
Integration of Workflow and Pipeline for Language Service Composition

Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida

Department of Social Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan

trangmx@ai.soc.i.kyoto-u.ac.jp, {yohei, lindh, ishida}@i.kyoto-u.ac.jp

Abstract
Integrating language resources and language services is a critical part of building natural language processing applications. Service
workflow and processing pipeline are two approaches for sharing and combining language resources. Workflow languages focus on
expressive power of the languages to describe variety of workflow patterns to meet users’ needs. Users can combine those language
services in service workflows to meet their requirements. The workflows can be accessible in distributed manner and can be invoked
independently of the platforms. However, workflow languages lack of pipelined execution support to improve performance of workflows.
Whereas, the processing pipeline provides a straightforward way to create a sequence of linguistic processing to analyze large amounts
of text data. It focuses on using pipelined execution and parallel execution to improve throughput of pipelines. However, the resulting
pipelines are standalone applications, i.e., software tools that are accessible only via local machine and that can only be run with the
processing pipeline platforms. In this paper we propose an integration framework of the two approaches so that each offests the disad-
vantages of the other. We then present a case study wherein two representative frameworks, the Language Grid and UIMA, are integrated.

Keywords: Service Workflow, Processing pipeline, Language Grid, UIMA

1. Introduction
The creation of language resources (LRs) remains a fun-
damental activity in the field of language technology. The
number of language resources available on the internet has
been increasing year by year (Maegaard et al., 2005). Based
on these resources, developers can build advanced Natural
Language Processing (NLP) applications such as Watson
(Ferrucci et al., 2010) and Siri by combining them. How-
ever, it is difficult for developers to collect and combine the
most suitable set of language resources in order to achieve
the intended goals.
Numerous of platforms have been proposed for creating,
coordinating and making language resources available and
readily useable for users. There are two approaches to shar-
ing and combining language resources: framework-based
service workflow such as the Language Grid (Ishida, 2006),
and PANACEA (Bel, 2010) and Framework-based process-
ing pipeline such as UIMA (Ferrucci and Lally, 2004b), and
GATE (Cunningham et al., 2002). Interoperability is the
main challenge to allow different language resources work
together in one framework, as well as in different frame-
works. Interoperability between components in one frame-
work is dealt by defining common data exchange format be-
tween components, or defining standard interface for com-
ponents. For example, UIMA defines Common Analysis
Structure as data exchange between components, the Lan-
guage Grid defines standard interfaces for their language
services in a linguistic service ontology (Hayashi et al.,
2011). Interoperability among formats of two processing
pipeline frameworks UIMA and GATE is explored in (Ide
and Suderman, 2009). This paper addresses the issue of
how to bridge the gap between two different common da-
ta exchange formats used in different processing pipeline
frameworks. Thid work focuses on integrating two differ-
ent types of frameworks.
The processing pipeline infrastructure provides platform-

s that define language resources and tools as annotators
and combine these annotators in pipeline manner. With
support of pipelined execution and parallel execution, this
approach has shown a good performance when process-
ing huge amounts of data. After creating applications by
combining existing components into pipelines, often user-
s need to share applications that they have developed with
other users. To facilitate this, most of processing pipeline
platforms offers an import/export mechanism. However,
pipelines are normally shareable only within the bound-
aries of the specific platform. This makes it difficult to
use pipelines independently of the platform in which they
were developed and violates the principles of wide soft-
ware applicability and usability. On the other hand, the
service workflow infrastructure provides platforms to share
language resources as web services and compose these ser-
vices to define composite services in workflows. Work-
flow languages have expressive power to describe variety of
workflow patterns to satisfy users’ requirements. This ap-
proach also provides mechanism to share language services
of language resources consistent with intellectual property
rights. User can access and invoke workflows independent-
ly with the platforms. These advantages of service com-
position platforms encourage language resource provider-
s publish and share their components, increasing the ac-
cessibility and usability of language resources. However,
transferring huge amounts of data between web services in
workflows is not efficient (Zhang et al., 2013).
Therefore, this paper realizes integration of those two types
of infrastructures to mutually offset their disadvantages. To
this end, we address the following issues:

• Mapping between service invocation interface (ser-
vice composition) and stand-off annotation (process-
ing pipeline).

• Integrating service workflow engine and pipeline en-

3829



Text

Tokens

Tokens

POSes

Annotated text with 
Tokens and POSes

Figure 1: Service composition approach

gine.

• A concept integration framework that can integrate the
two types of frameworks.

• To realize the concept framework, a case study of inte-
gration two representative frameworks, the Language
Grid and UIMA, is described.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly discusses features of the two types of language
resource coordination frameworks. The integration of the
service workflow and processing pipeline will be presented
in section 3. We show a case study on integration between
the Language Grid and UIMA in section 4. A discussion is
given in section 5. Finally, section 6 concludes this paper.

2. Language Resource Coordination
Frameworks

In this section we briefly discuss about characteristics of
two types of language resource coordination frameworks:
service composition with interface invocation and process-
ing pipeline with stand-off annotation.

2.1. Service Workflow Approach
This approach takes the Service-Oriented Architecture
(SOA) line; language resources are wrapped as web ser-
vices that users can combine to create customized compos-
ite language services as needed. Figure 1 shows a compos-
ite service consisting of two language services: Tokenizer
and POSTagger. Each service in the workflow is defined by
an interface with input and output. For example, Tokenizer
service has plain text inputs and outputs a set of tokens of
the plain text. Interoperability between services in a work-
flow is ensured by conforming interfaces of the services.
Output of a previous service and input of the later service
in the workflow must be compatible.
To help users easily create workflow, standard interfaces
for language services have been proposed. The Language

Grid designed interfaces of all services based on a language
service ontology (Hayashi et al., 2011), with standardiza-
tion depending on the types of services. PANACEA also
defines common interfaces for different types language ser-
vices such as translation service, bilingual dictionary, etc..
Language resources available as language services on these
frameworks are provided by wide variety of companies,
research organizations with different intellectual property
rights. PANACEA currently has more than 160 services
provided by 11 service providers. Over 170 services avail-
able on the Language Grid, these services are provided by
over 140 groups from 17 countries. The service composi-
tion approach provides access control functionality to deal
with the issues on intellectual rights of language resources
providers. The providers can configure the permission pro-
cess and monitor the statistics of use of their resources any-
time. This advantage of service composition approach en-
courages providers to share their language resources, in-
creasing number of language services available on these
frameworks.

2.2. Processing Pipeline Approach
This approach focuses on providing a setting for creating
analysis pipelines, and is oriented towards linguistic analy-
sis and stand-off annotation. The purpose of these frame-
works is to combine language resources to analyze huge
amounts of data in the local environment. Pipelined execu-
tion and parallel execution are employed in pipeline engine
to improve throughput of the pipelines.
Language resources are combined into a pipeline to ana-
lyze documents. Each resource is defined as an annotator
that tags document with annotations in stand-off manner.
The pipeline outputs the input document enriched with an-
notations added by components in the pipeline. The anno-
tated document is written in Common Data Exchange For-
mat (CDEF). The CDEF document passed along the com-
ponents in the pipeline. Figure 2 shows a pipeline of three
annotators: Tokenizer, POSTagger, and Parser. Each anno-
tator in the pipeline processes input text by annotating it. In
this example the input text is given three annotations: To-
ken, POS, and ParseTree. The GATE framework provides
GATE document as CDEF to represent text and its annota-
tions, this data structure is exchanged between GATE com-
ponents. UIMA also defines a CDEF called Common Anal-
ysis Structure (CAS) to represent text including annotations
as a common data exchange between UIMA components.

3. Integration of Service Composition and
Processing Pipeline

The processing pipeline is based on the stand-off annotation
model, while service composition is based on service inter-
face invocation model. This section first defines a mapping
of the two models, and then uses it to define an integration
framework.

3.1. Mapping Service Interface Invocation and
Stand-off Annotation

The Common Data Exchange Format (CDEF) plays an im-
portant role in helping the components in a pipeline to work
together. CDEF data structure is defined based on de-facto

3830



Tokenizer

POS Tagger

Parser

Text

Text

Tokens

Text

Tokens

POSes

Text

Tokens

POSes

ParseTrees

Figure 2: Processing pipeline approach

standards that are used for encoding machine-readable texts
and linguistic corpora, such as CES (Ide et al., 2000), TEI
(Vanhoutte, 2004), and the common interface format being
developed under the context of ISO committee TC 37/SC
4 (Ide and Romary, 2009). CDEF basically consists of t-
wo parts: one representing the document text, and the other
representing annotations. Figure 3 shows an example of
CDEF in XML-based format:

• <doc>: represents the document, the id attribute is
used to distinguish documents when a pipeline pro-
cessing multiple documents. The docString attribute
represents document text or reference link to the doc-
ument.

• <annotations>: represents all annotations produced
by a pipeline. An annotation is described by <annot>
tag, the type attribute indicates type of the annotation,
two attributes begin and end define position of the an-
notation in the document text and the componentID
indicates the author(annotator) of this annotation.

• Different annotation types may have different struc-
tures. The structure of an annotation type is defined by
a feature structure (fs) tag. Each feature is defined by a
(f ) tag and its attribute name indicates the name of the
feature, attribute value is the value of the feature. For
example, the feature structure of a Morphem produced
by a POSTagger consists of two features: lemma and
postag of a word, as shown in the example.

In web service composition workflow, each language ser-
vice has its own interface with input and output. This in-
terface is defined by standard interfaces of the frameworks.
The input and output types are designed according to the
type of the language service. For example, for a Tokenize
service type, input is plain text and output is set of Tokens.
In order to interwork two kinds of systems, first we need
to map between stand-off annotation model and interface
invocation model. For an annotator in processing pipeline,
we can assume that its input and output are CDEF docu-
ments. The mapping is defined to so as to map input/output
of language services to annotation types in CDEF. We de-
fine CDEF Maker and CDEF Extractor to conduct the map-

<?xml version="1.0" encoding="UTF-8"?>
<annotatedDoc>
<doc id="1" mimeType="text"

docString="Text of the document"/>
<annotations>

<annot type="POS" docID="1" begin="1"
end="5" componentID="POSTager">

<fs>
<f name="lemma" value="Text"/>
<f name="postag" value="noun"/>
...

</fs>
</annot>
...

</annotations>
</annotatedDoc>

Figure 3: CDEF Structure

AnnotatorCDEF 
Maker

CDEF CDEF 
Extractor

CDEF

Service outputService input

(a) Language service wrapper

Language
Service

CDEF 
Extractor

CDEF 
MakerCDEF CDEFAnnotation

Service
result

Annotation’s offset

(b) Annotator wrapper

Figure 4: Wrappers

ping and create two wrappers: Language Service Wrapper
and Annotator Wrapper, see Figure 4(a) and Figure 4(b)
respectively. The former is used to wrap an annotator as
a language service. The latter is used to wrap a language
service as an annotator. CDEF Maker and CDEF Extrac-
tor have slightly different roles in the different wrappers as
follows.
The Language Service Wrapper consists of three parts: A
CDEF Maker, an annotator, and a CDEF Extractor:

• CDEF Maker creates CDEF document from service
input. It first maps the service input type to an an-
notation type and then forms a CDEF document that
includes the annotation.

• The Annotator analyses CDEF document and add an-
alytics result to the document.

• CDEF Extractor manipulates with the CDEF docu-
ment to extract from <fs> node and sub-nodes <f>s
the annotations produced by the annotator. Then it
maps each annotation to its corresponding language
service type as found in the output of a language ser-
vice.

The Annotator Wrapper is defined as three components:
CDEF Extractor, language service, and CDEF Maker:

• The CDEF Extractor manipulates with input CDEF
document to extract annotations from <fs> node and
sub-nodes <f>s. It then maps the annotation to the

3831



corresponding language service type found in the in-
put of the language service. Position information of
the annotations is also extracted.

• The Language service is invoked with the input to pro-
duce an output with defined type.

• CDEF Maker maps structure of the language service
output to the structure of a corresponding annotation
type and use annotation’s position information, ex-
tracted by CDEF Extractor, to create a CDEF docu-
ment. This CDEF document becomes output of the
annotator.

With this mapping of stand-off annotation and service in-
terface invocation, processing pipeline components can be
wrapped as services in service composition frameworks and
can be combined with other services to define composite
services. Language services can be wrapped as an annota-
tor and inserted into a pipeline flow.

3.2. Integrating Workflow and Pipeline Engines
To realize the integration, we propose pipeline service
which uses pipelines to create service workflows. A
pipeline service is a composite service created from a
pipeline flow. This pipeline is comprised by several an-
notators, where the annotators can be pipeline approach
components or wrapped language services. The pipeline
service architecture consists of two components: Service
Invoker and Pipeline Executor. When users send requests
to a pipeline service, the Service Invoker will start to exe-
cute the composite service, it sets binding information for
composite service and triggers the Pipeline Executor to ex-
ecute the pipeline. Pipeline engine is used to run the input
information through the pipeline.
With this pipeline service we can use pipeline engine to
create and execute composite services. We argue that by
declaring a pipeline as a Web service invocation, the inte-
gration between Service workflow approach and Processing
pipeline approach becomes practical.
Moreover, pipeline services allow the pipeline engine to
support the service composition approach for service work-
flow execution. Pipelined and Parallel execution features
of pipeline engine may help to improve performance of
composite services. Data parallelism can be used to pass
large documents, split into smaller data partitions, through
a composite service. These data partitions will be processed
by multiple instances of the composite services in multiple
parallel threads simultaneously. This may helps to improve
the throughput of the workflow.

3.3. Integration Framework
Integration framework enables users easily combine two
types of components: language service and annotator. The
latter yield composite services and can use language ser-
vices in pipeline manner. This increases the interoperability
of the two types of framework. It also provides the ability
to include the pipeline engine in a composite service.
Figure 5 shows that the integration of service composition
and processing pipeline uses a wrapper system consisting of
Language Service Wrapper and Annotator Wrapper. Anno-
tator providers use the Language Service Wrapper to wrap

Processing pipeline frameworkService composition framework

Composite service container
Pipeline 
service 
engine

Atomic service container Component repository

Language 
Service Wrapper

Annotator 
Wrapper

Atomic 
service

Annotator

Flow controller

Pipeline flow
Pipeline
service

Composite 
service

Figure 5: Integration Framework

annotators as language services. A service is then shared
with access control in the service composition framework.
Users who have access rights to the system can invoke this
service or can use this service to compose composite ser-
vices. The language service providers use the Annotator
Wrapper to wrap a language service into an annotator, this
annotator can be executed and combined in a pipeline flow.
Language resources are shared as language services with
protection of intellectual rights making it easy to create
composite services. However, pipeline flow has better per-
formance than the comparable composite service when pro-
cessing large amounts of data. We wrap the pipeline service
engine as a service composition engine to create compos-
ite services. The pipeline service with parallel execution
inherited from pipeline flow will have better performance
when processing huge amounts of data.
Moreover, the integration framework helps users easily
switch between workflow engine and pipeline engine to ex-
ecute workflows. Users can also define hybrid workflow
which uses both engines to execute the workflow, pipeline
engine is used to executed a part of the workflow to help
improves thoughput of this part and so increase the perfor-
mance of the whole workflow.

4. Case study: Integration of the Language
Grid and UIMA

In this section we realize the integration framework concept
by integrating the Language Grid and UIMA.

4.1. Benefits of Integrating Language Grid and
UIMA

Originally launched by IBM, UIMA, the Unstructured In-
formation Management Architecture, is an open-platform
middleware for dealing with unstructured information (tex-
t, speech, audio, video data). The Apache Software Foun-
dation has established an open-source project for develop-
ing UIMA-based software. In addition, the Organization
for the Advancement of Structured Information Standards
(OASIS) has created a Technical Committee for UIMA s-
tandardization. Accordingly, an increasing number of NLP
research institutes as well as Human Language Technology
companies all over the world are basing their software de-
velopment efforts on UIMA. Several research institutes and
universities have created repositories for UIMA-compliant
analytics. For example, Carnegie Mellon University’s Lan-

3832



guage Technology Institute has hosted an UIMA Compo-
nent Repository website 1, where developers can post in-
formation about their UIMA analytics. U-Compare (Kano
et al., 2011) introduced the world largest repository of
ready-to-use type compatible UIMA components. Howev-
er, currently there is no platform to share UIMA-compliant
language resources while protecting intellectual property
rights. This limits the accessibility and usability of the lan-
guage resources. Users who want to use language resources
have to find and negotiate with the owners to get these lan-
guage resources and freely combine them in their applica-
tions without considering other stakeholders. Once the lan-
guage resources are passed to users, the providers will have
no control on their language resources.
Unlike UIMA, the purpose of the Language Grid is to sup-
port intercultural collaboration by service workflows. A
workflow combines language resources and their attendant
complex intellectual property issues, such as machine trans-
lators, parallel corpora, and bilingual dictionaries. Lan-
guage resource providers retain ownership of their language
resources shared on the Language Grid. Providers can
monitor statistical usage information of their language re-
sources, and can also establish access control for the re-
sources. These functions may encourage providers to share
language resources on the Language Grid, increasing the
availability and accessibility of language resources.
Integration of the Language Grid and UIMA can help
NLP communities share their UIMA-compliant language
resources via the Language Grid. This increases the num-
ber of language services available on the Language Grid.
Users can easily find, access and use language resources for
their applications. In addition, users can use the UIMA en-
gine to define composite services. The UIMA engine with
its data parallelism support can increase the performance
of composite services by decreasing the execution time of
composite services when processing huge amounts of data.

4.2. Implementing the Integration
Using the integration framework concept, we integrated the
Language Grid and UIMA. We implemented two wrappers:
Language Service Wrapper and Analysis Engine Wrapper.
The former is used to wrap an UIMA analysis engine as a
language service, while the latter is used to wrap language
service into an Analysis Engine.
UIMA is a data-driven architecture which means that single
components communicate with each other by exchanging
data. The data exchanged includes the original documen-
t and the annotations produced by each component. This
data is structured as per the Common Analysis Structure
(CAS). CAS is one of the CDEF formats used in the UIMA
framework. UIMA specifies the main interface for the anal-
ysis engine. This interface takes CAS-input and delivers
CAS-output. As one part of UIMA, an XML specification
for CAS has been defined. Figure 6 shows a simple exam-
ple of CAS in XML format. It is possible to develop UIMA
analysis engines that directly accept and output this XML.
However, to support analysis engines that consume or pro-
duce complex data structures, UIMA framework provides a

1http://uima.lti.cs.cum.edu

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:cas="http:///uima/cas.ecore" 

xmlns:xmi="http://www.omg.org/XMI" 
xmlns:tokenizer="http:///org/apache/uima/examples/tokenizer.ecore"
xmlns:tcas="http:///uima/tcas.ecore" 
xmlns:examples="http:///org/apache/uima/examples.ecore" xmi:version="2.0">

<cas:Sofa xmi:id=“1” sofaNum=“1” mimeType=“text” 
sofaString=“ This is a simple example."/>

<tcas:DocumentAnnotation xmi:id="8" sofa="1" begin="0" end="26" language="en"/>
<examples:SourceDocumentInformation xmi:id="13" sofa="1" begin="0" end="0" 

uri="file:simple example.txt" offsetInSource="0" 
documentSize="28" lastSegment="false"/>

<tokenizer:Sentence xmi:id="21" sofa="1" begin="0" end="26"/>
<tokenizer:Token xmi:id="25" sofa="1" begin="0" end="5"/>
<tokenizer:Token xmi:id="29" sofa="1" begin="6" end="8"/>
<tokenizer:Token xmi:id="33" sofa="1" begin="9" end="10"/>
<tokenizer:Token xmi:id="37" sofa="1" begin="11" end="17"/>
<tokenizer:Token xmi:id="41" sofa="1" begin="18" end="25"/>
<tokenizer:Token xmi:id="45" sofa="1" begin="25" end="26"/>
<cas:View sofa="1" members="8 13 21 25 29 33 37 41 45"/>

</xmi:XMI>

Figure 6: Example of UIMA CAS

native language interface to the CAS. This has been imple-
mented in both C++ and Java (Ferrucci and Lally, 2004a).
Based on this interface we implement CAS Maker and CAS
Extractor to manipulate with CAS documents and create the
wrappers:

• CAS Extractor extracts annotations from CAS docu-
ment and maps input/output of language services.

• CAS Maker maps the input/output types of language
services with UIMA annotation types and creates CAS
documents which serves as input/output of the analy-
sis engine.

In order to create Language Service Wrapper we define
a new language service interface to represent an analysis
engine. The operations of this interface include analyz-
ing the CAS input and output. Figure 7 shows class di-
agram of this wrapper. There is new web service inter-
face in the Language Grid node, which is located in the
package jp.go.nict.langrid.wrapper.uima. Developers can
wrap their analysis engines by implementing and extending
UIMAAEService and AbstractUIMAAEService. The imple-
mentation of this wrapper architecture is as follows:

• There are three additional created classes: UIMACom-
ponent (defines analysis engine to be wrapped into the
language service), UIMAAEService (defines interface
for service access), and AbstractUIMAAEService (im-
plements this interface).

• The Concrete Service class (e.g. MorphologicalSer-
vice) defines a concrete UIMA service which extends
AbstracUIMAService and use UIMAAE to call pro-
cess method in an analysis engine.

Analysis Engine Wrapper is used to wrap a language ser-
vice into an analysis engine. Figure 8 shows the class di-
agram used to implement this wrapper. There are several
new classes defined as follows:

• CASExtractor is defined to extract annotations from
the CAS and map them to the input of the language
service.

3833



Figure 7: Class diagram of language service wrapper

Figure 8: Class diagram of analysis engine wrapper

• CASMaker is used to map output of the language ser-
vice to a corresponding annotation type and add this
annotation to the CAS document.

• LangridServiceClient is used to set language service
endpoint and invoke the service with the input extract-
ed from the CAS.

• UIMAAnalysisEngine invokes a language service with
the input extracted from CAS document, output of the
service is added to the CAS document by using CAS
Maker.

We adapt UIMA Engine into the Language Grid Composite
Service Container (Murakami et al., 2011), so that users can
use this engine to create composite services from UIMA
aggregate analysis engines (UIMA AAE). Figure 9 show
class diagram used for implementing this composite ser-
vice. We use UIMA AAEs to define a pipeline of sev-

Figure 9: Class diagram of UIMA composite service

eral Analysis Engine Wrappers. In the Analysis Engine
Wrappers we use ComponentServiceFactory.getService to
set service type to be invoked. We can then create compos-
ite services by calling the UIMA AAEs. These composite
services are shared on composite service container in the
Language Grid. When a request is sent to the UIMA com-
posite service, the Java Method Invoker will set invocation
information for the composite service, UIMA engine will
be used to execute the workflow.
UIMA supports data parallelism to improve pipelines per-
formance with CAS Multiplier and UIMA Asynchronous
Scale-out (AS) (Epstein et al., 2012). CAS Multiplier sep-
arates a big CAS into smaller CASes and put them into
a CAS pool. UIMA AS is use to execute multiple CAS-
es with multiple instances of a flow in parallel. Figure 10
shows data parallelism concept in UIMA framework. Users
can define number of concurrent instances of the flow ac-
cording to computing resources of their environments. Us-
ing UIMA CAS Multiplier and UIMA AS engine to cre-
ate and execute composite service will improve compos-
ite service performance when processing huge amounts of
data. We can use UIMA engine to execute a part of a
workflow to improve thoughput of this part and so increase
the performance of the workflow. For example, we cre-
ated a Language Grid hybrid composite service of trans-
lation combines with dictionary for Japanese-German spe-
cialized translation as show in figure 11. The translation
from Japanese to German is a two-hop translation created
from a UIMA Aggregate Analysis Engine (UIMA AAE).
This UIMA AAE consists of two translation analysis en-
gines wrapped from translation language services. In this
example we have realized the integration framework to cre-
ate a hybrid composite service, we can employ not only
workflow engine but also UIMA pipeline engine as Work-
flow Executor for composite services.
In addition, this proposal allows us to integrate the Lan-
guage Grid with many UIMA-based frameworks such as U-

3834



Parallel Computing in UIMA (3/3)

2014/1/3014

Aggregate

Controller FC

Delegate 1

Controller CAS 
Multiplier

Input queue Output queue

CAS Pool

Output queue

Delegate 2

Controller AAE

Input queueProvided by ActiveMQ

Provided by UIMA

Provided by users

Input queue

Figure 10: Data Parallelism in UIMA

remaining 
terms?

remaining 
terms?

Intermediate 
code table

Technical Term 
Multilingual Dictionary

+

Japanese Morphological Analysis

Technical Term Extraction

Intermediate Code Insertion

Translation (ja -> de)

Term Replacement

Yes

No No

Yes

MeCab

Life Science 
Dictionary

Executed by workflow engine
Executed by UIMA pipeline engine

J-Server

Google 
Translation

Composite service Atomic services

UIMA AE Translator 
(ja -> en)

UIMA AE Translator 
(en -> de)

Figure 11: Example of hybrid composite service

Compare (Kano et al., 2011) one of the World’s largest, and
still growing, collection of UIMA-compatible resources.
This would significantly increase the number of NLP-
related language resources available as services in the Lan-
guage Grid. NLP communities will benefits from a large
number of easy access language services shared on the Lan-
guage Grid.

4.3. Evaluation
We performed an evaluation to investigate the performance
of composite service when using UIMA CAS Multiplier
and UIMA AS. The performance metric is execution time
of the composite service when processing a big document.
To evaluate composite service performance, we use the pre-
vious example in Figure 11, the two-hop translation is im-
plemented with two methods: Using service composition
engine in the Language Grid, and using UIMA engine with
CAS Multiplier and UIMA AS. To execute the two-hop
translation with the latter implementation, we first need to
separate large document to smaller documents. We im-
plement a simple Segmenter to separate large document

Time (ms)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Two-hop Transation service

UIMA AAE 1 (10 inst)

UIMA AAE 2 (20 inst)

UIMA AAE 3 (30 inst)

UIMA AAE 4 (40 inst)

UIMA AAE 5 (50 inst)

UIMA AAE 6 (60 inst)

Figure 12: Execution time of different types of composite
service

to smaller CAS documents each consisting of 500 words.
Number of smaller CAS documents, which can be execut-
ed concurrently, depends on the configuration of the UIMA
composite service.
We conducted an experiment to see how composite ser-
vice performance was improved when using UIMA AS and
CAS Multiplier. We assume that the number of compos-
ite service instances, which can be executed in the same
time, may also affect execution time of the composite ser-
vice. We designed six UIMA composite services (UIMA
AAE) with different parameter specifying number of in-
stances that can be executed concurrently. For example,
UIMA AAE 1 can run 10 concurrent 10 CASes simultane-
ously.
We challenged each type with a data set containing ten text
documents with different sizes, ranging from 5000 words
to 50000 words. The CAS Multiplier can separate these ten
documents into different number of CASes, ranging from
10 CASes to 100 CASes. We compare the execution times
of these composite service with execution time of normal
two-hop translation service. The resulting execution times
are plotted in Figure 12.
From this result we can see that, the CAS Multiplier and
UIMA AS engine improve the composite service perfor-
mance significantly. For example, when we use UIMA
AAE 6 to execute with document 10, the execution time
was decreased almost 70 % compared to the execution time
of normal two-hop translation service.

5. Discussion
The previous section presented an integration of the Lan-
guage Grid and UIMA. The experiment showed that using
data parallelism in a composite service improves its per-
formance. However, if there are too many data partitions,
many requests will be sent to a web service concurrently.
This is a challenge for service handlers if the number of
requests exceeds the maximum number of requests that the
service can handle. Therefore, to use data parallelism effec-
tively developers need to design a suitable partition strategy

3835



for the input document. There are other parameters beside
the number of concurrent composite service instances that
effect performance of the composite services. For exam-
ple, computing resources and service loads are important
parameters that need to be considered to find an optimal
setting for a composite service in a given environment.
Trying to optimize the parameters involves several trade-
offs. The local computing resource defines the maximum
number of threads that can be executed. If the number of
concurrent instances exceeds this maximum number, the
performance of the composite service would be decreased.
If the number of parallel requests exceeds the maximum
number of requests that a service can handle, composite ser-
vice performance might worsen. It will be more interesting
in the future when we have more researches in analysing
data parallelism in composite service. Further experiment
need to be conducted in order to build a correlation model
of parameters for analysing and finding optimal parameters
for composite service on a given environment.

6. Conclusion
In this paper we proposed an integration of two types of
language resource frameworks: framework-based service
composition and framework-based processing pipeline.
The main contributions of this paper are as follows:

• Adapting a pipeline engine to yield a service compo-
sition engine for enhancing composite service perfor-
mance.

• The integration framework increases the availability of
language resources by protecting intellectual property
rights.

• A case study that showed a promising increase in the
number of language services in the Language Grid af-
ter integration with UIMA. This leads to greater use of
the Language Grid

Adding the UIMA framework to the Language Grid will
in-crease the number of language resources shared as lan-
guage services on the Language Grid and increase its ro-
bustness. It also allows NLP users to easily access and test
UIMA-compliant language resources before downloading
these language resources and combining them to build their
applications.

7. Acknowledgements
This research was partly supported by a Grant-in-Aid for
Scientific Research (S) (24220002, 2012-2016) from Japan
Society for Promotion of Science (JSPS) and Service Sci-
ence, Solutions and Foundation Integrated Research Pro-
gram from JST RISTEX.

8. References
Bel, N. (2010). Platform for automatic, normalized

annotation and cost-effective acquisition of language
resources for human language technologies. panacea.
Procesamiento del Lenguaje Natural, 45:327–328.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). Gate: an architecture for development of ro-
bust human language technology applications. In Pro-
ceedings of 40th Annual Meeting of the Association for
Computational Linguistics, pages 168–175, Philadelphi-
a, Pennsylvania, USA, July. Association for Computa-
tional Linguistics.

Epstein, E. A., Schor, M. I., Iyer, B. S., Lally, A., Brown,
E. W., and Cwiklik, J. (2012). Making watson fast. IBM
Journal of Research and Development, 56(3.4):15–1.

Ferrucci, D. and Lally, A. (2004a). Building an exam-
ple application with the unstructured information man-
agement architecture. IBM Systems Journal, 43(3):455–
475.

Ferrucci, D. and Lally, A. (2004b). Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3-4):327–348.

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek,
D., Kalyanpur, A. A., Lally, A., Murdock, J. W., Ny-
berg, E., Prager, J., et al. (2010). Building watson: An
overview of the deepqa project. AI magazine, 31(3):59–
79.

Hayashi, Y., Declerck, T., Calzolari, N., Monachini, M.,
Soria, C., and Buitelaar, P. (2011). Language service on-
tology. In The Language Grid, pages 85–100. Springer.

Ide, N. and Romary, L. (2009). Standards for language re-
sources. arXiv preprint arXiv:0909.2719.

Ide, N. and Suderman, K. (2009). Bridging the gaps: in-
teroperability for graf, gate, and uima. In Proceedings of
the Third Linguistic Annotation Workshop, pages 27–34.
Association for Computational Linguistics.

Ide, N., Bonhomme, P., and Romary, L. (2000). An xml-
based encoding standard for linguistic corpora. In Pro-
ceedings of the Second International Conference on Lan-
guage Resources and Evaluation, pages 825–830.

Ishida, T. (2006). Language grid: An infrastructure for
intercultural collaboration. In Applications and the In-
ternet, 2006. SAINT 2006. International Symposium on,
pages 96–100. IEEE.

Kano, Y., Miwa, M., Cohen, K. B., Hunter, L. E., Anani-
adou, S., and Tsujii, J. (2011). U-compare: A modular
nlp workflow construction and evaluation system. IBM
Journal of Research and Development, 55(3):11–1.

Maegaard, B., Choukri, K., Calzolari, N., and Odijk, J.
(2005). Elra - european language resources association-
background, recent developments and future perspec-
tives. Language Resources and Evaluation, 39(1):9–23.

Murakami, Y., Lin, D., Tanaka, M., Nakaguchi, T., and
Ishida, T. (2011). Service grid architecture. In The Lan-
guage Grid, pages 19–34. Springer.

Vanhoutte, E. (2004). An introduction to the tei and the tei
consortium. Literary and linguistic computing, 19(1):9–
16.

Zhang, D., Coddington, P., and Wendelborn, A. L. (2013).
Improving data transfer performance of web service
workflows in the cloud environment. Int. J. Comput. Sci.
Eng., 8(3):198–209, July.

3836


