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Abstract

We consider classification of sequential data in the
presence of frequent and abrupt concept changes. The
current practice is to use the data after the change to
train a new classifier. However, if the window with
the new data is too small, the classifier will be under-
trained and hence less accurate that the ‘old’ classifier.
Here we propose a method (called WR*) for resizing the
training window after detecting a concept change. Eux-
periments with synthetic and real data demonstrate the
advantages of WR* over other window resizing meth-
ods.

1 Introduction

Classification of sequential data is often impaired
by concept change. Classification of non-stationary
streaming data is tightly related to network secu-
rity, network traffic monitoring, navigation (robotics),
surveillance systems and more. The adaptation of the
classifier to the changing environments can be con-
trolled by the size of a moving training window con-
taining the latest IV observations. Larger training win-
dows are preferred for stationary distributions, while
shorter windows are preferred after a sudden concept
change. If the distribution is stationary, the training
window should be allowed to expand up to a sufficient
pre-defined size. An optimal size N* should be deter-
mined online. The training window in this case may

include data coming after the change as well as past
data. The reason for this is that using only the data
after the change, when only few observations are avail-
able, may produce an undertrained and hence inaccu-
rate classifier. On the other hand, the properties of
the data before the change may carry over the change
point, and the old classifier may still be useful to a
certain extent.

Methods for choosing the window size rely mostly
on heuristics. More importantly, they do not make a
clear-cut difference between the window size for detect-
ing the change and the window size for training the
classifier. There are two main approaches to handling
variable window size. First, an explicit change detec-
tion is followed by a procedure to determine the size of
the new training window [9, 6, 11, 3, 12]. The type
of the change is identified as either abrupt or gradual,
and a respective recipe is applied for resizing the win-
dow. If the change is deemed gradual, smaller part of
the old data is cut off. Alternatively, if the change is
deemed abrupt, a small, supposedly sufficient, training
set is retained containing only the latest observations.
The window resizing is guided by heuristics, and little
attention is paid to the fact that the window needed for
training the classifier and the window used for change
detection should be considered separately.

The second approach to resizing the training window
is based upon constant monitoring of the classification
error, always assuming that there might have been a
change in the past. A backward search is launched at
each new observation (or batch thereof) in order to de-



tect a past change point [7, 8, 10, 4, 1]. While Klinken-
berg [8] chooses the new window by directly estimating
its classification accuracy, the other detection methods
only determine the possible change point. There is no
recommendation of what the training window should
be. It is thereby assumed that the amount of data com-
ing after the change is sufficient for training the new
classifier.

This study presents a method for choosing the train-
ing window size for classification of sequential data.
The method is tailored for small sample sizes (frequent
abrupt changes), where the classification tasks are rela-
tively complex (high dimensionality, low separability).
The method gives the optimal window size for two
equiprobable multivariate Gaussian classes where the
known change consists in a shift of the means. For com-
parison we chose three explicit window resizing meth-
ods that were the closest to the one proposed here:
Drift detection (GAM) [6]!, a window selection algo-
rithm for batch data (KLI) [8] and the Adaptive Win-
dowing Algorithm by Bifet and Gavalda (BIF) [4].

2 The Window Resize Method
2.1 Problem setup

Consider the following classification scenario. A se-
quence of i.i.d. data comes from source S;. At time
tp a sudden concept shift occurs, in which source Sy
is replaced by source Ss. An online classifier model is
trained progressively on the data from S; by expand-
ing the training window with each new observation. At
tp the trained classifier becomes obsolete and should
be replaced by a new classifier trained on Ss. Let C}
be the classifier trained on the data from Sy, and Cy
be the classifier trained on the data from S5. Since the
data comes in a sequence, it would be in deficit straight
after the change, and the newly trained C5 will have
erratic performance. On the other hand, if S; and S5
are similar, the old classifier may still be more accu-
rate than the new classifier until a sufficient training
window of data coming from Sy is accumulated.

We are interested in finding an optimal training data
window for time point ¢. For that we need to detect the
change point ¢p and decide when classifier C7 needs to
be replaced by C5 so as to minimize the generalisation
error. Figure 1 illustrates the problem. Let EN(C)
be the error rate of classifier C' trained on N observa-

1We abbreviate the methods by the first three letters of the
surname of the first author. The method that we propose will
be referred to as Window Resizing and abbreviated as WR. We
also experimented with FLORA [14] but the results were not
competitive and we do not show them here.

0.8f

0.67

Error rate

0.4r

E‘:(C 1)

0.27 tswit(:h

tD Time t

Figure 1. Error rates of (C; and Cs. The time of
the concept shift, tp, isindicated by a vertical
dashed line.

tions. Denote by E*°(C) the asymptotic error rate of
C obtained as E*(C) = limy_.o, EV(C). Let E;(C;)
denote the error incurred by classifier C; trained on
data from source S; with regard to the probability dis-
tributions in source S;, where ¢ = 1,2. Shown in Figure
1 are the error rates of C; and Cs, the concept drift
point tp and the point of classification decision t. At
t we should be using Cy because its error rate E3 (Cy)
is smaller than the error rate of the old classifier C;
i.e., BEY(Cy) < E$(Cy). Tt should be noted that the
‘paired learners’ method of Bach and Maloof [2] also ex-
amines the estimated accuracies EY (Cy) and ES°(C})
and makes a decision in favour of Cy when the above
inequality holds.

2.2 The optimal switch point for two
Gaussian classes

Fukunaga and Hayes [5] show that, for parametric
classifiers and two Gaussian classes, the classification
error rate can be expressed approximately as

BY(0) % BX(C) + 1 F(O) (1)

where f(C) is a function that depends on the classifier
type, but not on N. Assuming that large enough num-
ber of observations have been accumulated from source
S; until the change time tp, we get EP (Cy) =~ EX(Cy),
1 =1,2. On the other hand, C5 is only trained on the
limited number of observations from S5. To determine
when Cy will be sufficiently trained to replace C7, we
solve for N the equation ES*(Cy) = EXN(Cy), where



EXN(Cy) is given by (1). The optimal window size after
the change is

)
B (Cr) — B (Ch)

N* (2)
Variants of f(C) for different classifiers are tabulated
in [5]. The error values E{°(C;) can be derived for
specific distributions and classifiers [13]. Consider two
equiprobable Gaussian classes in R” with means p; and
1o, and equal covariance matrices ¥. Assume that the
change is an instant (uncoordinated) shift of both class
means occurring at some known time point £p. Denote

the class means before the change by ugl) and ué1)7 and

after the change, by uf) and u(;). The error of the
Linear Discriminant Classifier (LDC) for Cj trained
and evaluated on data from S, is the Bayes error, and

is calculated as [13]

EP(Cy) =& (—5(22)) : (3)

where ® is the cumulative distribution function of the
standard normal distribution. The error rate ES°(Cy)
can be derived using:

e the Mahalanobis distances before and after the
change, 6(1) = (,ugl) —uél))TE_l(,ugl) —,uél)) and 6(2) =
(u?) - ,ugz))TZfl(u?) - uf)), respectively, where ¥ is
the common covariance matrix for the classes,

e the magnitude and directions of the change A; =
pi? — i and Ay = ) — b,

e the vector with coefficients of the LDC trained on
source Sy, wl = (uiV — p{HTx-1,

The error of the ’old’ classifier on the 'new’ distri-
bution is

0o 1 WTAl 5(1)
A

WTAQ 6(1)
(M55} @

The function relating the sample size and the classi-
fication error for LDC for classifier Cy trained on data
source S; is [5]

H(Co) = 2\/%5@) [(1 N (5(1))2) . 1}
X exp (— (6(2))2>. (5)

8

With (3), (4) and (5) in place, and with a known
change point tp, we can calculate the optimal window

size N* from (2). Denoting the optimal switch point
by tswitch, We get tswitech = tp + N*. Thus, the optimal
window size at t is

B t, ift < tswitChv
N(t) - { t—tD+1a if t Ztswitch' (6)

We propose to use this result even though the true
distributions may not be Gaussian. The class means
before and after the change are estimated from the
data. If dimensionality permits, a sample covariance
matrix can also be estimated and the linear discrimi-
nant classifier can be applied. Otherwise, we can resort
to the Nearest Mean Classifier (NMC) which only re-
quires the class means in order to operate. In the latter
case & becomes the Euclidean distance. An unbiased
estimate of the squared Euclidean distance 62 can be

derived as
A 1 1
52:52—n<+), (7)

where 62 is calculated from the estimates of the means,
N7 and Ny are the sample sizes for classes 1 and 2, re-
spectively, and n is the data dimensionality. The cor-
rection should be applied for both (§(1)2 and (§(2))2.

2.3 Change detection using the raw data

The estimation of the probabilities of error and the
parameters of the distributions needed for evaluating
(2) hinges upon an accurate estimate of the change
point tp.

We propose to use the raw data for the change detec-
tion. Suppose that we have a sequence of observations
labelled in ¢ classes. To estimate the likelihood of a
change at time d, where 1 < d < ¢, we assume that
the class means migrate independently of one another.
Then the probability that there is a change at time d
is

P(change|d) =1 — H P(no change in ug|d),
k=1

where pyj is the mean for class k, k = 1,...,c.
Given that the data lives in R™, the value of
P(no change in pug|d) can be estimated using the p-
value of the Hotelling multivariate T?-test. This test
compares the means for class k before and after the
hypothetical change at d. If we use the notation py(d)
as the p-value returned by the Hotelling 72-test com-
paring class k samples before and after time moment
d, the probability of change at d can be estimated as

P(change|d) =1 — Hpk(d). (8)

i=1



WINDOW RESIZE ALGORITHM (WR*)

input: a sequence of labelled observations

1. Run backward search to find the likelihood
P(change|j) for j =1,...,t, using (8).

2. Estimate the change point with maximum
likelihood tp = arg max’_, P(change|j).

3. Use (6) to calculate N = N(tp). (For
WR, use NWE =t —tp+1.)

output: window size NWE (NWH),

Figure 2. The WR* Algorithm

2.4 The WR* method

The WR* method is shown in Figure 2.4. We pro-
pose to use the optimal window size taking the change
point with the maximum likelihood. Using (8) and (6),
the optimal window size NV is calculated as

tp = arg mtai{ P(change|j) 9)
j=

For comparison we will also include a version of the
proposed method, called WR, where we do not use N*
but take instead the whole sample after the change

NWE —t _tp+1. (11)

3 Experimental evaluation
3.1 Set-up

We compare WR* with the three methods chosen for
comparison, as well as with WR. We added a control
scenario where the window is kept growing with the
data regardless of any change. The method is called
7all history” and is abbreviated as ALL. Thus the set
of competing window resizing methods is: WR*, WR,
GAM, KLI, BIF and ALL. For each dataset, artificial
or real, we ran 6 synchronised experiments, one for each
window resizing variant. The synchronization ensured
that, once collated, the same sequence of data was sub-
mitted to each method. The Nearest Mean Classifier
was used in all the experiments. The experimental de-
sign was chosen to showcase the proposed method, e.g.,
using small datasets and complex learning tasks.

BIF works only for 1-dimensional data, e.g., the
running error. For this method to be used for n-
dimensional raw data, a separate window is maintained
for each dimension. The parameters needed for evalu-
ating the discriminant functions are calculated on the
respective windows. For example, the n components of
the cluster means in R™ may be derived using differ-
ent window sizes. This model reflects the fact that the
features may change at different pace.

KLI, BIF, WR* and WR include complete back-
ward search starting at the current observation whereas
GAM limits the search to the latest detected change.

3.2 Artificial data

Three data sets were generated: Gaussian data,
STAGGER data and the moving hyperplane data. Ow-
ing to their frequent use, all three of them have ac-
quired the status of benchmark data in the literature
on concept change. However, the exact implementa-
tion varies from one study to another. Our protocol
was as follows.

With each data set, for each observation in the se-
quence, we generated a random set of 100 observations
to serve as the testing set at the current time point.
The same testing set was used for all online classifi-
cation methods in order to enable statistical compar-
ison between them via paired t-test. Let E(t) be the
error rate of the online NMC at time point t, eval-
uated on the respective bespoke testing set. As an
overall measure of the performance of the NMC we
took the average of the errors at t = 1,...,tenq, i-€.,
Eiotal = ﬁ > E(t). Due to the random nature of the
streaming data, we average Fiota) over 100 independent
runs and report in the table that error, denoted Eioal.

Gaussian data. We generated two Gaussian classes

in R7 with identity covariance matrices and ugl) =

(1,0,...,0)T, ugl) = (-=1,0,...,007. A sudden
change was simulated by shifting the means by A; =
(1,0.2,0,...,0)" and Ay = (0.8,-0.4,0...,0)T, re-
spectively, as shown in Figure 3. The results are pre-
sented in Table 1. Statistically significant differences
from a paired t-test are indicated.

STAGGER data. (Used by Widmer et al [14]). Each
data point is described by 3 features, each with three
possible categories: size € {small, medium, large},
colour € {red, green, blue} and shape € {square, cir-
cular, triangular}. Three classification tasks were to
be learned in a course of 120 points. From point 1
to point 40, the classes to be distinguished are [size =
small AND colour = red] vs all other values; from 41 to
80, [colour = green OR shape = circular] vs all other



Figure 3. The first two features of the Gaus-
sian data before and after the change

Table 1. Testing error  Eo.1 (in %) for the artifi-
cial data. The best accuracy for each column
is underlined. The symbol next to the error
rate indicates that the respective method is
significantly: ' e’ worse than, ' o’ better than,
'—' no different to WR* ( « = 0.05).

Method Gaussian STAGGER hyperplane

WR* 17.63 28.49 11.05

WR 1833 o 21.39 o 11.49 —
BIF 18.30 36.87 o 2246
KLI 18.26 o 39.77 e 11.99 o
GAM 18.30 o 36.81 @ 17.18
ALL 18.30 36.81 o 22.46

values; and from 81 to 120, [size = small OR size =
large] vs all other values. Table 1 contains error Exota)-

Moving-hyperplane data. The data sequence is uni-
formly sampled from the unit square. The class labels
are assigned according to a line through the centre
of the square. The line rotates giving rise to change
in the class descriptions (hence 'moving hyperplane’).
Starting with a vertical discrimination line, we simu-
late 4 changes by positioning the discriminating line
at 30°, 60°, 90° and 120°. To form a data stream,
50 i.i.d points were drawn from each source before the
next rotation. The batch size for KLI was fixed at
12 which was empirically found to give KLI the best
chance for this data set. Table 1 contains the results.
Note that STAGGER and hyperplane data illustrate
the case when the underlying assumptions for optimal-
ity of WR* do not hold.

3.3 Real data sets

We used 10 datasets from the UCI repository and
simulated a concept change. With all the data sets, a
cumulative error rate was maintained. The single error

rate at time ¢, denoted e(t), was estimated by testing
the online classifier on the unseen data point coming
at time t, before acquiring its class label (e(t) = 0 if
correctly labelled, and e(t) = 1 if mislabelled). The
cumulative error at time ¢ is E(t) = %Z:Zl e(i). The
final error E(tend) was taken as the performance mea-
sure for the respective data set. In order to estimate
statistical significance of the differences between the er-
ror rates of two methods, we used the McNemar test.

The data set that we chose are all 2-class prob-
lems with moderate size (100 -1000 instances) and di-
mensionality (10-100 attributes). To simulate concept
change, we first permute the data and fix this sequence.
Then we take the second half of the data and shift-
rotate features from 1 to 5. Thus for the second half
of the data original feature 1 is fed to the classifier as
feature 2, original feature 2, as feature 3, and so on,
while original feature 5 is submitted as feature 1. We
used the same change pattern with all the datasets.
Note that the feature values or the class labels are not
changed in any way. The results are shown in Table
2. The differences between the errors of WR* and the
other methods were not statistically significant, apart
from BIF in ‘cylinder’ and GAM in ‘SPECT heart’,
which were significantly worse than WR*. The 6 meth-
ods were ranked with respect to each data set, and the
ranks were then averaged (shown in Table 1). WR*
has the lowest rank by a large margin.

Sometimes there is an explicit suspected change
point, e.g., due to change of operational circumstances,
spatial location, or due to a time gap. For exam-
ple, classification of network traffic may be affected
by the release of a new software product at a particu-
lar (known) time; classification of customer preferences
from retail records may face a concept change if a spe-
cialised store near by closes, etc. Thus, in addition to
the experiments where the change point was unknown,
we also tested the methods for a known change point.
KLI and ALL gave the same result as with an the un-
known change point. GAM, BIF and WR cut the win-
dow at the change point while WR* evaluated the data
before and after the change point. Again, WR* has the
lowest rank (bottom row in Table 1), which suggests
that the success of WR* is due to the proposed win-
dow resizing calculation rather than to a clever change
detection.

4 Conclusion

We propose a window resizing method for classifica-
tion of sequential data. The data within the window
is used for training the online classifier. We derive an
expression for the optimal window size N* for the case



Table 2. Testing error  Eoa1 (in %). The best methods for each data set are underlined.

Data set WR* KLI WR ALL BIF GAM
australian 35.34 34.33 35.92 35.34 35.34 35.34
breast 11.71 11.88 11.71 11.71 11.71 11.71
cylinder 44.62 47.22 48.89 44.62 48.89 44.62
german 38.29 37.89 38.29 38.59 38.59 38.59
Statlog heart 38.48 39.22 38.48 39.22 38.85 39.22
SPECT heart 26.50 25.00 29.14 25.75 25.75 25.75
hepatitis 42.53 36.69 42.53 43.18 43.18 43.18
ionosphere 25.86 25.00 26.14 27.57 27.57 28.43
sonar 37.92 41.30 37.92 37.92 37.92 37.92

vote 11.18 12.10 11.64 11.87 11.87 11.87

rank 2.60 3.20 3.50 3.80 3.95 3.95

rank 2.70 3.45 3.95 3.00 3.95 3.95

(known change)

of two Gaussian classes, the linear discriminant clas-
sifier (LDC) and change abrupt consisting of shift in
the means. We proceed to propose a window resiz-
ing method using this result. The experimental results
demonstrate that using the optimal window size makes
all the difference in favour of the proposed method in
comparison with three window resizing methods from
the recent literature. The method is useful when the
changes are moderate and the complexity of the data
is high. In such cases a distinction between detection
and training windows is particularly relevant because
the old classifier is useful for longer time after the drift.
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