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Abstract
In this paper, we describe our generic approach for transferring part-of-speech annotations from a resourced language towards an
etymologically closely related non-resourced language, without using any bilingual (i.e., parallel) data. We first induce a translation
lexicon from monolingual corpora, based on cognate detection followed by cross-lingual contextual similarity. Second, POS information
is transferred from the resourced language along translation pairs to the non-resourced language and used for tagging the corpus. We
evaluate our methods on three language families, consisting of five Romance languages, three Germanic languages and five Slavic
languages. We obtain tagging accuracies of up to 91.6%.

Keywords: Part-of-speech tagging, lexicon induction, closely related languages

1. Introduction
Natural language processing for regional languages faces
a certain number of challenges. First, the amount of
electronically available written texts is small. Second,
these data are most often not annotated, and spelling
may not be standardized. One possible solution to these
limitations lies in the use of an etymologically closely
related language with more resources. However, in most
such configurations, parallel corpora are not available since
the languages are mutually intelligible and demand for
translation is low.
In this paper, we describe our latest experiments based
on our generic approach for transferring part-of-speech
(POS) annotations from a resourced language (RL) towards
an etymologically closely related non-resourced language
(NRL), without using any bilingual (i.e., parallel) data
(Scherrer and Sagot, 2013).1 This approach relies on two
hypotheses. First, at the lexical level, the two languages
share a lot of cognates, i.e., word pairs that are formally
similar and that are translations of each other. Second,
at the structural level, we admit that the word order of
both languages is similar, and that the set of POS tags is
identical. Under these hypotheses, the POS tag of one word
can be transferred to its translational equivalent in the other
language.
Our approach consists of two main steps. We first
induce a translation lexicon from monolingual corpora,
based on cognate detection followed by cross-lingual
contextual similarity (Section 4). This step yields a list of
〈wNRL, wRL〉 translation pairs. Second, POS information
from an existing RL lexicon is transferred along translation
pairs (Section 5) and used for tagging the corpus; NRL
words still lacking a POS are tagged based on suffix

1This task is different from unsupervised POS-tagging, where
a morphosyntactic lexicon is usually admitted, and whose task
is to disambiguate the annotation. In our work, we do not
presuppose any ressource for the NRL except raw textual data.
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Figure 1: Flowchart of the proposed approach.

analogy. This architecture is summarized in Figure 1.
We evaluate our methods on three language sets:

• five Romance languages of the Iberic peninsula:
Spanish and Portuguese play the role of RLs, whereas
Aragonese, Asturian, Galician and Catalan2 are
considered NRLs;

• three Germanic languages, German being the RL
whereas Palatine German (Pfälzisch) and Dutch are
considered NRLs;

• five Slavic languages, with Czech and Polish as
RLs and Slovak, Upper Sorbian, Lower Sorbian and
Kashubian as NRLs.

2We introduce a small (500k words) and a large (140M words)
Catalan corpus to study the impact of the corpus size (see Table 1).
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RAW CORPORA (WIKIPEDIA) ANNOTATED CORPORA

LANGUAGE ISO #sentences #tokens #types for gold lexicon extraction
Name #word types #tags

Aragonese AN 335,091 5,478,092 215,809 –
Asturian AST 226,789 3,600,117 201,417 –
Galician GL 1,955,291 32,240,505 674,848 –
Catalan 500k CA 22,876 499,978 41,908 –
Catalan 140M CA 7,939,544 139,160,258 1,712,078 –
Portuguese PT 12,611,706 197,515,193 2,252,337 CETEMPúblico3 107,235 117
Spanish ES 23,381,287 431,884,456 3,451,532 AnCora-ES4 40,148 42

Dutch NL 33,361 499,991 52,502 –
Palatine German PFL 28,149 318,926 51,038 –
Standard German DE 42,127,804 612,658,190 8,673,998 TIGER5 85,691 55

Kashubian CSB 25,620 198,560 40,805 –
Lower Sorbian DSB 28,352 265,580 48,189 –
Upper Sorbian HSB 106,299 891,941 104,319 –
Slovak SK 2,555,779 30,114,232 1,091,474 –
Czech CS 6,642,402 85,579,006 1,934,787 PDT 2.56 55,947 57
Polish PL 16,639,594 206,372,541 3,264,129 NKJP7 132,664 29

Table 1: Corpora used in our experiments.

2. Related work
Koehn and Knight (2002) propose various methods for
inferring translation lexicons using only monolingual data.
They consider several clues, including the identity or
formal similarity of words (borrowings and cognates),
contextual similarity, and frequency similarity. They
evaluate their method on English–German noun pairs. Our
work is partly inspired by this paper, but uses different
combinations of clues as well as updated methods and
algorithms, and extends the task to POS tagging.
Cognate pair extraction has been studied for example by
Mann and Yarowsky (2001), using various phonetic and
graphemic clues. Kondrak and Dorr (2004) compare
several measures and introduce the BI-SIM graphemic
measure, showing its relevance for assessing whether two
drug names are confusable or not. Inkpen et al. (2005)
apply these measures for cognate identification in related
languages (English–French).
We use automatically extracted cognate pairs as a
(noisy) training corpus for training a character-level SMT
(henceforth C-SMT) system. In this paradigm, instead of
aligning words (or word phrases) in a set of sentences, one
aligns characters (or character sequences) in a corpus of
words. C-SMT has been applied to translation between
closely related languages (Vilar et al., 2007; Tiedemann,
2009), to transliteration (?) and to cognate generation
(Beinborn et al., 2013).
Cross-lingual contextual similarity has also been used for
inducing translation pairs from comparable corpora. The
main idea (Fung, 1998; Rapp, 1999) is to extract word n-
grams (or bags of words) from both languages and induce

3http://www.linguateca.pt/CETEMPublico/
4http://clic.ub.edu/corpus/ancora
5http://www.ims.uni-stuttgart.de/

forschung/ressourcen/korpora/tiger.html
6http://ufal.mff.cuni.cz/pdt2.5/
7http://nkjp.pl

word pairs that co-occur in the neighbourhood (context) of
already known word pairs. This method requires a seed
word lexicon as well as large corpora in both languages
in order to build sufficiently large similarity vectors. Fišer
and Ljubešić (2011) adapt this method to closely related
languages, but contrarily to us, they rely on a tagger and
a lemmatizer for both languages. Context similarity has
also been used in a monolingual setting, e.g., for spelling
correction (Xu et al., 2011): words that appear in similar
contexts and are formally similar are likely to be alternative
spellings of the same form. We extend this idea to cognates
in closely related languages.
A lot of recent work has been dedicated to transferring
POS annotations from one language to another using a
word-aligned parallel corpus (Yarowsky et al., 2001; ?; ?).
Since parallel data is not available for most language pairs
covered in our experiments, these methods cannot be used
without major adaptations.
Another approach consists in training a tagger on the
resourced language and adapting the tagging model itself
to the non-resourced language (Feldman et al., 2006).
However, this approach is not entirely unsupervised since
it requires a morphological analyzer for the NRL.

3. Data
Our approach relies on three types of data: a raw NRL text,
a raw RL text and a tag dictionary which associates RL
words with POS. In our experiments, we extract raw textual
data from RL and NRL Wikipediæ and POS dictionaries
from annotated RL corpora.8 Raw corpora are used for
the lexicon induction task, whereas the tag dictionary is
required for the POS tagging task. A summary of the data
we used in our experiments is given in Table 1.

8Note however that tag dictionaries may be obtained from
other sources, in which case no POS-annotated corpora are
required at all by our approach.
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4. Bilingual lexicon induction
In this section, we outline the methods used for both major
lexicon induction steps, the one based on formal similarity
(Section 4.1) and the one based on contextual similarity
(Section 4.2).

4.1. Inferring cognate word pairs with character-level
SMT

C-SMT models are generative models that translate words
of the source language into their cognate equivalents in
the target language, character by character. They are
trained on a list of cognate word pairs whose characters
are then aligned. The word pairs are typically extracted
form a word-aligned parallel corpus, but since we do
not have bilingual data at our disposal, we propose to
extract potential cognate pairs from two monolingual
corpora (Section 4.1.1). Our hypothesis is that even
with this noisy training data, the C-SMT models will
learn useful generalizations. Section 4.1.2 describes the
tools and parameters used for training the C-SMT model.
Section 4.1.3 introduces two filters designed to further
improve the precision of C-SMT.
For practical reasons, we consider the NRL as the source
language and the RL as the target language. In particular,
this allows us to match different wNRL with the same wRL

and thus to take into account orthographic variation in the
NRL, expected to be higher in the NRL than in the RL. We
assume that the spelling of the RL is normalized.

4.1.1. Cognate extraction by formal similarity
We start by extracting word lists from the raw corpora,
removing short words (words with less than 5 characters)
as well as rare words (words accounting for the lowest 10%
of the frequency distribution). The resulting lists contain
around 10,000 to 25,000 words per language.
We then compute the above-mentioned BI-SIM score
between each word of the NRL and each word of the RL.
For each source word wNRL, we keep the 〈wNRL, wRL〉
pair(s) that maximize(s) the BI-SIM value, provided it is
above the (empirically chosen) threshold of 0.8.9

The BI-SIM measure is completely generic and does not
presuppose any knowledge of the etymological relationship
between the two languages, but is not very precise and
therefore generates ambiguous results.10 Hence, when a
wNRL is associated with several wRL, we keep all of them.

4.1.2. Training of the C-SMT model
The word pairs extracted with the BI-SIM measure are then
used to train a C-SMT model. Our C-SMT model relies
on the standard pipeline consisting of GIZA++ (Och and
Ney, 2003) for character alignment, IRSTLM (Federico et
al., 2008) for language modelling, and Moses (Koehn et al.,
2007) for phrase extraction and decoding. In particular, the
following settings yielded optimal results:

9This pairwise comparison is the most time-consuming step
of the pipeline, which is why we filtered the word lists rather
aggressively.

10For example, the Catalan–Spanish word pairs
〈activitat, actividad〉 and 〈activitat, activista〉 yield the same
BI-SIM value, even if only the former can be considered a
cognate pair.

Beginning and end of word symbols We add special
symbols at the beginning and at the end of each word.

Language model We have trained a character 10-gram
language model on the words extracted from the RL
corpus. We removed words appearing less than 10
times in the corpus; each word is repeated as many
times as it appears in the corpus.

Alignment combinations GIZA++ produces distinct
alignments in both directions. Among the proposed
heuristics, the grow-diag-final proved the most
efficient.

Distortion In the SMT terminology, distortion refers to
the possibility of changing the order of elements.
We disallow distortion altogether to avoid learning
crossing alignments, which we suppose very rare
between words of closely related languages.

Smoothing We use Good Turing discounting to adjust the
weights of rare alignments.

Tuning The different parameter weights of an SMT model
are usually estimated through Minimum Error Rate
Training on a development corpus. Since we only
have very noisy bilingual corpora, the resulting
models performed less well than the ones with default
weights. We chose to keep the latter.

4.1.3. Application of the C-SMT model and filtering
Once trained, we use the C-SMT model to generate a target
NRL word for each source RL word, using the same RL
word list as for the creation of the training corpus. In
comparison with the word pairs extracted with BI-SIM, the
C-SMT-generated word pairs obtain at the same time higher
precision (the C-SMT model is sensitive to language-pair-
specific regularities) and higher recall (it also translates
words that were excluded by the abovementioned 10%
frequency threshold or the 0.8 BI-SIM threshold).
In line with the findings of Koehn and Knight (2002),
preliminary experiments have shown that word pairs with
large frequency differences are often wrong. Therefore,
we rerank the 50-best candidates obtained by the C-SMT
model according to the frequency difference between the
NRL and the RL word in the pair (frequency filter).
Moreover, the combined C-SMT and frequency scores
serve as basis for an additional confidence filter. This
confidence filter removes all word pairs whose combined
score is below 0.5 standard deviations below the mean
score.

4.2. Inferring word pairs with contextual similarity
For several reasons, methods based on formal similarity
alone are not always adequate: (1) even in closely
related languages, not all word pairs are cognates; (2)
high-frequency words are often related through irregular
phonetic correspondences; (3) pairs of short words may
just be too hard to predict on the basis of formal criteria
alone; (4) formal similarity methods are prone to inducing
false friends, i.e., words that are formally similar but are
not translations of each other. For these types of words,
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3-gram w1 w2 w3

|| l ||
v1 v2 v3

Example tendrá importans conseqüencias
AN-ES || l ||

tendrá importantes consecuencias
4-gram w1 w2 w3 w4

|| l l ||
v1 v2 v3 v4

Example diferència de càrrega elèctrica
CA-ES || l l ||

diferencia de carga eléctrica

Figure 2: Illustration of the context extraction process.
Word sequences on one line represent chunks of texts
extracted from the corpus. The vertical equal signs link
word pairs already inferred in the seed data, while the
vertical double arrows link newly inferred word pairs.

we propose a different approach that relies on contextual
similarity, using the word pairs obtained by the C-SMT
system as seed data.
We extract 3-gram and 4-gram contexts from both
languages and form context pairs whenever the first and
the last word pairs figure in the seed data, allowing the
word pair(s) in the center to be newly inferred. Figure 2
illustrates this process. We retain a newly inferred word
pair if it has been seen in two or more distinct contexts.11

Word pairs inferred by matching contexts alone are noisy.
We therefore propose two filtering approaches: a filter
based on both context frequency and formal similarity
criteria for cognates and near-cognates (4.2.1), and a back-
off filter based on frequency criteria alone for short high-
frequency words (4.2.2).

4.2.1. Combined contextual and formal similarity
We filter the 〈w, v〉 word pairs obtained by context
matching according to the following criteria:

• Word pairs inferred by one single context are not
deemed reliable enough.

• We also remove word pairs with a formal similarity
value lower than 0.5.

• For a given source word, we remove all contextually
inferred target candidates in the lower half of their
frequency distribution and in the lower half of their
distance distribution. This allows us to focus on those
candidates that are clearly more similar than their
concurrents.

11It is also possible to use a 3-gram context in one language and
a 4-gram context in the other one to infer word pairs of the type
〈w2, v2v3〉 or 〈w2w3, v2〉. Such patterns are useful if the two
languages have different tokenization rules. For example, they
have allowed us to obtain the Asturian–Spanish pairs 〈a l’, al〉
and 〈polos, por los〉. However, for the time being, we have not
integrated such asymetric alignments in the evaluation framework
and in the POS tagging pipeline.

4.2.2. Removing the formal similarity criterion for
high-frequency words

The combined filter unfortunately removes some high-
frequency grammatical words that are either non-cognates
(e.g. Catalan–Spanish 〈amb, con〉), or whose forms are too
short to compute a meaningful distance value (e.g. 〈i, y〉
with a formal similarity value of 0). For these cases, we
introduce a back-off filter that lacks the formal similarity
criterion and focuses only on frequency cues.
Concretely, each source word that has not obtained a
target candidate with the previous approach is assigned the
target word with the highest number of common contexts,
provided that this number is higher than 5. Moreover, we
have opted for a pigeonhole principle here: we disallow a
target word to be matched with more than one source word.
In our case, this prevents all pronouns to be assigned to the
more frequent definite determiners.
This filter yields only a small number of word pairs, but
they are of crucial importance since their token frequency
is very high.

4.3. Merging of the dictionaries and addition of
formally identical word pairs

The word pairs induced through C-SMT and through
context similarity overlap to a large extent: we found that
70%-80% of the contextually inferred word translations
are identical to the C-SMT translations, whereas 10%-
20% of word pairs are new, and the remaining 5%-15%
concern source words which were translated differently
with C-SMT. Among this last category, we mainly find
different inflected forms of the same lemma, and different
transliterations of the same named entity. However,
the context approach also corrects some erroneous C-
SMT pairs, such as Aragonese–Spanish 〈charra, carrera〉
‘talks/race’, replacing it by the correct 〈charra, habla〉.
Therefore, when merging the C-SMT word pairs and the
context word pairs, we give precedence to the latter.
Even after the application of the C-SMT and context lex-
icon induction methods, many words remain untranslated.
For each such NRL word, we simply check whether it also
exists in the RL data, and create the corresponding pair
whenever it does. This mainly allows us to supplement our
translation lexicon with punctuation signs, but also abbre-
viations, numbers and proper nouns.

4.4. Evaluation
We evaluate the lexicon induction task on the basis of the
dictionaries made available through the Apertium project
for the Iberic language pairs (Forcada et al., 2011). Table 2
shows, for each language pair, the number of word pairs
covered by the Apertium reference lexicon, the number of
word pairs and correctness percentages of the three lexicons
obtained by our methods: the C-SMT lexicon (Section 4.1),
the context similarity lexicon (Section 4.2) and the merged
lexicon (Section 4.3).12

Manual evaluation of the SK–CS lexicon yielded com-
parable correctness scores of above 70%, while the Ger-
manic and the other Slavic language pairs have C-SMT

12The merged lexicons evaluated here do not include the
identical word pairs.
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Apertium C-SMT Contexts Merged
Words Words Accuracy Words Accuracy Words Accuracy

AN–ES 40 469 85 684 75.0% 3 374 88.3% 86 271 75.2%
AST–ES 46 777 69 202 79.7% 7 464 92.8% 70 489 80.1%
CA–ES 500k 105 700 14 378 76.0% 939 93.9% 14 615 76.7%
CA–ES 140M 105 700 678 990 62.5% 20 888 92.5% 681 778 63.8%
GL–ES 76 635 254 594 73.6% 22 853 94.8% 257 413 75.0%
GL–PT 61 388 250 325 58.5% 12 691 87.8% 251 989 59.2%

Table 2: Evaluation of the lexicon induction task on Iberic language pairs. The accuracy is computed on the intersection of
the NRL words contained in Apertium and in the respective system.

Tokens Types
C-SMT Context Identical Suffix C-SMT Context Identical Suffix

AN–ES 14.3% 49.6% 19.8% 16.3% 12.8% 1.6% 3.3% 82.2%
AST–ES 11.4% 53.9% 18.6% 16.1% 14.1% 3.6% 3.7% 78.6%
CA–ES 500k 18.3% 47.5% 16.0% 18.2% 22.4% 2.6% 6.2% 68.8%
CA–ES 140M 11.1% 57.6% 16.3% 15.0% 3.3% 1.0% 0.8% 94.9%
GL–ES 8.4% 58.6% 18.6% 14.3% 5.9% 2.7% 1.1% 90.3%
GL–PT 14.6% 55.4% 20.6% 9.5% 14.7% 2.2% 3.3% 79.8%

NL–DE 23.0% 27.7% 19.2% 30.1% 17.2% 0.3% 5.5% 77.0%
PFL-DE 21.3% 23.0% 24.2% 31.5% 16.2% 0.4% 8.5% 75.0%

CSB-CS 14.3% 6.97% 29.3% 49.4% 11.3% 0.0% 3.5% 85.1%
DSB-CS 16.0% 11.8% 28.6% 43.6% 12.8% 0.1% 3.5% 83.6%
HSB-CS 18.5% 15.0% 27.7% 38.9% 11.3% 0.3% 2.6% 85.8%
SK-CS 7.6% 46.8% 20.0% 25.7% 4.8% 2.4% 0.9% 91.9%
PL-CS 22.9% 20.7% 22.5% 33.9% 3.6% 0.1% 0.3% 96.1%
CSB-PL 17.0% 14.2% 31.9% 37.0% 15.8% 0.3% 10.3% 73.7%
DSB-PL 18.9% 10.7% 31.9% 38.5% 15.9% 0.1% 6.4% 77.6%
HSB-PL 22.5% 11.8% 30.8% 34.9% 15.2% 0.2% 4.7% 80.0%
SK-PL 26.9% 23.9% 22.7% 26.5% 9.7% 0.2% 1.0% 89.2%
CS-PL 29.3% 23.9% 22.3% 24.5% 7.7% 0.1% 0.7% 91.4%

Table 3: Distribution of the origin of the induced POS tags, by word types and tokens.

correctness scores between 20% and 30% only. These
strong discrepancies mostly result from the differences in
graphemic compacity and in language proximity among
language pairs. They are already visible during the initial
cognate pair extraction step and are amplified in the subse-
quent steps of our pipeline.

5. Creation of the POS-annotated corpus
5.1. Transfer of morphological annotations
The bilingual lexicon induced above contains 〈wNRL, wRL〉
pairs. Annotation transfer amounts to (1) loading an
existing 〈wRL, t〉 tag dictionary for the resourced language,
and (2) merging these two resources by transitivity in order
to obtain 〈wNRL, t〉 pairs. For the time being, we do
not deal with potential ambiguities, but rather associate
each word unambiguously with the most frequent POS
tag of the most frequent translation equivalent. With this
simplification, merging the two dictionaries by transitivity
is straightforward.

5.2. Adding morphological annotations by suffix
analogy

At this point, not all NRL words have been tagged, because
some NRL words do not appear in the translation lexicon,

or because their RL counterpart are not found in the tag
dictionary. In this case, we perform an analogy-based
guessing, based on its longest suffix which is also the suffix
of a NRL word known to our translation dictionary (in case
of ambiguity, we select again the most frequent POS).

5.3. POS annotation and evaluation
Finally, we tag each word in the raw NRL corpus with
its unique POS tag. The distribution of the origin of the
induced POS tags, both by word type and by token, is given
in Table 3.
The tagging accuracy has been evaluated for seven
languages on the basis of a manually annotated gold corpus
comprising between 30 and 100 sentences per language.
The relevant figures, broken down into the different tag
induction methods, are shown in Table 4. They show that
our approach gives satisfying results, except for Germanic
languages which perform worse, the best score being as
high as 91.6% (on Slovak, based on Czech annotated data).

5.4. A few words on tagset mismatches
As mentioned above, the deepest limitation of our approach
lies in the hypothesis that the inventory of tagsets is the
same for both the source RL language and the target
NRL language. We were not able to carry out a careful
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C-SMT Context Identical Suffix Total # Tags

AN←ES 85.6% 91.2% 91.2% 49.7% 85.4% 42
CA←ES 500k 84.0% 95.9% 96.2% 47.7% 85.9% 42
CA←ES 140M 74.7% 93.6% 99.4% 60.0% 89.1% 42

NL←DE 50.9% 81.7% 78.3% 31.7% 59.0% 55
PFL←DE 72.9% 81.7% 81.9% 35.9% 65.1% 55

HSB←CS 67.1% 93.4% 96.3% 77.2% 83.6% 57
SK←CS 86.8% 94.7% 97.8% 82.0% 91.6% 57
PL←CS 68.8% 85.9% 95.9% 67.0% 77.6% 57

Table 4: Token tagging accuracy. The arrow indicates the RL from which the POS tags were transferred.

qualitative and quantitative analysis of this phenomenon
for all language pairs. However, in order to illustrate this
phenomenon, let us consider the following example from
our manually corrected Polish evaluation corpus:

Nie chcieliśmy rozwiązywać zespołu [...]
‘We did not want to dissolve the band [...].’

The two first words, nie chcieliśmy ‘we didn’t want,’ are
a negative clitic nie and a past verb form from the verb
chieć ‘want.’ However, such a negative clitic does not exist
in Czech, and there is no synthetic form corresponding to
chcieliśmy either, despite the fact that equivalent morphs
are used in the same order for expressing the same thing in
both languages. Indeed, Czech and Czech spelling groups
together a negative marker ne and a past participle form
— nechtěli — and then adds an auxiliary form jsme. As a
result, there is no satisfying way to tag neither nie (non-
existent category in Czech) nor chcieliśmy (non-existent
verbal sub-category in Czech). In such cases, during the
manual development of our evaluation corpora, we tagged
such words with non-existent tags: any prediction made by
our system therefore counts as an error.

6. Conclusion
We have proposed a combination of several lexicon
induction methods for closely related languages and
have used the resulting lexicon to transfer part-of-speech
annotations from a resourced language to a non-resourced
one. Note that this task is more complex than the more
traditional task of unsupervised part-of-speech tagging,
for which a POS dictionary of the respective language is
generally available. We have applied our methodology to
three language sets involving Romance (Iberic), Germanic
and Slavic languages.
This work is still to be improved. Our next objective, for
example, is to cope with POS ambiguity in a satisfying way,
thus paving the way to training POS taggers that perform
contextual disambiguation.
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