linguistic Is-
sues in Language Technology (LiLT), Heidelberg, Ger-
many.

Mojgan Seraji, Bedta Megyesi, Joakim Nivre. (2012).
Dependency Parsers for Persian. In Proceedings of
10th Workshop on Asian Language Resources, COLING
2012, 24th International Conference on Computational
Linguistics, Mumbai, India.

Mojgan Seraji. (2013). PrePer: A Pre-processor for Per-
sian. In Proceedings of The Fifth International Confer-
ence on Iranian Linguistics (ICIL5), Bamberg, Germany.

4055

