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Abstract
This paper addresses the question of hierarchical named entity evaluation. In particular, we focus on metrics to deal with complex named
entity structures as those introduced within the QUAERO project. The intended goal is to propose a smart way of evaluating partially
correctly detected complex entities, beyond the scope of traditional metrics. None of the existing metrics are fully adequate to evaluate
the proposed QUAERO task involving entity detection, classification and decomposition.
We are discussing the strong and weak points of the existing metrics. We then introduce a new metric, the Entity Tree Error Rate
(ETER), to evaluate hierarchical and structured named entity detection, classification and decomposition. The ETER metric builds upon
the commonly accepted SER metric, but it takes the complex entity structure into account by measuring errors not only at the slot (or
complex entity) level but also at a basic (atomic) entity level. We are comparing our new metric to the standard one using first some
examples and then a set of real data selected from the ETAPE evaluation results.

Keywords: hierarchical named entity; metrics; evaluation

1. Introduction
The successful development of information extraction tech-
nologies over time has been accompanied by an increase in
the complexity of the task, including attempts to structure
the information to be extracted. At the same time, evalu-
ation metrics have been defined to handle this increasing
complexity. Within the French OSEO QUAERO program, a
new definition of structured and hierarchical named entities
was proposed (Grouin et al., 2011) and subsequently used
within the French ANR ETAPE project for its evaluation
campaign on the Named Entity task (Galibert et al., 2014).
In this work, we show that existing metrics are not well
suited for such a task. We propose a new metric to take into
account the potentially complex structure of named entities.
This new metric is also able to take into account different
application cases.
In the next section we present the different metrics pro-
posed since the first named entity evaluation campaign fol-
lowing the different named entity definition. Then, the
structured named entity task is presented in section 3. fol-
lowed by the description of our proposed ETER metric
(section 4.). The application of this new metric is presented
in section 5. together with an detailed analysis. Finally, we
conclude this paper in section 6..

2. Evolution of NE definition and metrics
The Named Entity Extraction tasks as introduced within
the 6th MUC conference (Grishman and Sundheim, 1996;
SAIC, 1998), consisted in detecting and annotating proper
names, numeric values and time expressions in text docu-
ments. The very encouraging results achieved during these
evaluations attracted the interest of several technological ar-
eas such as information extraction, understanding, index-
ation... As a consequence, the exact definition of named
entity evolved in complexity from one conference to the

next. Nowadays named entities (NE) cover a large panel of
different expressions, and named entity recognition (NER)
systems try to extract more and more predefined entity
classes also including information about their mentions and
relations. This entails an overall NER task complexifica-
tion. Figures 1 and 2 illustrate an example of a hierarchi-
cally structured entity as defined within the QUAERO pro-
gram. In parallel to that growing complexity, NER perfor-
mance metrics had to evolve accordingly.
Precision (P) and recall (R) are the usual metrics used to
measure the performance of information extraction sys-
tems. Precision gives the ratio of correct predictions within
all the predictions, while Recall gives the ratio of correct
predictions within all the entities to be found. Hence, pre-
cision measures the correctness of the system, while recall
measures its coverage of the input data. In order to obtain
a single value the F-measure has been defined as the har-
monic mean between P and R and has been used to rank
participants during many evaluation campaigns. However,
the F-measure shows some limitations. First, as demon-
strated in (Makhoul et al., 1999), when P and R are fused
with an harmonic mean, deletion and insertion errors are
lowered in importance in comparison to substitutions.
More importantly, the correctness evaluation for precision
and recall evaluations are binary: either an hypothesis is
correct or it isn’t. But breaking down entity types into sev-
eral sub-types and the use of structured entities give rise
to different kinds of substitution errors (type substitutions,
sub-type substitutions and boundary substitutions) and one
may want to differently weight each kind of error case.
To overcome the pointed out F-measure limitations, alter-
native error metrics have been proposed to measure system
performances. Error-based metrics try to estimate the cost
of an error with respect to an end-user or a larger applica-
tion context. A decrease in error rate then corresponds to
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an overall performance improvement.
Initially, the ERR error metric (Error per response) has been
introduced during MUC-5 (Chinchor and Sundheim, 1993).
It is defined as:

ERR =
S +D + I

C +D + I

where:
• S is the number of substitutions
• I is the number of insertions (false alarms)
• D is the number of deletions (misses)
• C is the number of corrects items

The main problem with ERR is that putting I in the denom-
inator makes it vary with the system hypothesis, thus mak-
ing systems comparisons harder. (Makhoul et al., 1999)
proposed the now well-known Slot Error Rate:

SER =
S +D + I

C +D + S
=
S +D + I

R

where R is the number of entities to detect in the reference.
The SER works quite well for the simple detection and clas-
sification tasks with the possibility of varying the substitu-
tion cost of an error depending on criteria considered rel-
evant for the application. Some tasks however go further
and require classifying entity mentions and/or relations. In
this case, the SER metric is not usable anymore. That was
the case in the ACE 2004 (Automatic Content Extraction)
evaluation of NE extraction which introduced a new metric
called the EDT value (Doddington et al., 2004). This met-
ric sums values for system-detected entities with the values
being defined beforehand:

EDT_valuesys =
∑
i

value_of_sys_entityi

The definition of the values is outside the scope of this
paper but takes into account all the required information.
That metric evolved into LEDR (ACE, 2008) for ACE-2008
where the values were normalized by the sum of the values
of the reference data:

LEDR_valuesys =

∑
i value_of_sys_tokeni∑
j value_of_ref_tokenj

Within the QUAERO project a variant of NE annotation
methodology has been experimented with (Grouin et al.,
2011). In that framework, entities are represented by a two-
level structure. In a first step, the whole entity is marked
and typed. In a second step, the word span is broken down
into contiguous components with a specific type each. The
components allow to refine categorizations according to ap-
plicative needs. Hence, an entity is not limited to a (tag,
span) pair but may grow to a complex structure that can be
represented as a tree, with the main entity type at the root
and its components as leaves. Figure 1 presents such a tree.
In the QUAERO context, we experimented with a semi-
direct implementation of SER evaluation (Galibert et al.,
2011), considering root types and components as indepen-
dent entities. However, this approach gave unsatisfying re-
sults.

le collectif

kind

des associations

kind

des droits de l' homme

name

au Sahara

name

loc.phys.geo

loc.adm.sup

org.ent

org.ent

Figure 1: Example of complex tree entities with roots
(types/sub-types) in red and leaves (components) in blue.

Gare

kind

de Montparnasse

name

loc.fac

Figure 2: Example of simple tree with roots (types/sub-
types) in red and leaves (components) in blue.

One may think that our evaluation task is close to evalu-
ating parsers such as in a tree-bank task and that we may
apply similar evaluation schemes. Though, we consider
that these two evaluation cases are different for two main
reasons. Firstly, in the tree bank evaluation the response
space is not unique and the first step consists in generat-
ing all possible responses (Carroll et al., 1998), while in the
case of named entity extraction a unique annotation model
is imposed. Secondly, we consider that an error-based mea-
sure is more suited to the NE entity task whereas for parsers
evaluation metrics are based on precision and recall.
In the next section, we present an alternative way of evalu-
ating NE hypotheses with the ambition of better reflecting
the quality of the systems.

3. QUAERO Named Entities
The recently introduced QUAERO NE annotation guide-
lines (Grouin et al., 2011; Rosset et al., 2011) propose a
new kind of named entities which are both hierarchical and
compositional. These two features provide the advantage of
a generic annotation easily adaptable to a new application
domain with minimal changes. At the same time, the re-
sulting complex structures make the task evaluation harder.
Two kind of labels are used:

• NE-type labels: used to classify detected named entity,
they constitute the first level of annotation and provide
information about type and sub-type (nodes in red in
the different figures). The taxonomy includes 7 types
and 32 sub-types. The seven top-level NE-types are
persons, locations, organizations, products, functions,
amounts and temporal expressions. The NE-sub-types
are used to more precisely specify the NE-type. For
example, the time NE-type denotes a temporal expres-
sion. With an additional sub-type time.date it indicates
more specifically a day or more, and time.date.abs in-
dicates an absolute date.

• Component labels: used to annotate semantically in-
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teresting elements inside a detected named entity.
They are never a full named entity of their own, but
only part of one. They constitute a second level of an-
notation (nodes in blue in the different figures). There
are NE-type specific component labels and component
labels which can be found within any NE-type.

Entity annotation thus makes use of two level annotations,
a top level with NE-type annotations (in red) on the full
words spans of the named entity, and a bottom level which
may decompose the entity into sub-spans corresponding to
components. A small number of words may not be anno-
tated at the bottom level, mainly determinants. Figures 1
and 2 show examples of QUAERO annotations.

4. Proposed error measure: ETER
As discussed in section 2., F-measure and MUC-type SER
metrics are not best suited for evaluating a named entity
detection task where complex, agglutinated named entities
are frequent. A better suited metric should be able to take
into account that:
• entities, with one main type for the full span, tend to

be structured, subdivided into one or more compo-
nents and/or smaller entities;

• entity types are hierarchical with types and sub-types.
NE-type comparison must take that structure into
account;

• the same entity may be given multiple NE-types in
case of metonymy.

The metric should be easily adaptable to account for more
or less levels of complexity as a function of the evaluation
setup and/or applicative requirements.

4.1. General structure
The proposed metric builds upon the standard SER
methodology by adding options to take structuring into
account. Three steps are needed to compute the metric:

1. match reference and hypothesis entity trees;
2. for each matched tree pair, associate sub-

trees/components between reference and hypothesis;
3. compute error counts for all matched tree, subtree and

component pair.
The matching or association steps are commonly called the
alignment. The final error rate is computed as the total
number of errors divided by the number of slots, e.g. the
number of entities. The slots may represent either types,
subtypes or components, depending on the chosen option.

4.2. Alignment
The first step of any comparison-based metric consists in
associating the slots of the reference with those of the hy-
pothesis. The standard SER metric evaluates associated
tags independently of their types, giving rise to alignments
such as those shown in Figure 3. Such an alignment, while
correct at first sight, lacks in precision. Associating the
name component labels together will make the evaluation
consider that the func.ind entity is fully correct, although
the types of the components are not fully specified (miss-
ing detection of 2 location entities of location NE-type and

administration/nation loc.adm.nat subtypes . To reveal such
errors (missing information), we need to apply a two-level
alignment, where the full (first level) entities are aligned to-
gether, and then within aligned entity pairs the components
are aligned together.
Such an alignment is given in Figure 4, showing that the
two loc.adm.nat components are considered as missing. In
addition, the two name tags are now considered as substi-
tutions of these components, which is the expected result
when taking structure into account.
When aligning components of a matched tree pair, different
matching options need to be explored. The chosen align-
ment is the one with the best (lowest) score. The computa-
tion of the score is described in the next subsection.

4.3. Entity Tree Error Rate
The proposed ETER metric or Entity Tree Error Rate metric
follows the usual SER in computing a total number of errors
and dividing it by the number of slots, here the number of
entities. The total set of errors can be divided into three
parts: insertion, deletion and substitution errors for paired
entities. Usually, insertion and deletion costs are fixed to 1.
The ETER metric can then be written as follows:

ETER =
I +D +

∑
(er,eh)

E(er, eh)

NE

with:
• I: number of Insertions (spurious entities) - entities in

the hypothesis that are not associated with an entity of
the reference;

• D: number of Deletions (missing entities) - entities in
the reference that are not associated with an entity of
the hypothesis;

• (er, eh): aligned pair of reference and hypothesis
entities;

• E(r, h): error computed on the reference/hypothesis
entitity pair (which can be zero);

• NE : number of entities in the reference.
The metric then relies on the per-association error compu-
tation. We split the errors into two parts, one linked to the
main entity determination (e.g. root), and one to the com-
ponents:

E(r, h) = (1− α)Er(r, h) + αEc(r, h), α ∈ [0..1]

where Er(r, h) and Ec(r, h) correspond to the number of
errors in root nodes and in components respectively; α is a
parameter allowing to select the importance between entity
classification and entity decomposition. By default we con-
sider that α = 0.5 is appropriate for the global named en-
tity detection, classification, decomposition task It gives an
equal weight to entity classification and entity decomposi-
tion irrespective of the number of type and component slots.
Nevertheless, evaluators may modify the α weight accord-
ing to their specific needs. This weight option is helpful to
enable the checking of system weaknesses (e.g. by switch-
ing from entity classification to decomposition). It can also
be useful if one of the two sub-tasks (entity classification
vs decomposition) is more important than the other one in
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Non mapped tags

name

loc.adm.nat

Turquie

Figure 3: Example of tag based alignment.

kind

ambassadeur de la

name

loc.adm.nat

Turquie en France

name

loc.adm.nat

func.ind

kind name

ambassadeur de la Turquie en France

name

func.ind

Non mapped trees

Reference Hypothesis

Figure 4: Example of a two-level NE tree alignment.

a given applicative context and we want to assign it a higher
weight.

The root, or main entity, error score reports whether the
type or types (in case of metonymy) are correct, and
whether the span (boundaries) is correct. A span error costs
0.25 point, a type error up to 0.5 point. This gives a max-
imum error for the root entity of 0.75, acknowledging that
detecting the presence of an entity is always better than
completely missing it, where the cost would be 1.
The NE-type computation is a little complex due to the ex-
istence of metonymy. We first define an elementary type
comparison error:

Et1(t1, t2) =

 0.5 NE− type error
0.25 NE− subtype error
0 if the types are fully identical

In absence of metonymy (both in reference and hypothesis),
a basic comparison can be used. We can see that a complete
misclassification gives a maximum error of 0.5, while de-
tecting a correct NE-type but failing at a lower subtype level
will be only half that.
If only one side has a metonymy, we use the mean be-
tween a class error (0.5) and the best elementary compari-
son, choosing between the two possible pairs. If both have
metonymy, we use the mean of both basic comparisons,

matching the type the best possible way:

Et({r1}, {h1}) = Et1(r1, h1)

Et({r1, r2}, {h1}) = min(
0.5 + Et1(r1, h1)

2
,

0.5 + Et1(r2, h1)

2
)

Et({r1}, {h1, h2}) = min(
0.5 + Et1(r1, h1)

2
,

0.5 + Et1(r1, h2)

2
)

Et({r1, r2}, {h1, h2}) = min(
Et1(r1, h1) + Et1(r2, h2)

2
,

Et1(r1, h2) + Et1(r2, h1)

2
)

The component, or decomposition error score, is a local
SER on the components themselves of the second level
alignment:

Ec(r, h) =
Ic(r, h) +Dc(r, h) +

∑
(cr,ch)

Ec1(cr, ch)

Nc(r)

where:

• Ic(r, h): number of inserted components;

• Dc(r, h): number of missed components;
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ancien ministre

qualifier kind

func.ind

Le président a rencontré l' .président

kind

func.ind

Le a rencontré l' ancien ministre .

kind

func.ind

qualifier kind

func.ind

présidentLe a rencontré l' ancien ministre .

Reference

System A System B

Figure 5: Two system outputs for the same reference (The
president meets the former minister), with different SER (60%
and 40%) and identical ETER (50%).

• (cr, ch): associated pair of reference and hypothesis
components;

• Ec1(r, h): error computed on the refer-
ence/hypothesis component association (which
can be zero);

• Nc(r): number of components in the reference entity;
Finally the component error is computed as:

Ec1(cr, ch) =

{
0.5 if the components are different
0 otherwise{
0.25 if the boundaries are different
0 otherwise

This is identical to the root types, without considering the
subtypes or the metonymy concepts.
The proposed method allows us to compute a root entity
error rate and a component decomposition error rate which
may be linearly combined to get the final global score.

5. Comparative analysis of performance
mesures

In this section, we illustrate the proposed metric using
some examples before presenting results using the French
ETAPE data.
In the example of Figure 5, the reference has two entities,
the first one, président, involving one kind component and
the second one (ancien ministre) involving two components
( qualifier and kind). We want to compare two NER sys-
tems called A and B, where A annotates correctly the first
entity but deletes the second one, while system B deletes
the first entity and correctly annotates the second one.
Applying the basic SER metric to our tree-based entities,
system A has two correct slots and three deleted ones, while
system B has three correct slots and two deleted ones. This
gives an error rate of 3

5 = 60% for system A and 2
5 = 40%

for system B. However, from a task point of view, both sys-
tems missed one entity, and when focusing only on named
entity detection, there may be no reason to consider one en-
tity more important than the other one. ETER, evaluating at
the entity level, gives one deletion and one correct slot for
both systems, and an identical error rate of 1

2 = 50%. That
is in line with considering that each system did half the job.
A second example stems from the previous example in
figures 3 and 4 involving nested entities. In the refer-
ence annotation, ambassadeur de la Turquie en France has

ETAPE test %
Number of entities 5954 40.8
Numr of components 8627 59.2
Total 14581

Table 1: Description of the test corpus of the ETAPE eval-
uation.

type func.ind (function), and that entity is decomposed into
three components, a kind (ambassadeur) and two locations
(Turquie and France). Recursively, Turquie and France are
two entities, each one having a name as component. The
hypothesis has one entity with three components, the kind
and two name. Alignment results for both the SER (shown
in figure 3) and the ETER (shown in Figure 4) metrics are
discussed in section 4.1.
Using these alignements we can easily compute the results
for the two metrics. In the SER point of view, there are
four correct slots and two deletions, giving a final error rate
of 2

6 = 33%. The ETER case is slighly more complex,
with two deleted entities and one with a small decomposi-
tion error of ET = 0.16. This gives a global error rate of
2+0.16

3 = 72%.
From our point of view, losing two out of three entities jus-
tifies an error rate of at least two-thirds, or 67%. And given
that the remaining entity is not even perfect, climbing to
72% makes sense. The SER score on the other hand is ab-
normally low. We can see that ETER takes into account the
role each label plays in the whole annotation interpretation,
and respects the dependency relationship between compo-
nents and root entity.
To illustrate the use of ETER on more realistic data, in the
next section, we compare the error measures provided by
SER and ETER for the named entity detection task of the
ETAPE evaluation. The task consisted in extracting, cat-
egorizing and decomposing a large number of named en-
tities in accordance with the guidelines defined during the
QUAERO project.

5.1. The ETAPE test corpus
The ETAPE test-corpus (see (Galibert et al., 2014) for a
complete description) consists of 8h20 of radio and TV
program including planned and spontaneous speech. Ta-
ble 1 briefly describes the data available. All the shows
were manually transcribed and annotated in named entities
according to the QUAERO guidelines (Rosset et al., 2011).

5.2. Interpretation of the ETAPE evaluation
results

Table 2 shows the results in terms of SER and ETER ob-
tained by ten systems having participate in the ETAPE eval-
uation, on the test data.
One can notice that error rates are different depending on
the metric used and, more important, that the ranking of
the systems changes. That shows that the two metrics have
different behaviors on real data.
We selected among the participants of the ETAPE evalu-
ation three NER systems which used different approaches
and ended up showing different behaviors:
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SER ETER
System Score Rank Score Rank
NER-1 35.4 1 34.4 1
NER-2 38.0 4 35.5 2
NER-3 51.4 8 50.0 7
NER-4 36.4 2 40.4 5
NER-5 37.3 3 38.7 4
NER-6 39.2 5 37.9 3
NER-7 50.0 7 52.6 9
NER-8 56.4 9 50.1 8
NER-9 44.6 6 42.8 6
NER-10 85.6 10 81.4 10

Table 2: Comparison between SER and ETER (α = 0.5)
on the ETAPE test data.

D I S SER ETER
NER-4
types

1925 155 541 39,5%

NER-4 com-
ponents

2304 310 587 33.7%

NER-4
global task

4229 465 1128 36,4% 40%

NER-5
types

1476 543 888 41%

NER-5 com-
ponents

2092 525 589 33.7%

NER-5
global task

3568 1068 1477 37.3% 38.6%

NER-8
types

1511 290 818 37%

NER-8 com-
ponents

4295 266 2908 69.7%

NER-8
global task

5806 556 3726 56.4% 50%

Table 3: Comparison between SER and ETER ( α= 0.5),
Results for ETAPE test.

• NER-4: this system, described in (Raymond, 2013),
ignores the structure and considers that all labels are
independent.

• NER-5: this system, described in (Dinarelli and
Rosset, 2012), builds entities trees in two steps,
starting with a CRF model to detect and annotate
components, followed by a PCFG-based parser to
rebuild the whole trees.

• NER-8: this system, described in (Hatmi et al.,
2013), doesn’t try to detect components, every de-
tected entity has only one name component embedded.

Table 3 shows the results obtained by these three specific
systems. We distinguish in this table four different error
measures: SER for type slots, SER for component slots,
SER for the global task and ETER with α = 0.5 for the
global task. As we can see, for the global task the perfor-
mance measured by both metrics (SER and ETER) is dif-
ferent.
For the NER-8 system, ETER shows a lower error rate than
SER, while for the other two systems (NER-5, NER-4)

ETER is higher than SER. If we look at the performance
of the three NER systems on types and components sepa-
rately, we notice that NER-8 has a lower SER on types than
on components, and that in the global task it obtained an
ETER score lower than the SER one. On the other hand,
we can see that NER-4 and NER-5 systems have a lower
error rate on components than on types, and that both sys-
tems obtained on the global task an ETER score bigger than
the SER one.
We have here a direct impact of the way SER is computed.
Going back to the formula:

SER =
total number of slot errors

total number of slots in reference

=

Classification errors︷ ︸︸ ︷
NbT∑
i=0

type error +

Decomposition errors︷ ︸︸ ︷
NbC∑
j=0

component error

total number of slots in reference

where:

• NbT: Number of type slots in hypothesis.
• NbC: Number of components slots in hypothesis.

And NbC ≈ 1.5 × NbT for real data. As a consequence,
the use of a slot-based metric such as the SER tends to give
more importance to the components because of their higher
count. Systems which perform better in classification than
in decomposition end up penalized. In the case of ETER the
comparative weight of these two aspects is set explicitely
through the α parameter, with the default value of 0.5 en-
suring a equal weighting.

5.3. Alpha parameter and system performance
comparison

The default α value of 0.5 is the most natural to evaluate
the global task, but changing its value allows to try to un-
derstand the strengths and weaknesses of the systems. Fig-
ure 6 illustrates the performance measurement variation of
the three NER systems in function of α.

• α = 0 : evaluation of performances in entity detection
and classification, decomposition is not taked into
account;

• α = 0.5 : the most appropriate for the overall task, it
give an equal weight to entity classification and entity
decomposition;

• α = 1 : evaluation of performances in entity detection
and decomposition, classification is not taked into
account.

As we can see figure 6, for α = 0 the best score is reached
by NER-8. It means that it has the best performance in en-
tity detection and classification. However, its performances
decrease rapidly when α increases, which shows that this
NER system has a bad performance in decomposition, end-
ing up with a very high ETER when α = 1. This confirms
the system description indicating that decomposition was
in practice not taken into account.
We can also notice that NER-5 and NER-4 obtain almost
the same ETER when α = 0, which means that they have

3992



 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1

E
T
E
R

Alpha

NER-4
NER-5
NER-8

Figure 6: Variation of ETER depending on the component-
root entity importance ratio α.

Type sub-
stitutions

Sub-type
substitutions

Boundaries
substitutions

NER-1 371 137 341
NER-2 307 119 485
NER-3 167 56 260

Table 4: Distribution of types, sub-types and boundaries
substitution errors when using ETER.

similar performance in entity detection and classification.
However, when α = 1 NER-5 obtains a lower ETER point-
ing that this NER system performs better in entity detection
and decomposition. But the SER results shown in table 3
suggest that NER-4 and NER-5 have exactly the same per-
formances in decomposition (SER = 33.7%). We explain
the ETER vs. SER difference as reflecting the fact that the
NER-4 system did not take the structure itself into account
and handled all annotations independently.
We can also notice that NER-4 and NER-5 have obtained a
different SER on types only but show the same performance
in entity detection and classification (ETER with α = 0).
In order to explain this observation, we need to have a look
at the errors of each system. As we can see in table 3 NER-
5 makes less deletions than NER-4 but more substitutions
and insertions.
Substitutions errors are processed differently by each met-
ric, due to the different weighting of the error. In the SER
case, classification errors cost 0.5 and boundaries errors
cost 0.5. In the ETER case a top-level type error costs 0.5,
a sub-type error 0.25 and a boundary error 0.25. Table 4
shows that the NER-5 substitutions tend to be of the less
costly kinds (sub-types, boudaries), making them less ex-
pensive than the deletions of NER-4. The penalty choices
are a matter of taste, but in any case it seems to make sense
that detecting the presence of an entity, even if a little wrong
on boundaries or classification, is better than not detecting
it at all.
All those results confirm that our proposed metric is a bet-
ter fit to the QUAERO named entity structure detection and
classification task than the currently used SER metric. It
gives the possibility to take into account the structure of
the entities and the annotation scheme and enable a better
analysis of NER system behaviours.

6. Conclusion
This paper highlights the problems that have arisen during
the named entity evaluation campaign as a consequence of
a new complex named entity annotation scheme during the
QUAERO project. The proposed annotation allows not only
for named entity classification but also for its decomposi-
tion (or structuring). Strong and weak points of previously
used metrics were pointed out and we proposed the new
ETER metric as an alternative. This metric builds upon
the common SER metric but it aims at taking the complex
structure into account by measuring errors at the entity level
instead of the slot level. Within the adopted methodology, a
root entity error rate and a component decomposition error
rate are linearly combined for the final score.
The relative importance of entity classification and entity
decomposition errors can be selected by the evaluators ac-
cording to their evaluation context or the expected use of
the system via an α parameter.
Examples and tests on real data show that the slot-based
metric is not well suited to evaluate such a complex named
entity task and that the proposed ETER metric allows for a
better interpretation of the NER performance when dealing
with complex tree entities.
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