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Abstract
String segmentation is an important and recurring problem in natural language processing and other domains. For morphologically rich
languages, the amount of different word forms caused by morphological processes like agglutination, compounding and inflection, may
be huge and causes problems for traditional word-based language modeling approach. Segmenting text into better modelable units is
thus an important part of the modeling task. This work presents methods and a toolkit for learning segmentation models from text. The
methods may be applied to lexical unit selection for speech recognition and also other segmentation tasks.
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1. Introduction
Many natural language processing tasks including auto-
matic speech recognition are relying on the statistical n-
gram language modeling paradigm (Manning and Schütze,
1999), in which the probability of a string is conditioned on
the (n-1) predecessor strings:

P (wn) ≈ P (wn|w
n−1

1
) (1)

Traditionally the n-gram model is estimated over words.
For morphologically rich languages, the amount of differ-
ent word forms caused by morphological processes like
agglutination, compounding and inflection, may be huge.
In this case, estimating the n-gram model over sequences
of words is likely to suffer from high Out-Of-Vocabulary
(OOV) -rate and unreliable n-gram estimates as a result of
data sparsity. Segmentation of text into better modelable
units thus becomes an important part of the modeling task.
OOV -issues are avoided altogether, as all word forms may
be generated by concatenating the base units.
Many possible objectives are available for the segmentation
task. Smallest meaning-bearing units, morphs, are a viable
linguistically motivated target for segmentation. Different
machine learning approaches have been suggested in the
literature. Statistical segmentations have been evaluated in
the Morpho Challenge competitions (Kurimo et al., 2010)
and have been shown to perform well across various bench-
mark tasks in automatic speech recognition, machine trans-
lation and information retrieval. (Hirsimäki et al., 2009)
provides a survey to speech recognition results on many
languages. The advantage of unsupervised methods lies
in that neither a morphological analyzer nor an annotated
training corpus is required.
The viewpoint in this work is closely related to the n-gram
language modeling approach and their application to auto-
matic speech recognition. For a speech recognition task, a
large high-order n-gram model is trained from a large text
corpus. The goodness of the model is then evaluated by
how well it predicts text by measures such as cross-entropy
or perplexity (Goodman, 2001). As selecting high-order n-
grams for unknown segmentation is infeasible, we attempt
to learn lower-order segmentation models which predict the
obtained unit sequence with a high likelihood.

We present a toolkit for learning unigram and bigram seg-
mentation models from text. The method has so far been
successfully applied to segmenting words into subword
units for language modeling in large vocabulary speech
recognition (Varjokallio et al., 2013) and was shown to re-
sult in an efficient vocabulary for the task. Here it is also
extended to infer phrase-like segments from sentences on
large corpora and to utilize bigram statistics in subword
segmentation.

2. Segmentation models
Generating text using a vocabulary with an n-gram distri-
bution over the vocabulary units may be viewed as an (n-
1)-order Markov process. With respect to inferring model
parameters from unsegmented text, the states of the pro-
cess are not directly observable, because the states emit
strings of varying length and the borders between the emit-
ted strings are not observed. Parameter inference in the un-
igram case has been addressed in the multigram framework
(Deligne and Bimbot, 1997). Bigram statistics over class
information were utilized in (Deligne and Sagisaka, 1998).
In practice, Expectation-Maximization -training (Dempster
et al., 1977) with the Forward-backward algorithm and the
Viterbi approximation may be applied.
Model selection for a vocabulary of limited size is a non-
trivial task. In the general sense, searching for a vocabu-
lary with evenly distributed frequencies is known to be a
NP-complete problem (Storer, 1988). For natural language
data, it could be expected that reasonable approximations
may be found. For both unigram and bigram statistics,
we employ a likelihood based pruning scheme. The ap-
proach taken is to start with a large vocabulary, which is
then pruned to a suitable size. The training proceeds in a
greedy fashion, i.e. in each iteration, strings, which are the
least significant for the data likelihood, are removed from
the vocabulary. This has experimentally given good results
for subword and phrase segmentation. The type of the units
is selected in the initialization phase.

2.1. Unigram model
The algorithm aims to learn a vocabulary that gives a high
unigram likelihood for the training corpus. The vocabu-
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lary V consists of substringssi and a probabilitylpi for
each substring. The training corpusC consists of strings
weighted by their frequency in the corpus.
Figure 1 shows an example how Finnish word “talossa”
could be segmented as a sequence of letters, subwords, or as
a single observation with unigram scores. The most likely
segmentation returned by the Viterbi algorithm would in
this case be “talo + ssa”. The graph structure does not
need to be explicitly constructed. For efficient subword
lookups starting from each character position, the vocab-
ulary is stored in a letter-trie data structure.
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Figure 1: Segmentation paths for word “talossa” using a
subword unigram model. The numbers are log-likelihoods
of the units.

The algorithm proceeds by starting with a large vocabu-
lary, which is then pruned to a suitable size. In the current
approach, no new strings are introduced, and thus proper
initialization is important.

Initialization
1. Train a letter n-gram model from the training corpus.

2. Select the initial pool of stringsV = {si}, for example
all substrings from the most common words in the
training data up to a reasonable maximum length.

3. Calculate an initial log-probabilitylpi for each stringsi
using the letter n-gram model:

lpi(abcd) = lp(a)+lp(b|a)+lp(c|ab)+lp(d|abc) (2)

Normalize the probabilities to sum to one. Zerogram
initialization is also plausible if Forward-backward is
iterated in the next step.

4. Iterate Forward-backward over the training corpus until
convergence.

5. Iterate training. After each iteration increase cutoff
value and remove strings with frequency below the cut-
off value.

Vocabulary pruning
The pruning approach tries to account for the effect that
removing a subword has on the likelihood. Iterate:

1. Resegment the training data and update string probabil-
ities.

2. Select a list of candidate strings for removal, for exam-
ple the least frequent strings in the vocabulary.

3. For each candidate string, estimate the cost of removing
it by resegmenting the training data without it.

4. Sort the list of candidate strings in descending order by
the value of estimated likelihood change.

5. Remove a defined amount of top candidate strings. Al-
ternatively it is possible to update parameters after each
removal and verify that the cost for each subsequent re-
moval is above a threshold value.

Iteration may be stopped when the desired vocabulary size
is reached.

2.2. Bigram model
Analogously to the unigram model, generating text using a
vocabulary with bigram dependencies over the vocabulary
units may be viewed as a first-order Markov process. The
model consists of a vocabularyV of substringssi ∈ V and
bigram probabilitieslp(si|sj) for si ∈ V andsj ∈ V . The
training corpusC consists of strings weighted by their fre-
quency in the corpus. When training a bigram model in Ex-
pectation Maximization-style, special attention is needed
in selecting the data structures, as all bigram transitions
in the corpus need to be represented. A graph containing
all segmentations may be constructed separately for each
word in the training data. Figure 2 contains segmentations
and corresponding bigram probabilities for a single word.
For most cases, it is more efficient to merge all graphs to a
joint graph. Figure 3 presents possible segmentations for
three Finnish words, “talo”, “talossa” and “talous” in a joint
graph.
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Figure 2: Segmentation paths for Finnish word “unessa” in
a separate graph using a subword bigram model.
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Figure 3: Segmentation paths for three Finnish words:
“uni”, “unessa” and “uneton” in a joint graph using a sub-
word bigram model.

Each arc is assigned a pointer to the corresponding bigram
score. The prefixes are shared for each word and a unique
end node is assigned for each word. If word boundaries are
modeled as a separate symbol, the EM-training procedure
is optimizing the bigram likelihood of the whole corpus for
the parameter set.
In the joint graph structure, it is efficient to train Forward-
backward for all the words simultaneously. Forward pass
may be done for the whole graph in a single pass for all
words. The backward pass is done for each word separately
starting from the end node of the word. When computing
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likelihood for a single word, the forward pass may equiv-
alently be done in a backward direction, starting from the
end node.
The vocabulary pruning may be done in a similar fashion as
with the unigram statistics. In practice, the vocabulary can
be pruned to a reasonable size with unigram statistics and
proceeding with bigram statistics for the rest of the training.
Model selection with bigram statistics is more complicated
than in the unigram case, as it is possible to prune both the
vocabulary and bigrams.

3. Discussion
For morphologically rich languages, words are troublesome
as units for natural language processing tasks, because of
Out-Of-Vocabulary and data sparsity issues. Segmenting
text to better modelable units for language model training
helps in solving these issues.
Due to the present-day availability of large text corpora
from internet sources, there is also interest in using large
vocabularies for languages, which may not necessarily be
classified as morphologically rich. Text quality may also
vary because of misspellings etc. We believe that language
modeling by units obtained by resegmenting the corpus
may help in this endeavour. Advantages are that the mod-
els will be OOV-free and also all the training data may be
utilized in the training phase.
The unigram segmentation model has been used so far for
subword segmentation and phrase segmentation. The type
of the subword units may be controlled by either training
the model with word types or word tokens. Trained with
word types, the selected units resemble morphs. Training
with word tokens attempts to minimize the unigram en-
tropy, which may be a good property for statistical NLP
tasks. In (Varjokallio et al., 2013) this was shown to re-
sult in an efficient vocabulary for Finnish large vocabulary
speech recognition.
Training a phrase segmentation model including words,
multiwords, subwords and cross-word segments is possi-
ble on a large corpus. This type of segmentation model can
be useful for NLP tasks in languages with rich morphology
and also including phenomena that span multiple words.
Table 1 shows example sentences segmented with a phrase
model. This model was initialized from substrings of words
and most common bigrams and pruned from the initial size
of 8M strings to a size of38k strings. Word boundaries are
in this example modeled as part of the prefixes. The phrase
segmentation model may be viewed as a statistical imple-
mentation of a linear unit grammar (Sinclair and Mauranen,
2006).
Perhaps the most interesting units in the example are the
suffix + word style dependencies:”ksi valittiin” ˜ ”was
selected/appointed as”and ”jen perusteella” ˜ ”based
on/PLURAL”. The training complexity may be controlled
by initialization and pruning parameters. The model in the
example was trained on150 million word tokens, and the
training time was one week with a single core implementa-
tion.
Table 2 contains preliminary word perplexity results for n-
gram models trained over varying types of unigram seg-
mentations and training parameters. The models were

Table 1: Example Finnish sentence segmentations with a
phrase model. Word boundaries are marked with the ””
sign.

• joulun hitti tuote tta ei kukaan halua vielä
tässävaiheessaveikka illa

• ilomantsin tunnus lauluksi valittiin aulis raita lan
koi tere laulu

• tällaiseen kin johto päätökseen on aihetta
mielipidetiedustelujen perusteella

• kokemuksetovat olleet hyvät

Model WB Cutoff Order Size Perpl.

Subword Symbol 222222 6 16.0M 5440
Subword Left 222111 6 16.0M 5255
Subword Left 222111 6 21.6M 4768
Subword Left 22111 5 31.0M 4303
Phrase Left 221 3 24.5M 5087
Phrase Left 2211 4 32.8M 4488

Table 2: Preliminary Finnish n-gram word perplexities for
different model types segmented with a unigram segmen-
tation model. “WB” stands for the type of word boundary
modeling. Lexicon size is35k for subword models and38k
for phrase models. Size is the number of n-grams in the
model.

trained on the Finnish Kielipankki corpus (CSC - Scientific
Computing Ltd., 2003) which contains around150M word
tokens and4.1M word types and evaluated on a held-out set
of 3.9M word tokens. The training corpus was segmented
with the corresponding segmentation model and the final
modified Kneser-Ney smoothed n-gram model was trained
using the VariKN language modeling toolkit (Siivola et al.,
2007). Model sizes were controlled by the pruning param-
eters. For the segmentation models, where the word bound-
ary was modeled as part of the units, the training was done
by appending the word boundary symbol to the left side
of each word and disallowing a separate word boundary
symbol. Thus, the subword vocabularies for ”Symbol” and
”Left” cases are different. For earlier perplexity resultsin
Finnish and a parallel study with English, see (Siivola et al.,
2007).
It seems that for a comparable model size slightly better
perplexity values are reached by modeling word boundaries
as part of the first subword of the word instead of a separate
word boundary symbol. The most accurate model was a
subword model trained with word boundary on left. Phrase
models did not at the moment improve perplexities com-
pared to subword models. However, unigram, bigram and
trigram distributions over phrase segmentations are more
efficient than for subwords. A phrase-segmented model
may thus be a worthwhile choice for some speech recog-
nition tasks.
The unigram segmentation algorithm may also be viewed
as a general purpose Markov-0 compressor. As the ap-
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proach scales to long strings, other possible uses could
include offline data compression and string processing in
bioinformatics.
Training a bigram segmentation model is currently limited
to subword segmentation (on a latin-style alphabet). Bi-
gram statistics have been applied at least for Chinese word
segmentation (Goldwater et al., 2006). Model selection for
bigram segmentations is currently more experimental.
In model selection the methods rely on purely likelihood-
based pruning and user-controlled vocabulary size. Infor-
mation theorical penalized criteria are currently a more
common approach to the model selection problem. One
existing method is Morfessor (baseline) (Creutz and Lagus,
2002), which optimizes a criterion derived from the Mini-
mum Description Length (MDL) -principle. The approach
in the present work expects that a reasonably large corpus is
available and an n-gram model will be trained over the cor-
pus. In this case, cost function for the vocabulary coding
will be insignificant as the number of n-grams will domi-
nate the n-gram model complexity.
Proper pronunciation modeling is important for a speech
recognition task. The suggested pruning approach is well
suited for creating recognition vocabularies also for lan-
guages with more complex letter-to-phoneme -mapping.
The vocabulary may be initialized by selecting only strings
with a well defined pronunciation variant. Word boundary
modeling is also something to consider both with respect to
n-gram training and decoding in the recognition phase. As
seen in table 2 the word boundary modeling has an effect
on the perplexities. Also the decoding graph needs to be
constructed differently for each of the unit types for correct
decoding.

4. Software
The toolkit aims to be a focused contribution for study-
ing n-gram training and model selection in the case of un-
known segmentation. The toolkit has been implemented
in C++ programming language and is available as BSD-
3 -licenced open source from the addresshttp://www.
github.com/aalto-speech/ftk . It includes func-
tionality for segmentation, EM-training and model selec-
tion. Multiple implementations of Forward-backward and
Viterbi algorithms for both unigram and bigram statistics
are included. The model selection and pruning function-
ality has been implemented as a separate abstraction level,
and is extendable for different purposes. Most important
parts of the toolkit are unit tested.

5. Conclusion
We have presented a toolkit for efficiently learning unigram
and bigram segmentation models from text. The methods
may be applied to lexical unit selection for speech recogni-
tion and also other segmentation tasks.
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Siivola, V., Hirsimäki, T., and Virpioja, S. (2007). On
growing and pruning Kneser-Ney smoothed N-gram
models. IEEE Transactions on Speech, Audio and Lan-
guage Processing, 15(5):1617–1624.

Sinclair, J. and Mauranen, A. (2006).Linear unit gram-
mar: Integrating speech and writing (Vol. 25). Amster-
dam: John Benjamins.

Storer, J. A. (1988).Data Compression: Methods and The-
ory. Computer Science Press, a subsidiary of W. H. Free-
man & Company.

Varjokallio, M., Kurimo, M., and Virpioja, S. (2013).
Learning a subword vocabulary based on unigram likeli-
hood. InProceedings of the 2013 IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU),
Olomouc, Czech Republic.

3075


