
Ranking Job Offers for Candidates: learning hidden knowledge from Big Data

Marc Poch1, Núria Bel1, Sergio Espeja2, Felipe Navı́o2

1Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona Spain
{marc.pochriera, nuria.bel}@upf.edu

2Jobandtalent Inc.
Eloy Gonzalo 27, 3, 28010 Madrid

{sergio.espeja, felipe.navio}@jobandtalent.com

Abstract
This paper presents a system for suggesting a ranked list of appropriate vacancy descriptions to job seekers in a job board web site. In
particular our work has explored the use of supervised classifiers with the objective of learning implicit relations which cannot be found
with similarity or pattern based search methods that rely only on explicit information. Skills, names of professions and degrees, among
other examples, are expressed in different languages, showing high variation and the use of ad-hoc resources to trace the relations is
very costly. This implicit information is unveiled when a candidate applies for a job and therefore it is information that can be used for
learning a model to predict new cases. The results of our experiments, which combine different clustering, classification and ranking
methods, show the validity of the approach.

Keywords: multilingual data, e-recruiting, LDA clustering methods, ranking methods

1. Introduction

Before the appearance of job board websites, labour market
was mostly a local business: job agencies assisted employ-
ers finding profiled workers all in the same geographical
location or in a particular specialized industry. The num-
ber of vacancies and candidates allowed for a manual, high
quality selection process. The World Wide Web and job
board websites have dramatically changed the dimensions
of the task: they are handling an enormous number of job
seekers and vacancies descriptions and in a very dynamic
way. Job boards offer services to filter vacancies with key-
words for job seekers to reduce the search space, and have
devised powerful database search engines to assist human
experts in the process of selecting the right candidates for
a particular vacancy. But these facilities can hardly cope
with the problem. Currently, human assisted selection pro-
cesses cannot cope with the number and diversity of candi-
date profiles and vacancies, which are a constant stream of
information. Language Technology can play a role in han-
dling this big amount of information as to offer to each job
seeker a selected number of vacancy descriptions, ranked
according to his or her profile. The work we present here
addresses this task.
In particular, our work has explored the possibility of using
first a supervised learning method to build a model of the
job market by learning from actual candidate applications
to particular vacancies. After clustering job offer descrip-
tions, the task is approached as a classification task where
job clusters are the classes in which new job seekers are
classified. Afterwards, we use a ranking method to order
the job offers in the cluster.
The ultimate goal of the learning exercise is to handle the
problem of differences in the way the information is ex-
pressed both in candidate profiles and vacancy descriptions.
Besides the variation of the names of degrees, professions

and job descriptions, there can be a mismatch in the way of
making reference to particular skills. For example, a Can-
didate with “COBOL” programming skills may not match a
Job Offer requiring “AS/400” (server that can be programed
in C, RPG, COBOL...) skills. These hidden relations are
unveiled when a candidate applies for a particular job. Our
assumption is that an implicit relation is validated when
several candidates sharing a particular skill apply for a job
that does not contain explicitly this skill. Our proposal is an
attempt to learn the hidden non-explicit relations between
skills and job descriptions.
The data being used comes from Jobandtalent.com, a job
board web site in which job seekers fill in a form with their
profile information and they receive suggestions of appro-
priate job offers.The description of the job offer is a va-
cancy full description in free text. The information supplied
by users can contain free text and in general is very scarce
and non-accurate. A further problem is that candidate free
text usually includes text in different languages, English
and Spanish as in this example where text in Spanish is
in bold: ”Curso de Corporate Law and Governance en la
Universidad London School of Economics” (’Course on
Corporate Law and Governance at the University London
School of Economics’) User interaction information gener-
ated on Jobandtalent web site and stored in a database is
used to learn the model.

2. State of the Art
First attempts for automatically selecting candidates for a
particular job (Vega, 1990) were based on keyword search
and content-based filtering techniques. Probably this is still
the main approach in actual real world systems. These sys-
tems are supported with curriculum parsing engines that
extract particular information from more or less structured
text. After the success of job board websites, where job

2076

seekers and job advertisers try to find each other, a num-
ber of research works focus on how to automate the task
of relating the appropriate candidate to a job offer. In most
cases, the task is approached in terms of Information Re-
trieval systems that try to find the “right” information and
some of them use recommendation techniques worked out
for relating products with customers.
A number of works have addressed candidate-job matching
as a recommendation task. However, more recently sev-
eral works have included statistical inference to efficiently
handle all the information contained in profiles and job de-
scriptions. Recommender systems are based on similarity
measurements.
The so called Content-based Filtering approaches recom-
mend new objects based on object similarities with objects
selected in the past. The so called Collaborative Filtering
approaches utilize user profile similarities to make recom-
mendations. Rafter et al. (2000) used knowledge about
similar user previous behaviour and used a cluster-based
collaborative filtering approach to exploit transitive rela-
tionships between user profiles. Keim (2007) combined
both sources of information, similarity of behaviour and
profile similarity, using Probabilistic Latent Semantic Anal-
ysis techniques to model selection decisions. The task
was to assess the probability that a recruiter rates a par-
ticular candidate with a binary value: “qualified” or “not-
qualified” or, in the other direction, the probability that a
job candidate rates a particular job in also two categories.
Published results reported a 86% accuracy in classifying
relevant candidates and 88% when classifying relevant and
irrelevant jobs. However, experiments were based on a re-
duced experimental scenario with 30 students rating 100
job offers.
Malinowski et al. 2006 and 2008 also included informa-
tion about user preferences. User preferences are obtained
as trust information and used to predict new matches. The
evaluation results were also based on a very reduced ex-
perimental setting, because of lack of real data, which, as
authors themselves recognize, require of further validation
in a real scenario.
Lu et al. (2013) applied graph modeling and afterwards
a modified PageRank algorithm to extract top-most ranked
job-candidate relations. In order to build the graph, several
relations are considered: profile similarity, stated candidate
preferences with respect to employers, candidate applica-
tion for particular offers, and stated preferences as traced
by “favorite”, “like” and “visit” options in the web site. For
this authors, the crucial step is the content-based similarity
computing, that they solve by using Latent Semantic Anal-
ysis tools. In the evaluation experiment, they used a data-set
containing 7000 candidates, 400 employers and 8000 job
offers, although information about interaction with differ-
ent website preference options was only available for 9%
of candidates. Precision results for the task of assigning
jobs to a candidate, taking into account only top 10 rec-
ommendations, ranges from 70% to 50%, outperforming
two baselines: one using profile similarity and one using
a Collaborative Filtering system. But evaluation was done
manually and only for three candidates.
Interestingly, Lu et al. reported that the content-based ap-

proach required a lot of work such as profile formatting,
job/employer title canonicalization, the creation of particu-
lar industry taxonomies, and equivalent lists, among other
tasks and resources. Besides the problem of getting these
resources, the main problem of the Content-based and Col-
laborative filtering approaches is that similarity computa-
tions reduce matching to explicitly mentioned information
and, as mentioned, there can be differences that make sim-
ilarity comparison difficult. For instance, Mimno and Mc-
callum (2008) reported that 85% of job titles in a 9,722 re-
sume corpus occur only once, showing the difficulties that
are met for computing similarity.
Our approach overcomes the similarity assessment problem
training a classification model that relates candidate profiles
with job offers based on available information about the ac-
tual interaction behaviour of candidates and recruiters. The
main hypothesis is that it is possible to learn from the in-
teraction data the relation between candidate skills and va-
cancy descriptions reducing the problem of linguistic vari-
ation and domain based implicit knowledge.

3. Description of the data
For our experiments, the following data was available: (i)
a set of 80k candidate profiles, (ii) a set of 30k vacancy
descriptions and (iii) a sample of 1M matching relations
and (iv) a test-set made by a human expert who selected
from one to a maximum 5 job vacancy descriptions for 126
candidates. Note that the human expert selection was in
terms of “best options” and not “all possible options”.
The candidate profiles (i) were made by actual users filling
a form at the website that describe basic general profiles
like languages spoken. The user can also write in free text
his or her degrees, a personal description and other issues
related to the cv. User profile and personal descriptions
differ very much, some being made only with a few key-
words, and other being more than 20 lines of free text de-
scribing personality aspects and experience. As mentioned,
one of the most striking characteristics of these texts is that
they can mix different languages. For our experiments we
have taken the description and other general form fields like
languages spoken. The vacancy descriptions (ii) we have
worked with are the free text vacancy description provided
by recruiting companies, which look as the usual advertis-
ing notes published in newspapers. Note that both types of
users can also mark options from a list of ”Area of Activ-
ity” (AofA) names that are meant to describe in a horizontal
way the experience of candidates and business activities of
the recruiting company: ”On-line Marketing, ”Finances”,
are examples of this field values. For candidates this infor-
mation was considered useless after observing that a signif-
icant number of users tend to mark all options, and there-
fore was ignored. For job descriptions it was used mainly
for job clustering, as we will see later.
As for (iii), the matching relations, we worked with real
data from user behavior: job seekers that have applied for a
particular vacancy and candidates that have been reviewed
by a recruiting user for a particular vacancy. Both inter-
actions are considered the same in our experiments. This
“matching” information was used for training the classi-
fiers. Finally (iv), the test-set was used for evaluation as

2077

a gold-standard and we evaluated against it resulting pre-
cision and coverage as well as the position of the human-
selected job descriptions in the final ranked list. For (i) and
(ii), which include free text, a first pre-processing step is
in charge of cleaning and correcting character encoding, if
not in utf-8. Later a sentence-based language detector is
applied (Shuyo, 2010)1. Language identification is crucial
for the PoS tagger and lemmatizer (Padró and Stanilovsky,
2012)2 applied afterwards. Stop words are then filtered and
only lemmas are used for building a bag-of-words vector
representation of both candidate profiles and job offer de-
scriptions.

4. System description: training
This section describes the steps involved in creating all nec-
essary models and processes that are required to rank job
offers for a new candidate. An schema of the training mod-
els process is presented in Figure 1 on page 4.

4.1. Job Offers clustering
As said before, the field Area-of-Activity (AofA) that re-
cruiting users could mark when entering data in the job
board was a possible solution to cluster similar job descrip-
tions. Job clustering was required to approach the assign-
ment task in terms of classification. Each candidate will be
classified for one or more classes of jobs according to the
model learnt from the matching information. Nevertheless,
two other clustering methods have been used in our exper-
iments: k-means (Shindler et al., 2011) and Topic Models
using Latent Dirichlet Allocation (LDA) (Blei, 2012). For
the k-means clustering, job offers have been represented in
a vector space and used to obtain different centroids. All
jobs end up being assigned by minimum distance to one of
the k centroids. As for Topic Models, job offers are repre-
sented in a vector space where each component represents
a topic. For the experiments, we used GibbsLDA++(Phan
and Nguyen, 2007) implementation of LDA, which was de-
signed to obtain topic models of Big Data structures. Un-
like k-means, where all jobs are easily assigned to a cluster
by the vector distance to all the centroids, Topic Models
do not deliver a single topic a vector belongs to. In Topic
Models, each document is represented as the probabilities
of belonging to a number of topics. That is, each job offer
is assigned a probability for each of a number of possible
topics. The number of topics is set a priori (Blei, 2012). To
be able to define clusters of job offers, a threshold has been
experimentally set. All jobs that exceed this threshold are
considered to belong to that Topic cluster.

4.2. Users feedback: assign candidates to jobs clusters
After all job offers have been assigned to a cluster in the
previous step, each candidate (from training data) is as-
signed to a job cluster along the matching information.
Jobandtalent.com records and stores user-job board inter-
action information. The possible interactions are when the
candidate applies for a particular job offer; when the re-
cruiting user looks at the profile of a particular candidate.

1a Java detection library that can detect 53 different languages
2Freeling is an open-source Suite of Language Analyzers in

which performance has been optimized.

Each one of this ”interactions“ is what we called a match-
ing. With all this feedback we can establish a relation be-
tween each candidate and one or more job clusters. Since
every job offer belongs to a job cluster defined in the pre-
vious step, the candidate can be associated to a job cluster
via the matching relations. All job clusters for which there
exists a matching are considered to be associated with a
candidate.

4.3. Training classifiers
Once the relation between candidates and job clusters is
set, we use this data to train classification models. The goal
is to have predictive models that assign new candidates to
one or some job clusters. We chose Support Vector Ma-
chines (Joachims, 1999) (SVM) to make the classification
models. LIBLINEAR(Fan et al., 2008) was chosen because
it has been specially designed for document classification
with millions of instances and features. This Big Data ca-
pability make it the best option for the experiments and the
expected growing data that is foreseen by Jobandtalent.
The set used as training data initially had around 80,000
features after stop words were removed. In order to reduce
this large dimensionality, Chi Square feature selection has
been used to select the features for each classifier. The dif-
ferent clustering methods produce different clusters. Thus,
there is a different average number of selected features. Ta-
ble 1 shows the average number of selected features (avg.
features) for each classifier using the Chi Square method
and the vocabulary size (vocabulary).

clustering method vocabulary avg. features
AofA 80113 2407
k-means 80113 2085
LDA 80113 3034

Table 1: Chi Square feature selection

Candidates in the training data are represented as feature
vectors and associated to different corresponding job clus-
ters. For each job cluster, a binary classifier is trained and
will be used to predict if a new candidate belongs or not
to that job cluster (a candidate may belong to different Job
Clusters). To train the classifier for a job cluster, all candi-
dates with a matching with one of the job offers represented
by it are used as positive examples and the rest as negative
ones. To evaluate each classifier, 300 vectors are reserved
to be used as test-set.

5. System description: ranking job offers
for a new candidate

After a new candidate is assigned to a cluster, the system
ranks all the job offers in this cluster with the aim of high-
lighting those that are more appropriate.The whole process
for new candidates is presented in Figure 2 on page 5.

5.1. New candidate classification: predicting the job
cluster

First, the candidate profile is cleaned and the same text pre-
processing explained for the training phase is applied: lan-

2078

DATA

CANDIDATES JOBS

Pre-process

Cand

PoS / Lemmatization

Freeling

PoS / Lemmatization

Freeling

Pre-process

Jobs

Lang.

detect

Word

selection

Word

selection

Get job

clusters

with AofA

Get job clusters with LDA

PROCESS MATCHINGS:

CandId <---- Matching data --> JobID - - - LDA - - -> job ClusterId

CandId --> job ClusterId

USERS FEEDBACK:

MATCHINGS

Feature selection

Xi2 for cluster i Feature selection

Xi2 for Cluster N

JOBS

clusters

LDA model

Weka vectors
SVM vectors

Weka vectors

SVM training SVM liblin

model for

job cluster

I

SVM

model

cluster N

Figure 1: Training Models

guage detection, PoS tagging, lemmatization and word fil-
tering. Because feature selection is class-based, a different
candidate vector has to be made for each classifier. The
SVM library is executed in prediction mode deciding for
the new candidate whether it belongs to each job cluster or
not. Finally, a list of Job Clusters is obtained for this new
Candidate.

5.2. Ranking job offers in cluster for the new
candidate

Once the appropriate job clusters are found for a new can-
didate, the system ranks the jobs in the cluster. If the candi-
date has been assigned more than one cluster, the jobs in all
assigned clusters are ranked together. In the experiments,
three ranking methods have been used: BM25, cosine sim-
ilarity and Naive Bayes (Zhao et al., 2006).

5.2.1. BM25 ranking
BM25 is a bag-of-words retrieval function used to rank a
set of documents taking into account the query terms, doc-
ument lengths and term frequencies but not the term rela-
tions within the query or the documents. Given a query q,
the score for each document b, in a collection of documents
D, can be calculated with the following formula:

SBM25(q, d) =
∑
tεq

{
tft,d · log(N−dft+0.5

dft+0.5)

0.5 + 1.5 dld
dlavg

+ tft,d

}

where tft,d is term frequency of word t in document d, dft
is document frequency of word t in collection D, N is the
number of documents in D, dld is the length of document
d, and dlavg is the average length of documents in D. In
our experiments jobs are seen as documents that are being
ranked depending on their relevance for each query or can-
didate.

5.2.2. Cosine similarity ranking
The cosine similarity is also used as a ranking method.
Given a candidate, its cosine similarity is calculated with
respect to each job.
Given two vectors of n attributes, q (query or candidate)
and d (document or job), the cosine similarity, cos(θ), is
represented as:

cos(θ) =
q · d

||q|| · ||d||
=

∑n
i=0 qi · di√∑n

i=0(qi)
2 ·
√∑n

i=0(di)
2

The resulting values can be ordered to produce the ranking
for a candidate.

5.2.3. Naive Bayes ranking
For the Naive Bayes ranking (NB), the same matching in-
formation used for the cluster classifiers is now used to
learn a classifier where each job is a class. The candidates
represent instances to be classified into the corresponding
category. Our experiments followed Zhao et al. (2006)

2079

DATA

NEW

CANDIDATE

Pre-process

Cand

PoS / Lemmatization

Freeling

Lang

detect

Word

statistics

(counter)

Feature selection

Xi2 for cluster i PRESELECTED

features Cluster N

Weka vectors
SVM vectors

Weka vectors
SVM PREDICTION

SVM liblin

model for

job cluster

I

SVM

models

cluster N JOBS

clusters

LDA model

Candidate – Job Clusters

Assignments
RANKING

Figure 2: New Candidate

where the score of a document d (a job offer) with respect
to a query q (a candidate), formed by a set of words ti, can
be calculated by

SNB(q, d) = log

{
p(d|q)
p(d|q)

}
where d consists of all documents except d or, in our case,
all job offers to be ranked except job d.
The conditional probabilities can be calculated with

p(d|q) = p(d) ·
∏
tεq

p(t|d) = p(d) ·
∏
tεq

{
tft,Qd + 1

tfQd + |VQ|

}

p(d|q) = p(d)·
∏
tεq

p(t|d) = p(d)·
∏
tεq

{
tft − tft,Qd + 1

tfQ − tfQd + |VQ|

}

whereQd is the subset of queries inQ associated with doc-
ument d, tft,Qd is the term frequency of word t in Qd, tft
is the term frequency of t in Q, tfQd is the total term fre-
quency in Qd, tfQ is the total term frequency in Q, and
|VQ| is the number of unique words in Q.
These formulas may not be computable depending on the
data size and its characteristics. Some of the probabili-
ties may be very low and this could cause and underflow
situation (the computer cannot represent such numbers).
To help prevent this situation we used the following prop-
erties of logarithm: log(x ∗ y) = log(x) + log(y) and

log(xy) = y ∗ log(x) to rewrite the score formula as fol-
lows:

SNB(q, d) = log

{
p(d|q)
p(d|q)

}
=

= log {p(d|q)} − log
{
p(d|q)

}
=

= log {p(d)}+
∑
tεq

log

{
tft,Qd + 1

tfQd + |VQ|

}

−log
{
p(d)

}
−
∑
tεq

log

{
tft − tft,Qd + 1

tfQ − tfQd + |VQ|

}

6. Experiments
We conducted twelve different experiments combining the
three different clustering methods and the three ranking
methods in addition to the rankings without clustering (all
test jobs ranked for each candidate). The following sections
will explain the data used in the experiments, the evaluation
methods and the results obtained.

6.1. Train data
Train data consists of a set of candidates, jobs and match-
ings. As presented in Table 2, there are around 80k candi-
dates and 30k jobs. The train data also has 1M matchings.
A matching defines an association between a candidate and
a job. It can be positive or negative: when a candidate ap-
plies for a job the matching is positive.

2080

Elements Words Vocabulary
Candidates 77879 4.47 M 80113
Jobs 28520 4 M 47887

Table 2: Train data table

6.2. Test data
The test data is presented in Table 3. For each of the 389
test candidates, a set within the 126 test job offers must be
selected and ranked. For each candidate, the best possible
job offers have been manually selected by a human expert
and will be used for evaluating precision and recall, and the
position in the ranked list finally delivered. Each candidate
can have more than one manually selected job offer. These
selected associations between a candidate and a job offer
will be called expected matchings. There are 658 expected
matchings in the test data.

Elements Words Vocabulary
Candidates 389 29624 4554
Jobs 126 19255 3284

Table 3: Test data table

7. Evaluation
Table 4 in page 7 presents the results for the twelve ex-
periments combining the three clustering methods and the
three ranking methods. Also the results without clustering
are presented. The results show the precision and the cover-
age for each experiment to evaluate how well the classifiers
are performing. The table also shows the expected or cor-
rect job position average (pos. avg.): The closer to position
one the job selected by the human expert is, the better. The
position standard deviation (pos. dev.) is also presented, as
well as the ranking average length (len. avg.). The ranking
average length is the average size of the ranked lists of job
offers given to candidates and ultimately depends on the
number of clusters assigned to a candidate, and the size of
each cluster.
The results show that LDA is giving the best clustering re-
sults and, at the same time, the size of the ranked lists it
provides is also the smallest (which is one of the goals).
Regarding the ranking methods, BM25 and cosine similar-
ity are very close. The best results are obtained using the
Naive Bayes ranking. The correct position average and de-
viation allow us to estimate if the ranked list can even be
cut while still containing the selected job.
Precision results on Table 5 in page 6 show precision in
the form p@n or precision at N. The resulting ranked lists
are cut at N first ranked jobs and evaluated again. The table
shows that LDA clustering and Naive Bayes ranking get the
best results.
P@10 are specially important results since this is the
threshold that is considered to be key regarding user ex-
perience for Jobandtalent. It is considered that a user has a
very low interest in job offers listed after position 10.

clustering ranking p@1 p@10 p@30 p@All
aofa bm25 4.64 20.22 40.16 62.84
kmeans bm25 4.96 24.24 45.73 71.07
lda bm25 4.95 26.65 50.82 74.18
aofa cosine 4.64 18.85 40.71 62.84
kmeans cosine 4.41 22.87 45.45 71.07
lda cosine 4.95 29.67 53.02 74.18
aofa Bayes 3.83 31.15 50.82 62.84
kmeans Bayes 6.37 36.29 58.45 71.47
lda Bayes 8.26 40.22 65.01 74.38

Table 5: Experiment results: precision@

In order to further assess the results, we manually inspected
the adequacy of the 10 best-ranked job offers for 20 ran-
domly chosen candidates obtained with the LDA-SVM-
Bayes system. For this evaluation, we compared suggested
job offers with the matching data-set, that is, the actual in-
terest of users. But we also assessed the adequacy of the
rest of suggestions as this is the segment of suggestions
where we expected to see the validity of our hypothesis:
that the market model could have been effective in discov-
ering implicit knowledge and market tendencies.
In average, each candidate received 1.9 job offers that were
in the test-set used as gold-standard, and thus they are
clearly adequate. About 3.8 of the suggestions could not
be considered appropriate because there were unmatched
requirements (for instance requiring engineers and the can-
didate being a lawyer), and the rest shows the capacities of
the system: most of these about 4 other suggestions for each
candidate are traineeships or internships with a broad range
of profiles required, as in this case: “Buscamos recién tit-
ulados y estudiantes de último curso de diversos sectores,
interesados en colaborar con nosotros a través de un pro-
grama de beca.“ (”We are looking for recent graduates and
final year students from various sectors interested in collab-
orating with us through a scholarship program”).
The suggestions considered as wrong also include, in fact,
suggestions that could be considered a side-effect of the
approach as they usually are the most assigned vacancies:
ticket sales, marketing online, etc. As in what respects mul-
tilinguality, in the assessed results there is a crosslingual
effect so that candidates who have written the profile in
Spanish get suggestions written in English, validating the
assumption that information should not be processed sepa-
rately.

8. Conclusion and future work
We have presented a system for suggesting a ranked list
of appropriate vacancy descriptions to job seekers in a job
board web site. Our contribution is to have used super-
vised classifiers for learning implicit relations between can-
didate profiles and job descriptions. These implicit rela-
tions are basically linguistic variation in naming skills or
profession names and crosslingual relations. Moreover im-
plicit relations we want to capture also include domain-
based knowledge (for instance the relation between AS/400
and COBOL). Other systems can only discover these rela-
tions if adhoc resources were used. The results obtained in

2081

clustering ranking precision coverage pos. avg. pos. dev. len. avg.
aofa bm25 62.84 99.74 28.51 26.14 83.23
kmeans bm25 71.07 98.97 27.42 26.42 73.34
lda bm25 74.18 98.97 24.78 23.69 67.25
none bm25 100.00 100.00 35.12 33.22 126.00
aofa cosine 62.84 99.74 27.79 25.03 83.23
kmeans cosine 71.07 98.97 28.12 25.02 73.34
lda cosine 74.18 98.97 23.69 22.75 67.25
none cosine 100.00 100.00 36.11 32.59 126.00
aofa Bayes 62.84 99.74 17.34 16.35 83.23
kmeans Bayes 71.47 97.43 15.93 16.07 73.32
lda Bayes 74.38 98.71 13.87 13.90 67.25
none Bayes 100.00 100.00 21.46 21.20 126.00

Table 4: Experiment results

our experiments demonstrate the validity of the approach.
For our test-set of 126 candidates, the best system delivered
in position 13, in average, the job offer selected by a human
expert and with a precision of 74.38%. A manual inspec-
tion to assess the quality of the top 10 ranked job offers for
20 candidates, confirmed that, in average, a new candidate
will find more than a half of the suggested vacancies ap-
propriate to his or her profile. While these results show the
validity of the approach, we expect to improve the selected
top 10 list by performing a better processing of the job and
candidate descriptions as well as the linear combination of
the different ranking algorithms and models.

9. References
David M. Blei. 2012. Probabilistic topic models. Com-

mun. ACM, 55(4), April.
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A library
for large linear classification. Journal of Machine Learn-
ing Research, 9:1871–1874.

Thorsten Joachims. 1999. Advances in kernel meth-
ods. chapter Making large-scale support vector machine
learning practical, pages 169–184. MIT Press, Cam-
bridge, MA, USA.

Tobias Keim. 2007. Extending the applicability of recom-
mender systems: A multilayer framework for matching
human resources. In Proceedings of the 40th Annual
Hawaii International Conference on System Sciences,
HICSS ’07, pages 169–, Washington, DC, USA. IEEE
Computer Society.

Yao Lu, Sandy El Helou, and Denis Gillet. 2013. A rec-
ommender system for job seeking and recruiting web-
site. In Proceedings of the 22Nd International Confer-
ence on World Wide Web Companion, WWW ’13 Com-
panion, pages 963–966, Republic and Canton of Geneva,
Switzerland. International World Wide Web Conferences
Steering Committee.

David Mimno and Andrew Mccallum. 2008. Modeling ca-
reer path trajectories.

Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling 3.0:
Towards wider multilinguality. In Proceedings of the

Language Resources and Evaluation Conference (LREC
2012), Istanbul, Turkey, May. ELRA.

Xuan-Hieu Phan and Cam-Tu Nguyen. 2007. Gibbslda++:
A c/c++ implementation of latent dirichlet allocation
(lda).

Rachael Rafter, Keith Bradley, and Barry Smyth. 2000.
Automated collaborative filtering applications for on-
line recruitment services. In Peter Brusilovsky, Oliviero
Stock, and Carlo Strapparava, editors, Adaptive Hyper-
media and Adaptive Web-Based Systems, volume 1892
of Lecture Notes in Computer Science, pages 363–368.
Springer Berlin Heidelberg.

Michael Shindler, Alex Wong, and Adam Meyerson. 2011.
Fast and accurate k-means for large datasets. In John
Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
nando C. N. Pereira, and Kilian Q. Weinberger, editors,
NIPS, pages 2375–2383.

Nakatani Shuyo. 2010. Language detection library for
java.

Jose Vega. 1990. Semantic matching between job offers
and job search requests. In COLING, pages 67–69.

Min Zhao, Hang Li, Adwait Ratnaparkhi, Hsiao-Wuen
Hon, and Jue Wang. 2006. Adapting document rank-
ing to users’ preferences using click-through data. In
Hwee Tou Ng, Mun-Kew Leong, Min-Yen Kan, and
Dong-Hong Ji, editors, AIRS, volume 4182 of Lecture
Notes in Computer Science, pages 26–42. Springer.

2082

