
A stream computing approach towards scalable NLP

Xabier Artola, Zuhaitz Beloki, Aitor Soroa

IXA NLP Group, University of the Basque Country, Donostia, Basque Country,
{xabier.artola, zuhaitz.beloki, a.soroa}@ehu.es

Abstract
Computational power needs have grown dramatically in recent years. This is also the case in many language processing tasks, due to
overwhelming quantities of textual information that must be processed in a reasonable time frame. This scenario has led to a paradigm
shift in the computing architectures and large-scale data processing strategies used in the NLP field. In this paper we describe a
series of experiments carried out in the context of the NewsReader project with the goal of analyzing the scaling capabilities of the
language processing pipeline used in it. We explore the use of Storm in a new approach for scalable distributed language processing
across multiple machines and evaluate its effectiveness and efficiency when processing documents on a medium and large scale. The
experiments have shown that there is a big room for improvement regarding language processing performance when adopting parallel
architectures, and that we might expect even better results with the use of large clusters with many processing nodes.

Keywords: Distributed NLP architectures, Big Data, Storm

1. Introduction
Nowadays there is a continuous increase of computational
power needs due to an overwhelming flow of textual data.
This calls for a paradigm shift in computing architecture
and large scale data processing. For example, the main goal
of the NewsReader1 project is to perform real-time event
detection and extract from text what happened to whom,
when and where, removing duplication, complementing in-
formation, registering inconsistencies and keeping track of
the original sources. The project foresees an estimating
flow of 2 million news items per day and the linguistic anal-
ysis of those documents needs to be done in a reasonable
time frame (one or few hours). The project faces thus an
important challenge regarding the scalability of the linguis-
tic processing of texts.
The challenges NewsReader faces fall into a new class of
the so called “Big Data” tasks, requiring large scale and in-
tensive processing and which are able to scale efficiently to
very big volumes of data (Elsayed et al., 2008; Pantel et al.,
2009; Sarmento et al., 2009; Singh et al., 2011; Beheshti et
al., 2013; Yu and Chen, 2013; McCreadie et al., 2013; Sakr
et al., 2013).
MapReduce (Dean and Ghemawat, 2008) is a programming
model framework designed to perform large scale compu-
tations and that is able to scale to thousand of nodes in
a fault-tolerant manner. However, MapReduce follows a
batch processing model, where computations start and end
within a given time frame. Streaming computing (Cher-
niack et al., 2003) represents an alternative programming
model for processing a continuous flow of data streams.
Streaming computing systems have to deal with very a high
level of data throughput still guaranteeing a low level of re-
sponse latency. This programming model assumes that data
are presented to the algorithm as one or more input streams
that are processed in order, and only once.
In this paper we describe a series of experiments performed
with the goal of analyzing the scaling capabilities of the

1http://www.newsreader-project.eu/

NewsReader NLP pipeline. We propose a new approach
for scalable distributed NL processing across multiple ma-
chines. We also evaluate the effectiveness and efficiency
of the proposed approach when processing documents on a
medium and large scale.
The paper is organized as follows. Section 2 analyzes exist-
ing solutions for big data processing and presents the main
framework used to implement the NLP pipeline used in the
experiments. In section 3, we briefly describe the annota-
tion format used in our framework. Experiments and results
are described in sections 4 and 5. Finally, some conclusions
are drawn and further work is depicted.

2. Big data for scalable NLP
Processing large amounts of textual data has become a ma-
jor challenge in the NLP research area. As the majority
of digital information is present in the form of unstruc-
tured data like web pages or news articles, NLP tasks such
as cross-document coreference resolution, event detection
or calculating textual similarities often require processing
millions of documents in a timely manner (Elsayed et al.,
2008; Pantel et al., 2009; Sarmento et al., 2009; Singh et al.,
2011; Beheshti et al., 2013; McCreadie et al., 2013). For
instance, in (Singh et al., 2011) the authors process a corpus
comprising news articles published during the last 20 years.
McCreadie et al. (2013) present a distributed framework for
event detection that is capable to effectively process thou-
sand of twitter posts every second. The research activities
conducted within the NewsReader project strongly rely on
the automatic detection of events, which are the core in-
formation units present in the news and which support any
decision making process that depends on news articles. The
research focuses on many challenging aspects such as event
detection and modelling, storage and reasoning over events,
etc.
Processing massive quantities of data requires designing
solutions that are able to run distributed programs across
a large cluster of machines. Besides, issues such as par-
allelization, distribution of data, synchronization between

8

nodes, load balancing and fault tolerance, etc. are of
paramount importance. In this section we briefly analyze
some of the most widely used frameworks for massive data
processing.
The MapReduce algorithm arose from the need of the
Google company to run straightforward programs with very
large input data sets. This need led to the design of a solu-
tion where programs are distributed across large machine
clusters. Therefore, a new library was designed with the
aim of hiding from the user all the logic about the afore-
mentioned issues, letting programmers concentrate their ef-
forts on their applications’ logic.
Hadoop is an open-source implementation of MapReduce
that has been widely used during the last few years. The li-
brary is fault tolerant; it knows how to react when a worker
node or even the master node fails.
One of the most important characteristic of Hadoop is that
of being oriented to perform batch processing, but it leads
to serious problems when using it for real-time streaming
processing systems. Hadoop SPARK (Zaharia et al., 2010)
overcomes this problem by extending Hadoop with new
workloads like streaming, interactive queries and learning
algorithms. In any case, using Hadoop or SPARK frame-
works require reimplementing the NLP algorithms using a
programming language from the MapReduce family.

2.1. Streaming computing
The main characteristic of the batch processing model is
that of having a beginning and an end, i.e., processes on
a batch setting start and eventually finish their jobs. In
a streaming computing scenario (Cherniack et al., 2003),
however, there exist no beginning nor end in the process-
ing. Instead, the programming model is designed to pro-
cess messages forever while maintaining high levels of data
throughput and a low level of response latency.
S42 is an open source, general-purpose, distributed, scal-
able and partially fault-tolerant platform for developing and
running distributed programs to process continuous streams
of data. S4 was developed because of an unsuccessful at-
tempt to adapt Hadoop to deal with applications consuming
large real-time streams of data. Therefore, it was concluded
that a library that would work for both batch and stream
processing was not viable. S4 offers the flexibility to de-
ploy new algorithms as needed in research environments,
while scalability and high availability requested by produc-
tion environments are taken into account.
The main units in the design of this system are the Process-
ing Elements (PEs). The PEs encapsulate the functionality
of each logical piece of processing. The only way of com-
munication between PEs is by sending messages, making
the system derive from a combination of MapReduce and
the Actors model (Hewitt et al., 1973). A high level of
encapsulation and transparency is achieved by this model,
resulting in a high level of simplicity. However, S4 lacks
a cluster balancing system, making the system unbalance
over time.
Storm3 is an alternative to S4 for streaming computing. It
was created to satisfy the needs of a distributed and scalable

2http://incubator.apache.org/s4/
3http://storm.incubator.apache.org/

real-time computation framework. The main design goals
of Storm are the following:

• Make the design friendly and easy to understand.

• Provide a simple Application Programming Interface
for processing data streams.

• Allow to set scalable clusters with high availability us-
ing commodity hardware.

• Minimize latency by supporting local memory reads
and avoiding disk I/O bottlenecks.

• Use a symmetric architecture, where all nodes have
the same responsibility and functionality.

• Use a pluggable architecture.

The main abstraction structure of Storm is the topology, top
level abstractions which describe the processing that each
message passes through. The topology is represented as a
graph where nodes are processing components, while edges
represent the messages between them. Topology nodes fall
into two categories: the so called spout and bolt nodes.
Spout nodes are the entry points of a topology and the
source of the initial messages to be processed. Bolt nodes
are the actual processing units, which receive messages,
process them, and pass the processed messages to the next
stage in the topology.
The data model of Storm is the tuple, i.e., each bolt node in
the topology consumes4 and produces tuples. The tuple is
an abstraction of the data model, and is general enough to
allow any data to be passed around the topology.
In Storm, each node of the topology may reside on a differ-
ent physical machine; the Storm controller (called Nimbus)
is the responsible to distribute the tuples among the differ-
ent machines, and guarantees that each message traverses
all the nodes in the topology.
It is important to note that in Storm you can have several
instances of each topology node, thus allowing actual par-
allel processing. Following the so called parallelism hint, it
is possible to specify how many instances of each topology
node will be actually running.
When it comes to the issue of cluster management, Storm
uses a centralized model like Hadoop. There is a master
node, called Nimbus, and multiple worker nodes, known as
Supervisors. The Nimbus is responsible for creating Super-
visor instances through the cluster and assigning a task or
a set of tasks to each of them. It is also its job to moni-
tor the cluster for failures. Supervisors manage all the in-
put and output events of a worker node and start/stop task
processes as necessary. Storm, like S4, uses ZooKeeper to
manage communication inside the cluster. It also performs
automatic rebalancing to compensate the processing load
between the nodes.

3. The NLP Annotation Format
The experiments described in this paper involve the in-
tegration of many NLP tools into a common framework.

4Unlike spout nodes, which are the initial nodes and therefore
do not consume tuples.

9

<NAF>
<!-- text layer -->
<text>
<wf id="w1" offset="0" length="4">John</wf>
<wf id="w2" offset="5" length="6">taught</wf>
<wf id="w3" offset="12" length="11">mathematics</wf>
<wf id="w4" offset="24" length="2">in</wf>
<wf id="w5" offset="27" length="3">New</wf>
<wf id="w6" offset="31" length="4">York</wf>
</text>
<!-- term layer -->
<terms>
<term id="t1" lemma="John" pos="R">
<target id="w1"/>
</term>
<term id="t2" type="open" lemma="teach" pos="V">
<target id="w2"/>
</term>
...
</terms>
<!-- entity layer -->
<entities>
<entity id="e1" type="person">
<references>

<!--John-->
<target id="t1"/>

</references>
</entity>
<entity id="e2" type="location">
<!--New York-->
<references>
<target id="t5"/><target id="t6"/>

</references>
<externalReferences>
<externalRef
reference="http://dbpedia.org/page/New_York_City"
confidence="0.8"/>

</externalReferences>
</entity>
</entities>

</NAF>

Figure 1: Excerpt of a NAF document showing the text,
term and entity layers.

One key issue for the integration of diverse NLP modules
is the definition of a common annotation format, which
guarantees the correct interoperability among the tools. In
this work we use the so-called NLP Annotation Format
(NAF) (Fokkens et al., 2014), which is designed to be the
standard format for exchanging information between lin-
guistic processing tools within the NewsReader project.
NAF follows the main principles of LAF as outlined in (Ide
et al., 2003). Like LAF, NAF aims at maximum flexibility,
processing efficiency and reusability. It is a layered, exten-
sible format where each tool incrementally adds its output
while maintaining all information that was present in its in-
put. NAF has shown to be suitable for a complex pipeline
combining tools developed at different sites in the News-
Reader project.
Nowadays there exists a wide range of representation
schemas for annotating documents with linguistic informa-
tion. Although a detailed analysis including a comparison
of those schemas with NAF is clearly out of the scope of the
present paper, let us briefly depict the main reasons which
led the NewsReader project to adopt NAF for NLP anno-
tation. On the one hand, NAF allows combining the rep-
resentations of multiple semantic modules, including the
relations between alternative analyses. On the other hand,
the complex tasks carried out in the project require the def-
inition of semantic layers for annotations such as factuality
statements for which no current standard implementation

exists. Besides, NAF is specifically designed to work on
distributed environments where NLP modules produce an-
notations on the same document in parallel.
NAF comprises several annotations over a text at differ-
ent linguistic levels (morphosyntactic, syntactic, semantic).
The following general rules are met in all layers:

• elements are used to define the range of lin-
guistic elements to which an annotation applies.

• Linguistic annotations of a particular level always
span elements of previous levels.

• Linguistic annotations of different levels are not
mixed.

The “levels” in the general rules refer to different types of
linguistic information, which can be different groupings of
linguistic entities (e.g. tokens vs terms vs chunks), rela-
tions between linguistic entities (e.g. dependencies, seman-
tic roles), or information about a specific linguistic entity
(e.g. disambiguated word sense).
The most basic level in NAF is the text layer which assigns
identifiers to tokens in the text. The term layer defines basic
terms (lexical units) which consist of one or more tokens in
the case of multiword expressions. Further layers (chunks,
entities, etc.) typically consist of one or more terms. span
elements are used to refer to specific elements in lower lay-
ers. For instance, in NAF multiword expressions are de-
scribed by a single term, which spans to the ids of the to-
kens that compose the expression. NAF provides the fol-
lowing layers to represent the output of common NLP tasks:

The header contains metadata about the input document,
such as its public ID, the URI, creation time, etc. The
header also records information about all the LP mod-
ules used to produce the annotations in the NAF doc-
ument.

The raw layer contains the input document verbatim. Be-
cause the input text may contain many characters
which are invalid in XML, the raw layer is enclosed
within a CDATA section.

The text layer contains the tokens of the document. Op-
tionally, sentence, paragraph and page boundaries are
also indicated. This layer is the result of sentence split-
ting and tokenization.

The terms layer contains words and multiwords. It also in-
cludes information such as part-of-speech, references
to other resources such as wordnet senses, compound
elements, etc. Since (multi)words consist of tokens,
they refer to tokens in the text layer.

The chunks layer contains chunks of words, such as noun
phrases, prepositional phrases, etc. Since chunks con-
sist of words, they refer to words in the terms layer.
Each chunk has a head, which is also an item in the
terms layer.

The dependency layer contains dependency relations be-
tween words. These relations refers to terms in the
terms layer.

10

The entity layer contains entity mentions. Entity mentions
have an entity type (person, organization, etc.) and
are linked to instances from external resources such as
Wikipedia or Dbpedia.

The coreference layer contains clusters of term spans
which refer to the same entity.

The semantic role layer, including predicates and argu-
ments associated to it.

The time expression layer identifies time expressions
mentioned on the text.

The factuality layer encodes the veracity or factuality of
events as mentioned in the text. This information is
useful for recognizing whether the events mentioned
in the text actually happened (factual events), did not
happen (contrafactual events), or there is some uncer-
tainty about the event happening or not.

Figure 1 shows an excerpt of a NAF document compris-
ing three layers: text, terms and entities. The characteristic
of being multi-layered makes NAF to be particularly well
suited to work on a distributed and parallel environment.
Processing modules represent their output in different NAF
layers and usually they do not modify the annotations of the
lower layers. Therefore, several processors can create new
annotations to the same document in parallel as far as there
is no dependence between them.

4. Experiment setting
In this section we describe the different settings established
to carry out the experiments. Scalable NLP processing re-
quires parallel processing of textual data. The paralleliza-
tion can be effectively performed at several levels, from de-
ploying copies of the same LP processor among servers to
the reimplementation of the core algorithms of each module
using multi-threading, parallel computing. This last type of
fine-grained parallelization is clearly out of the scope of the
present work, as it is unreasonable to reimplement all the
modules needed to perform complex tasks as event min-
ing. We rather aim to process huge amount of textual data
by defining and implementing an architecture for NLP pro-
cessing which allows the parallel processing of documents.
First of all, let us explain how we interpret Storm concepts,
such as spout and bolt nodes, and tuples, in the case of our
particular language processing scenario:

• The spout node is a process which reads a text docu-
ment and sends it to the first bolt of the topology.

• The bolt nodes are wrapper programs which receive
input tuples, call the actual NLP modules for process-
ing, and send the output tuples to the next stage in the
topology.

• The tuples in our Storm topology comprise two ele-
ments, a document identifier and the XML serializa-
tion of the NAF document encoded as a string.

Layer 100 docs. 1,000 docs.
tokens 138,803 1,185,933
senses 42,519 390,948
entities 10,804 75,349

Figure 3: Number of annotations obtained for each layer.

We created a small NLP pipeline comprising four modules:
a tokenizer (TOK), a part of speech tagger (POS), a Named
Entity Recognition and Classification module (NERC), and
a Word-Sense Disambiguation module (WSD). All this
modules are based on the IXA-pipeline processing frame-
work (Agerri et al., 2014).
Initially the four modules are executed following a pipeline
architecture, i.e., each module running sequentially one af-
ter the other. This setting is the baseline system and the
starting point for our analysis.
On a second experiment, we implement a Storm topology
following again a pipeline approach. This setting is simi-
lar to the baseline system but has a main advantage. When
a module finishes the processing, it passes the annotated
document to the next step, and starts processing the next
document. Therefore, in this setting there are as many
documents processed in parallel as stages in the pipeline.
Because we have a pipeline comprising 4 modules, the
pipeline is able to process 4 documents at the same time.
On a final setting, we experiment creating many instances
of some selected bolt nodes, therefore allowing the parallel
execution of them. Figure 2 illustrates this final experiment
setting.
All the experiments were performed on a PC machine with
an Intel Core i5-3570 3.4GHz processor with 4 cores and
4GB RAM, running on Linux.

5. Results
We experimented the NLP pipeline with 1000 documents,
each one comprising an average of 1200 words and 50
sentences. We performed experiments with a subset of
10 documents (16, 208 words, 682 sentences), a subset of
100 documents (138, 803 words, 5, 416 sentences) and with
the complete set of 1000 documents (1, 185, 933 words,
48, 746 sentences). Figure 3 shows the number of anno-
tations obtained for each layer after the processing.
Figure 4 shows the time elapsed in processing the docu-
ments. The first six rows correspond to the processing of
10 documents, the next six rows to the processing of 100
documents and the last six rows to the processing of 1000
documents. As the figure shows, the baseline system runs at
a performance of about 100 words per second. The simple
Storm topology yields a performance gain of less than 13%,
which is less than expected. When analyzing the result, we
realized that there is an unbalance regarding the time spent
by each module. The 96% of the processing time is spent
by the WSD module, which is by far the module needing
more time to complete its task. Although the Storm topol-
ogy can in principle multiply the performance by a factor
of four, in practice all the computing is concentrated in one
single node, which severely compromises the overall per-
formance gain.

11

Figure 2: The Storm topology of our pipeline. It is composed of a spout, four bolts that perform the actual NL processing,
and a special bolt NafOut that writes the resulting NAF documents to XML files. The NLP bolts are wrapper programs that
call the corresponding external NLP modules to do their job.

Total time words/s sent/s Gain
10 documents

pipeline 2m42s 99.8 4.2 -
Storm 2m25s 111.5 4.7 %10.4
Storm2 1m29s 182.9 7.7 %45.4
Storm4 1m32s 175.3 7.4 %43.0
Storm5 1m28s 182.5 7.7 %45.3
Storm6 1m22s 195.4 8.2 %49.0

100 documents
pipeline 21m16s 108.8 4.2 -
Storm 18m43s 123.5 4.8 %12.0
Storm2 10m48s 214.3 8.4 %49.3
Storm4 7m46s 297.6 11.6 %63.5
Storm5 7m44s 299.1 11.7 %63.7
Storm6 7m48s 296.1 11.6 %63.3

1000 documents
pipeline 3h15m16s 101.2 4.2 -
Storm 2h50m21s 116.0 4.8 %12.8
Storm2 1h40m37 196.5 8.1 %48.5
Storm4 1h14m25s 265.6 10.9 %61.9
Storm5 1h10m45s 279.3 11.5 %63.8
Storm6 1h11m37s 276.0 11.3 %63.3

Figure 4: Performance of the NLP pipeline in different set-
tings: pipeline is the basic pipeline used as baseline; Storm
is the same pipeline executed as a Storm topology; Storm2

represents a Storm pipeline with 2 instances of the WSD
module (Storm4 has 4 instances, Storm5 5, and Storm6 6).

With these points in mind, we experimented four alterna-
tives (dubbed Storm2, Storm4, Storm5, and Storm6), with
respectively 2, 4, 5 and 6 instances of the WSD module
running in parallel. The results in Figure 4 show that run-
ning multiple instances of WSD does increase the overall
performance significantly. The major gain is obtained with
five instances of WSD, with an increase of 63% in the over-
all performance. More WSD instances do not help improv-
ing the results, which is expected given the fact that the
machine used for the experiments has 4 CPU cores.

6. Conclusion
In this paper a new approach for scalable distributed lan-
guage processing across multiple machines using Storm has
been proposed. We have described and evaluated the effi-

ciency of a series of experiments carried out with the goal of
analyzing the scaling capabilities of the NewsReader NLP
pipeline.
These initial experiments have shown that there is a big
room for improvement regarding language processing per-
formance when adopting parallel architectures such as
Storm. With the use of large clusters with many nodes,
we might expect a significant boost in the performance of
overall NLP processing.
The experiments conducted in this paper are only an ap-
proach on the way to get a much more sophisticated dis-
tributed environment for NLP. Our next objectives focus on
experimenting with a larger scale setup in three different as-
pects: running the experiments in a multi-node cluster with
high computing capabilities, enhancing the general system
architecture and designing more sofisticated topologies and
algorithms.
The hardware used for these experiments was useful only
for testing purposes. In the future we aim to have a cluster
composed of several nodes, an essential scenario to make
the most of the distributed architecture designed for the
pipeline. This will allow us to experiment with a much
larger input document set as well.
As we are developing a totally distributed and highly scal-
able system, several architecture-related issues come out.
One of them is the input method that will receive text doc-
uments and send them to the pipeline. To accomplish that,
we foresee the need of a distributed message queue sys-
tem as the input. Another issue is the fact that too much
data traffic is produced between each NLP module, since
a full NAF document with all the layers’ annotations must
be sent from each module for every document to be pro-
cessed. This could be avoided using a distributed database
like MongoDB and retrieving and storing only the annota-
tion layers required and produced by each module.
Similarly, we have in mind a couple of topology design im-
provements to be delved in the future:

• Use of non linear topologies. The experiments de-
scribed here follow a pipeline approach, but in prin-
ciple we could also run them on non linear topologies,
where two modules are processing the same document
at the same time. Non linear topologies require con-
sidering the following aspects:

12

We need to clearly identify the pre- and post-
requisites of each module, thus deducting the
indications as to which modules must precede
which and which modules can be run in parallel
on the same document.

We need a special bolt which receives input from
many NLP module bolts (each one conveying dif-
ferent annotations on the same document) and
merges all this information producing a single,
unified document.

• Granularity-based splitting of documents. NLP mod-
ules work at different levels of granularity. For in-
stance, a POS tagger works at sentence level, the WSD
module works at paragraph level, whereas a corefer-
ence module works at document level. We want to
experiment splitting the input document into pieces of
the required granularity, so that the NLP modules can
quickly analyze those pieces, thus increasing the over-
all processing speed.

Acknowledgment
We are grateful to the anonymous reviewers for their in-
sightful comments. This work has been partially funded
by the NewsReader (FP7-ICT- 2011-8-316404) and SKaTer
(TIN2012-38584-C06-02) projects. Zuhaitz Beloki’s work
is funded by a PhD grant from the University of the Basque
Country.

7. References
Rodrigo Agerri, Josu Bermudez, and German Rigau. 2014.

IXA pipeline: Efficient and ready to use multilingual
NLP tools. In Proceedings of the 9th Language Re-
sources and Evaluation Conference (LREC2014).

Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The
space complexity of approximating the frequency mo-
ments. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, STOC ’96, pages
20–29, New York, NY, USA. ACM.

Seyed-Mehdi-Reza Beheshti, Srikumar Venugopal, Se-
ung Hwan Ryu, Boualem Benatallah, and Wei Wang.
2013. Big data and cross-document coreference reso-
lution: Current state and future opportunities. CoRR,
abs/1311.3987.

Mitch Cherniack, Hari Balakrishnan, Magdalena Balazin-
ska, Donald Carney, Ugur Cetintemel, Ying Xing, and
Stan Zdonik. 2003. Scalable Distributed Stream Pro-
cessing. In CIDR 2003 - First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, Jan-
uary.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January.

Tamer Elsayed, Jimmy J. Lin, and Douglas W. Oard. 2008.
Pairwise document similarity in large collections with
mapreduce. In ACL (Short Papers), pages 265–268. The
Association for Computer Linguistics.

Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, Niels Ock-
eloen, German Rigau, Willem Robert van Hage, and

Piek Vossen. 2014. NAF and GAF: Linking linguistic
annotations. In To appear in Proceedings of 10th Joint
ACL/ISO Workshop on Interoperable Semantic Annota-
tion (ISA-10).

Sebastian Hellmann, Jens Lehmann, Sören Auer, and Mar-
tin Brümmer. 2013. Integrating nlp using linked data.
In Proceedings of the 12th International Semantic Web
Conference (ISWC).

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A
universal modular actor formalism for artificial intelli-
gence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Nancy Ide, Laurent Romary, and Éric Villemonte de
La Clergerie. 2003. International standard for a linguis-
tic annotation framework. In Proceedings of the HLT-
NAACL 2003 Workshop on Software Engineering and
Architecture of Language Technology Systems (SEALTS).
Association for Computational Linguistics.

Richard McCreadie, Craig Macdonald, Iadh Ounis, Miles
Osborne, and Sasa Petrovic. 2013. Scalable distributed
event detection for twitter. In Proceedings of IEEE In-
ternational Conference on Big Data.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale dis-
tributional similarity and entity set expansion. In Pro-
ceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 2 - Volume 2,
pages 938–947, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. 2013. The
family of mapreduce and large scale data processing sys-
tems. CoRR, abs/1302.2966.

Lus Sarmento, Alexander Kehlenbeck, Eugnio C. Oliveira,
and Lyle H. Ungar. 2009. An approach to web-scale
named-entity disambiguation. In Petra Perner, editor,
MLDM, volume 5632 of Lecture Notes in Computer Sci-
ence, pages 689–703. Springer.

Sameer Singh, Amarnag Subramanya, Fernando Pereira,
and Andrew McCallum. 2011. Large-scale cross-
document coreference using distributed inference and
hierarchical models. In Association for Computational
Linguistics: Human Language Technologies (ACL HLT).

Wei Yu and Junpeng Chen. 2013. The state-of-the-art
in web-scale semantic information processing for cloud
computing. CoRR, abs/1305.4228.

Matei Zaharia, N. M. Mosharaf Chowdhury, Michael
Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
Cluster computing with working sets. Technical report,
EECS Department, University of California, Berkeley,
May.

13

