Access Control by Query Rewriting: the Case of KorAP

Piotr Banski, Nils Diewald, Michael Hanl, Marc Kupietz, Andreas Witt*
Institute for the German Language (IDS)
R5 6-13, 68161 Mannheim, Germany
{banski|diewald|hanl|kupietz|witt}@ids-mannheim.de

Abstract
We present an approach to an aspect of managing complex access scenarios to large and heterogeneous corpora that involves handling
user queries that, intentionally or due to the complexity of the queried resource, target texts or annotations outside of the given user’s
permissions. We first outline the overall architecture of the corpus analysis platform KorAP, devoting some attention to the way in which
it handles multiple query languages, by implementing ISO CQLF (Corpus Query Lingua Franca), which in turn constitutes a component
crucial for the functionality discussed here. Next, we look at query rewriting as it is used by KorAP and zoom in on one kind of this
procedure, namely the rewriting of queries that is forced by data access restrictions. '

Keywords: Access Control; Corpus Management; Query Rewriting

1. Introduction

The present article focuses on one aspect of managing com-
plex access scenarios to large and heterogeneous corpora,
namely on handling user queries that, intentionally or due
to the complexity of the queried resource, target texts or an-
notations outside of the given user’s permissions.

We first present the overall architecture of the corpus anal-
ysis platform KorAP, devoting some attention to the way in
which it handles multiple query languages, by implement-
ing ISO CQLF (Corpus Query Lingua Franca, see below),
which in turn constitutes a component crucial for the func-
tionality discussed here. Next, we look at query rewriting as
it is used by KorAP and zoom in on one kind of this proce-
dure, namely the rewriting of queries that is forced by data
access restrictions.

2. KorAP: Architecture, Data Model, Query
Languages

KorAP (Korpusanalyseplattform der nédchsten Generation;
lBaﬁski et all, |2012|, |2013|) is a new corpus analysis plat-
form created at IDS Mannheim and designed primarily for
the purpose of sustainably serving the German Reference
Corpus (Deutsches Referenzkorpus, DEREKo; cf.
,), the largest annotated archive of German texts,
which is about to increase its size to 24 billion words in 2014
(IKupietz and Liinged, |2014|). In this role, it will succeed
Cosmas II (lBodmed, tZOOSI; IBodmer Moryi, l2014|).

This section looks at the overall architecture of the system,
presents the fundamental data model assumed, and outlines
the way in which KorAP approaches the assumptions of ISO
TC37 SC4 Corpus Query Lingua Franca (CQLF).

2.1. KorAP: Architecture and Data Model

Figure E shows a schematic diagram of the architecture of
KorAP. For the sake of sustainability, all components of Ko-

* Andreas Witt: IDS Mannheim and University of Heidelberg

TWe are grateful to the anonymous reviewers for their thor-
ough, helpful and friendly remarks. They have led us to put
stronger focus on the issue of query rewriting, and to modify the
title of this contribution accordingly.

Document

Primary Text

Metadata

Layer 1

Layer 2

Figure 1: Rough structure of a KorAP document.

rAP are exchangeable, to make it possible for the maintain-
ers of the system to follow future developments in data man-
agement. In addition to that, multiple backends are used
for corpus management and multiple query languages are
supported by the frontend, making the CQLF-Processor and
the authentication-based Policy Service the pivot points for
query processing.

KorAP organizes documents into multi-dimensional virtual
collections, created on the basis of internal or external fea-
tures of texts and/or on the basis of the origin or the content
of annotations (cf. lBaﬁSki et all, I2013|).

A KorAP document (cf. Fig. m) consists of the document
metadata (currently in the shape of a TEI-like header, taken
over from DeEREKo as encoded in the so-called I5 format,
cf. ILiingen and Sperberg—McQueed, |2012|), the raw text, and
one or more so-called foundries (i.e., collections of annota-
tions put together mostly due to originating from a single
annotation tool).

Systems such as KorAP have to deal with, minimally, two
kinds of data access restrictions: one set of such restrictions

3817

Frontend/

Backends

Q

N

CQLF- Policy-
API Processor Service
NI
))

L

(V

Figure 2: Architecture of KorAP and Query Flow.

comes from individual agreements with the data donors
(e.g. publishers). Another comes from licensing conditions
imposed by the creators of annotation toolsH. Yet another
set of restrictions handled by KorAP is user-imposed con-
straints on self-created annotations or self-defined virtual
collections.

2.2. KorAP as a Reference Implementation of
ISO CQLF

KorAP supports multiple query languages. Query strings
sent to the system are serialized into a uniform JSON-
LD representation (Sporny et ali, 2014), which implements
CQLF, anascent corpus query language standard that is cur-
rently the subject of work of the ISO TC37 SC4 Working
Group 6 (ISO/WD 24623-1). CQLF can best be thought
of as a feature matrix onto which the individual query con-
structs can be mapped. In KorAP practice, query constructs
thus mapped (serialized into JSON-LD) are then treated
identically, irrespective of which query language interpreter
they have been created by (see Fig. E).E The JSON-LD rep-
resentations are then deserialized into a form readable by
the particular destination backend.

3. Access Control in KorAP

Data access control in KorAP is a complex task, because ac-
cess restrictions may be imposed on either the texts or their
annotations, or both. Authorization may depend on permis-
sions that a research group grants to the user, but may also
be more fine-grained (e.g. limited to the working place by
filtering on IP-ranges). Authorization in KorAP needs to be
dynamic — a user may join or leave a certain research group
and thus gain or lose the related permissions. Virtual col-
lections may be dynamically created, inheriting the licences
of their source corpora. And these licences may change as
well.

'In some specific cases, it may also happen that individual lay-
ers within some foundries are subject to different licensing condi-
tions. For example, a software provider may decide to distribute
the tokenization information freely, but impose restrictions on the
output of the syntactic or semantic annotation process.

2KorAP’s use of JISON-LD for the purpose of expressing CQLF
construct was an intentional choice to complement the recommen-
dations of ISO TC37 SC4 WG for linguistic data protocols (Ide,
2013). This is meant as a step towards ensuring the uniformity
of the representation of language content standardized within ISO
TC37 SC4.

When dealing with access control of data resources, imple-
menters can follow multiple strategies with advantages and
disadvantages specific to the application. In the following,
we introduce four options theoretically available for KorAP,
and discuss their consequences.

1. The frontend could prevent users from entering queries
that target resources that the user is not allowed to ac-
cess. This is especially applicable to query systems
with closed sets of options, but less useful for a sys-
tem supporting multiple query languages. In KorAP,
this approach would have the additional disadvantage
of implementing data access restriction code multiple
times, because the web interface as well as the API
serve as access points to the data, and it is not rec-
ommended to have multiple points for maintenance of
security relevant code (cf. Rizvi et all, 2004).

2. The backend can be responsible for access control in
either of the two following ways:

(a) by limiting the results to the data that the user is
authorized to access, or
(b) by rejecting user queries targeting data that the
user is not authorized to access.
The first variant is mostly used in database systems by
applying query rewriting and modifying where clauses
in SQL statements before the query hits the database
(cf. Oracle, 2014). The second variant is proposed
by Rizvi et al| (2004). Using access control on the
database level, however, imposes the same problem for
KorAP as the implementation on the frontend level: for
the sake of sustainability and delegation of labour, Ko-
rAP supports multiple, exchangeable backends, which
means that access control would need to be imple-
mented multiple times and re-implemented whenever
a backend is exchanged. In addition to that, this strat-
egy is not scalable with the dynamic nature of the data
and of virtual collections (cf. Rizvi et al), 2004).

3. The results can be filtered after retrieval and before be-
ing presented to the user. This would allow for a sin-
gle point of implementation, but at the same time may
lead to potential complex computations on the backend
side, even for users not allowed to access any data.

4. The query can be rewritten in a separated step before
it is sent to the backends, limiting the request to the
data that the user is authorized to access (as proposed
in strategy 2a, but as a single point of implementation).

3818

—
01 {
02
03
04
05
06
97
08
09
10
1
12
13
14
15
16
1 17

18
Frontend Q

Return all nominal phrases as
annotated in the cnx foundry that
contain a proper noun as
annotated in the user-specific
default foundry for part-of-speech.

contains(<cnx/c=np>, [pos=NE])

19
20
21
22

"@context” : "http://ids-mannheim.de/ns/
KorAP/json-1d/v@.1/context. jsonld",
"query”: {

"@type"”: "korap:group"”,

"operation”: "operation:position”,

"frame”: "frame:contains”,

"operands”: [{

"@type"”: "korap:span”,

Mlayer" : "c"’
"foundry” : "cnx",

n keyll : nnpll
3

"@type"”: "korap:token",
"Wrap" . {

"@type"”: "korap:term”,
("foundry”: "mate”,)
lllayerll: Ilposll,
"key" : "NE"
}
1
3},

Z

23
24
25
26
27
28
29
30

"collections”": [{
"@type": "korap:meta-filter”,
"@value": {
"@type"”: "korap:term”,
"field": "korap:field#corpusID”,
n keyll B MAOOM

3
1

31|y 3}

e

Figure 3: Serialization of a query with multiple rewrites.

KorAP takes the fourth approach and rewrites queries that
in some way exceed permissions in a separated component
for access control: the Policy Service.

4. Query Rewriting

In web search engines, query rewriting often takes place to
improve recall, for example by deleting query terms (like
stopwords; Jones and Fain, 2003) or by introducing alter-
native synonyms (Jones et all, 2006), often in scenarios of
sponsored search results. Relational databases use query
rewriting mostly in conjunction with materialized views,
for “query optimization, maintenance of physical data in-
dependence, data integration and data warehouse design’’
(Halevy, 2001}, p. 270). Rizvi et al| (2004) suggest query
rewriting as a method to allow for fine-grained data access
control (see above).

Before focusing on the Policy Service component for data
access control, we will look more closely at query serializa-
tion. By serializing queries in a standardized way, KorAP
allows for multiple entry points for query rewriting steps (cf.
the rewrite markers in Fig.), especially for query optimiza-
tion. In what follows, we briefly look at two non-critical en-
try points for query rewriting (in the query interpreter and on
the way to the backend), and then concentrate on the point
critical for data access management.

4.1.

KorAP supports multiple query languages by translating
them in a unified form that instantiates ISO CQLF. Cur-
rently supported query languages include the Cosmas II
QL (cf. Bodmer, 2005) and Poliqarp QL (cf. Janus and
Przepiérkowski, 2007). First, the query strings are parsed
using a language-specific grammar and translated in a
language-specific abstract syntax tree (in the parser module
in Fig. [§). This tree is afterwards serialized into our imple-
mentation of CQLF in the form of a JSON-LD document
(in the processor module).

Although CQLF covers conceptually all possible constructs
of corpus query languages, our implementation attempts to
avoid verbosity by prohibiting distinct formulations of syn-
onymous query constructs. For example, Cosmas II allows
queries such as Alice /+wl:1 Bob, which means that the
word “Bob’’ has to immediately be preceded by the word
“Alice’’. On the other hand, it supports the query Bob /-
wl:1 Alice, which means that the word “Alice’’ has to im-
mediately be followed by the word “Bob’’. Because “Alice
precedes Bob’’ is a query construct equivalent to “Bob fol-
lows Alice’’, the query interpreter will rewrite the query be-
fore serialization, only supporting unidirectional sequences.

Query Serialization Rewrite

4.2. Backend Rewrite

The serialized query output can, depending on the con-
structs present in it, be rewritten when getting deserialized

3819

into the backend. Currently, KorAP supports two different
backends: one using a Lucene search indexH, the other one
using the graph database Neo4jE. The former backend de-
serializes the JSON-LD format into Lucene SpanQuery ob-
jects, whereas the latter deserializes it into Cypher queries.
Depending on the destination query system, further opti-
mizations by means of query rewriting can be applied. For
example, the Cosmas II query Bob /+wl:1 Alice is equiv-
alent to the Poligarp query [orth=Bob][orth=Alice], but
will be serialized differently: the first query uses a gen-
eral sequence operator including distance constraints in
the JSON-LD serialization; the second query uses a di-
rect sequence operator. The Lucene backend has optimized
queries for direct sequences. When the deserializer parses a
sequence operator with a defined distance constraint of zero
words, the query is rewritten to a sequence without distance
constraints, and thus optimized for the backend.

4.3. Access Control Rewrite

Apart from the most trivial operations performed at the level
of the frontend alone, all user activity in KorAP involves
the management of data access. Users’ interaction with
the broadly understood access management begins typically
at the point of authentication (via a local or a Shibboleth-
regulated distributed authentication system) and continues
through defining virtual collections, retrieving information
on them, et cetera. What we concentrate on here is a very
specific point where a user’s query needs to be examined
for permissions and either rejected in full or rewritten and
returned with an accompanying warning message.

4.3.1. Relevant Use-cases

Recall from the previous sections that one of the fundamen-
tal features implemented in KorAP is the ability to create
virtual collections on the basis of various text-internal and
external features. Depending on the choices made by the
user, this may imply targeting a set of documents that is not
uniform with respect to the license permissions. And thus,
while the texts of the given collection may all be accessible
to the user, some foundries may be restricted to (e.g., being
used by the employees of the IDS as the tool-license-bearer).
A somewhat similar scenario depends on another feature of
KorAP, namely the ability to address, in a single query, an-
notation layers belonging to distinct foundries — it may hap-
pen that the queried layers are not uniform license-wise and
thus, while part of the given query may return the appropri-
ate results, other parts have to fail. Such a query is shown
in Figure [§, where the user explicitly invokes the license-
restricted Connexor® foundry and implicitly, the foundry set
as a user default for part-of-speech information — in this
case, Matet (rewritten in line 17).

4.3.2. Access Policies
Determining whether a user is allowed to query a virtual col-
lection or resource in KorAP depends on several conditions

3https://1ucene.apache.or‘g/
4http://www.neo4j.or‘g/
5http://www.connexor.com/nlplib/
6http://code.google.com/p/mate-tools/

and on the type of information that is requested. We shall
describe these types of information as different policies.
Whereas text publishers may specify which group of users is
allowed to access their resources, other types of information
units linked to these resources (i.e., annotations, residing in
individual foundries) are not covered by these license con-
ditions. They are instead influenced by the licensing con-
ditions imposed on, or by, the annotation tools. To build
on top of this premise of potentially multiple access con-
ditions, in which access control for a resource is not only
determined by one piece of information, but a variety of in-
formation units, KorAP’s Policy Service allows the defini-
tion of rules for each unit. In order to derive an access con-
trol decision from a request, the Policy Service takes into
account all units of information that are associated with the
requested resource; this is referred to here as horizontal con-
sistency. As aresult, granting access to a linguistic resource
constitutes the sum of the underlying access decisions.

In contrast to horizontal consistency of an access control de-
cision, policies may also be structured vertically, as hierar-
chical dependencies between resources. Thus, access to, for
example, a specific annotation segmentation is not only de-
pendent on the policies defined for this particular resource,
but also bound by conditions of the resource it is contained
by (cf. Fig.).

Additionally, KorAP provides environmental parameters
that can be attached to a resource policy. These environ-
mental parameters determine if a policy is applicable during
the request. This allows the Policy Service to apply certain
policies on the basis of a location address or a time interval.

4.3.3. Role of the Policy Service

Before redirecting the query to the backend, an implemen-
tation of the Policy Service retrieves the JSON representa-
tion, extracts referenced resources, and locates the respec-
tive policies for the relevant portions of the query serializa-
tion.

In order for the query in Fig. E to validate, the user has to
have read permission for the corpus archive referenced in the
collections segment of the JSON-LD serialization that rep-
resents (see lines 23-30) the definition of a virtual collection
as it is used by all components of the KorAP architecture.
The Policy Service also extracts annotation foundries and
layers specified by the user (lines 10-11 and 17-18) within
the query segment. Access to these resources can only be
granted if the Policy Service determines that the user pos-
sesses all the required conditions attached to the resource
policy (cf. Fig. f).

The application of the query rewrite process is triggered by
the Policy Service in case the user cannot meet all the condi-
tions specified in the resource policies or the query is miss-
ing parameters required to be validated. Fig. { illustrates
that foundry level information can be inserted into the query
by the Policy Service. To this purpose the Policy Service has
access to user settings defining default values for annotation
layer information (e.g. morphological, constituency, depen-
dency layers), if the user has provided such properties in the
user account settings.

On the one hand, as we have illustrated, a query request may
be modified on the basis of the authorization level or of de-

3820

https://lucene.apache.org/
http://www.neo4j.org/
http://www.connexor.com/nlplib/
http://code.google.com/p/mate-tools/

Resource Access esource Poli yes Policy Context yes Access es arent resource
valid applicable ermissions vali policy available
7 & &
2 rewrite 2 rewrite 2 rewrite
& & &
Query Query Query
rewritable rewritable rewritable 2
%o o <
=4

Access denied Access granted

Figure 4: Policy architecture diagram.

fault properties of a user. On the other hand, queries on
virtual collections sometimes have to be stable and repro-
ducible with the exact same results for each request — and
are not allowed to be altered by the query rewriter to pro-
hibit inconsistencies. In that case, a query can be marked as
not rewritable and access to the data will be rejected instead
of modified if the user has no access to the whole dataset
in the request (see the “Query rewritable’’ decisions in Fig.

). Rejection is also the result of a user targeting a restricted
foundry — in such cases, the query can have no satisfactory
result, because the information that the user explicitly re-
quests cannot be provided.

5. Conclusion

We have presented a fragment of the functionality of the new
corpus analysis platform KorAP, created at IDS Mannheim,
in order to contribute to the store of best practices for deal-
ing with access control issues in large, complex and dy-
namic language resources. Although the primary goal of
current KorAP development is to produce a new engine
for the DEREKo archive, the software will be released un-
der an open license at https://github.com/KorAP. In-
formation on the progress of our work is made available at
http://korap.ids-mannheim.de/.

References

Bariski, P., Fischer, P. M., Frick, E., Ketzan, E., Kupietz,
M., Schnober, C., Schonefeld, O., and Witt, A. (2012).
The New IDS Corpus Analysis Platform: Challenges and
Prospects. In Calzolari, N., Choukri, K., Declerck, T.,
Dogan, M. U., Maegaard, B., Mariani, J., Odijk, J., and
Piperidis, S., editors, Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalua-

tion (LREC’12), Istanbul. European Language Resources
Association (ELRA).

Barski, P., Frick, E., Hanl, M., Kupietz, M., Schnober,
C., and Witt, A. (2013). Robust corpus architec-
ture: a new look at virtual collections and data ac-
cess. In Hardie, A. and Love, R., editors, Corpus Lin-
guistics 2013 Abstract Book, pages 23-25, Lancaster.
UCREL. http://ucrel.lancs.ac.uk/cl2013/doc/
CL2013-ABSTRACT-BOOK. pdt,.

Bodmer, F. (2005). COSMAS II. Recherchieren in den Ko-
rpora des IDS. Sprachreport, 3/2005:2-5.

Bodmer Mory, F. (2014). Mit COSMAS II »in den Weiten
der IDS-Korpora unterwegs«. In Steinle, M. and Berens,
F. 1., editors, Ansichten und Einsichten. 50 Jahre In-
stitut fiir Deutsche Sprache, page 376-385. Institut fiir
Deutsche Sprache, Mannheim.

Halevy, A. Y. (2001). Answering queries using views: A
survey. The VLDB Journal, 10(4):270-294.

Ide, N. (2013). Web service exchange protocols:
Preliminary proposal. Presentation given at
ISO TC37 SC4 WGI meeting in Pisa, Septem-
ber 2nd, 2013. Accessible at http://www.anc.
org/LAPPS/EP/Meeting-2013-09-26-Pisa/
overview-ep-2013-09-26-pisa.pdt.

Janus, D. and Przepiérkowski, A. (2007). Poliqarp: An
open source corpus indexer and search engine with syn-
tactic extensions. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demon-
stration Sessions, pages 85—88. Association for Compu-
tational Linguistics.

3821

https://github.com/KorAP
http://korap.ids-mannheim.de/
http://ucrel.lancs.ac.uk/cl2013/doc/CL2013-ABSTRACT-BOOK.pdf
http://ucrel.lancs.ac.uk/cl2013/doc/CL2013-ABSTRACT-BOOK.pdf
http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf
http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf
http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf

Jones, R. and Fain, D. C. (2003). Query word deletion pre-
diction. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development
in Informaion Retrieval, SIGIR 03, pages 435-436, New
York, NY, USA. ACM.

Jones, R., Rey, B., Madani, O., and Greiner, W. (2006).
Generating query substitutions. In Proceedings of the
15th International Conference on World Wide Web,
WWW °06, pages 387-396, New York, NY, USA. ACM.

Kupietz, M., Belica, C., Keibel, H., and Witt, A. (2010).
The German Reference Corpus DEReKo: A Primor-
dial Sample for Linguistic Research. In Calzolari,
N., Choukri, K., Maegaard, B., Mariani, J., Odjik,
J., Piperidis, S., Rosner, M., and Tapias, D., editors,
Proceedings of the Seventh conference on International
Language Resources and Evaluation (LREC’10), page
1848-1854, Valletta, Malta. European Language Re-
sources Association (ELRA). http://www.lrec-cont.
org/proceedings/lrec2010/pdt/414 Paper.pdt
(25.5.2010).

Kupietz, M. and Liingen, H. (2014). Recent Developments
in DEREKo. In Proceedings of LREC 2014. European
Language Resources Association (ELRA).

Liingen, H. and Sperberg-McQueen, C. M. (2012). A TEI
P5 Document Grammar for the IDS Text Model. Journal
of the Text Encoding Initiative, 3:1 — 18.

Oracle (2014). Oracle database security guide 11g release 1
(11.1), 7. using oracle virtual private database to control
data access. online.

Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. (2004).
Extending query rewriting techniques for fine-grained ac-
cess control. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’04, pages 551-562, New York, NY, USA. ACM.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and
Lindstrém, N. (2014). Json-1d 1.0. a json-based serial-
ization for linked data.

3822

http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf

	Introduction
	KorAP: Architecture, Data Model, Query Languages
	KorAP: Architecture and Data Model
	KorAP as a Reference Implementation of ISO CQLF

	Access Control in KorAP
	Query Rewriting
	Query Serialization Rewrite
	Backend Rewrite
	Access Control Rewrite
	Relevant Use-cases
	Access Policies
	Role of the Policy Service

	Conclusion

