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Abstract—Signal subspace identification is a crucial first step in
many hyperspectral processing algorithms such as target detec-
tion, change detection, classification, and unmixing. The identifi-
cation of this subspace enables a correct dimensionality reduction,
yielding gains in algorithm performance and complexity and in
data storage. This paper introduces a new minimum mean square
error-based approach to infer the signal subspace in hyperspec-
tral imagery. The method, which is termed hyperspectral signal
identification by minimum error, is eigen decomposition based,
unsupervised, and fully automatic (i.e., it does not depend on
any tuning parameters). It first estimates the signal and noise
correlation matrices and then selects the subset of eigenvalues that
best represents the signal subspace in the least squared error sense.
State-of-the-art performance of the proposed method is illustrated
by using simulated and real hyperspectral images.

Index Terms—Dimensionality reduction, hyperspectral im-
agery, hyperspectral signal subspace identification by minimum
error (HySime), hyperspectral unmixing, linear mixture, mini-
mum mean square error (mse), subspace identification.

1. INTRODUCTION

YPERSPECTRAL sensors sample the reflected solar ra-

diation from the Earth’s surface in the portion of the
spectrum extending from the visible region through the near-
infrared and midinfrared (wavelengths between 0.3 and 2.5 pm)
in hundreds of narrow (on the order of 10 nm) contiguous
bands [3]. This high spectral resolution yields large amounts
of data. For example, the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) collects a 512 (along track) x 614
(across track) x 224 (bands) x 12 (bits) data cube in 43 s,
corresponding to more than 700 Mb; Hyperion collects 4 Mb in
3 s, corresponding to 366 kB/km? [4]. Such huge data volumes
put stringent requirements on communications, storage, and
processing.

Lets us represent the spectral radiances read by a hyper-
spectral sensor from a given pixel as an L-D vector, where
L is the number of bands and each channel is assigned to
one axis of RY. Under the linear mixing scenario (see, e.g.,
[5]-[13]), the spectral vectors are a linear combination of the
so-called endmember signatures. The number of endmembers
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present in a given scene is, very often, much smaller than the
number of bands L. Therefore, hyperspectral vectors lie in
a low-dimensional linear subspace. The identification of this
subspace enables the representation of spectral vectors in a low-
dimensional subspace, thus yielding gains in computational
time and complexity and in data storage. The computation of
statistical estimates is a relevant example of the advantages of
dimensionality reduction, considering that the number of sam-
ples required to obtain accurate estimates increases drastically
with the dimensionality of the data [14].

A. Unsupervised Hyperspectral Dimensionality
Reduction Methods

Unsupervised dimensionality reduction has been approached
in many ways. Band selection or band extraction, as the
name suggests, exploits the high correlation existing between
adjacent bands to select a few spectral components among
those with higher signal-to-noise ratio (SNR) [15]-[20]. Pro-
jection techniques seek for the best subspace to project data
by minimizing an objective function. For example, principal
component analysis [21] computes the Karhunen—Loéve trans-
form, which is the best data representation in the least squares
sense; singular value decomposition (SVD) [22] provides the
projection that best represents data in the maximum power
sense; maximum noise fraction (MNF) [23] and noise-adjusted
principal components (NAPC) [24] seek the projection that
optimizes the ratio of noise to signal powers. The NAPC are
mathematically equivalent to the MNF [24] and can be inter-
preted as a sequence of two principal component transforms,
where the first applies to the noise and the second applies to the
transformed data set.

Topological methods are local approaches that infer the
manifold, which is usually of low dimension, where data
set lives [25]. For example, curvilinear component analysis
[26], curvilinear distance analysis [27], and manifold learning
[28]-[31] are nonlinear projections based on the preservation of
the local topology. Independent component analysis [32], [33],
projection pursuit [34], [35], and wavelet decomposition [36],
[37] have also been considered.

The optical real-time adaptive spectral identification system
(ORASIS) [38] is a hyperspectral framework developed by U.S.
Naval Research Laboratory aiming at real-time data process-
ing. This framework consists of several modules, where the
dimension reduction is achieved by identifying a subset of
exemplar pixels that convey the variability in a scene. Each
new pixel collected from the scene is compared with each
exemplar pixel by using an angle metric. The new pixel is
added to the exemplar set if it is sufficiently different from each
of the existing exemplars. An orthogonal basis is periodically
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created from the current set of exemplars by using a modified
Gram-Schmidt procedure. The algorithm performance depends
on the value of the error-angle threshold (chosen by the user).
The dimension reduction flowchart of ORASIS can be found
in [39].

The identification of the signal subspace is a model order in-
ference problem to which information theoretic criteria, such as
the minimum description length (MDL) [40], [41] or the Akaike
information criterion (AIC) [42], comes to mind. These criteria
have, in fact, been used in hyperspectral applications [43],
adopting the approach introduced by Wax and Kailath [44].

Harsanyi et al. [45] developed a Neyman—Pearson detec-
tion theory-based thresholding method (HFC) to determine the
number of spectral endmembers in hyperspectral data, which
is referred to in [43] as virtual dimensionality (VD). The HFC
method is based on a detector built on the eigenvalues of the
sample correlation and covariance matrices. A modified ver-
sion, which is termed noise-whitened HFC (NWHEFC), includes
a noise-whitening step [43].

B. Proposed Approach

Hyperspectral signal identification by minimum error
(HySime) starts by estimating the signal and the noise corre-
lation matrices, using multiple regression. A subset of eigen-
vectors of the signal correlation matrix is then used to represent
the signal subspace. This subspace is inferred by minimizing
the sum of the projection error power with the noise power,
which are, respectively, decreasing and increasing functions of
the subspace dimension. Therefore, if the subspace dimension
is overestimated, the noise power term is dominant, whereas if
the subspace dimension is underestimated, the projection error
power term is the dominant. The overall scheme is computa-
tionally efficient, unsupervised, and fully automatic in the sense
that it does not depend on any tuning parameters.

This paper is organized as follows. Section II formulates the
signal subspace identification problem and reviews the SVD
and MNF methods. Section III describes the fundamentals of
the proposed method, including the noise estimation approach.
Sections IV and V evaluate the proposed algorithm using
simulated and real data, respectively. Section VI summarizes
our contributions and presents some concluding remarks.

II. PROBLEM FORMULATION AND CLASSICAL
DIMENSIONALITY REDUCTION METHODS

Assume that the observed spectral vectors are given by
y=x+n ey

where x and n are L-D vectors standing for signal and additive
noise, respectively. Furthermore, assume that signal vectors are
in an unknown p-D subspace, i.e.,

x = Ms

with p < L and M being a full-rank L x p matrix. Under the
linear mixing scenario, the columns of M are the endmem-
ber signatures, and s is the abundance fraction vector. To be
physically meaningful [46], abundance fractions are subject
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to nonnegativity and full additivity constraints, i.e., s € A,
where

P
A, = seRp:stO,Zsjzl . 2)
j=1

Herein, we do not assume any special structure for the scatter-
ing mechanism, i.e., our approach works both under the linear
and nonlinear scenarios. Even in the nonlinear mixing scenario,
it often happens that the signal subspace dimension, although
larger than the number of endmembers, is much smaller than
the number of bands L. In these cases, it is still worthwhile,
then, to estimate the signal subspace and represent the data on it.
Note that this procedure does not preclude the application of
future nonlinear projection techniques; on the contrary, it is an
advantage, considering that the data is represented by vectors
of a smaller dimension, thus lightening the computational com-
plexity of any posterior processing scheme.

Let us assume, for a while, that the noise n is zero-
mean Gaussian independent and identically distributed (i.i.d.),
with variance o2 per band. Under these circumstances, the
maximum-likelihood (ML) estimate of the signal subspace is
spanned by the p-dominant eigenvectors of the observed data
correlation matrix of y [22, ch. 6], i.e., (M) = ([e1,...,ep])
(the notation (M) represents the subspace spanned by the
columns of M), where e;, which is for< = 1, ..., p, represents
the p-dominant eigenvectors of the observed data correlation
matrix R,.

A. Eigen Analysis of R,

The ML estimator of the subspace signal that was just
presented assumes that the dimension of the subspace is known
beforehand. However, this dimension is often a priori unknown.
Nevertheless, a similar approach has been extensively used as a
dimensionality reduction tool in hyperspectral image process-
ing [5], [47]. It consists of assuming that the noise is zero-mean
i.i.d. Thus, the correlation matrix of the observed vectors may
be written as R, = E(X + 02I,)E", where I, is the L x L
identity matrix and E and X are the eigenvector and eigenvalue
matrices of the signal correlation matrix R, respectively. As-
suming that R, has just p positive eigenvalues and that they are
ordered along the diagonal of 3 by decreasing magnitude, we
then have (M) = ([eq, ..., e,]), i.e., the estimate of the signal
subspace is the span of the eigenvectors of R, whose respective
eigenvalues are larger than o2 [22].

This is basically the idea behind SVD-based eigen-
decomposition dimensionality reduction. Two limitations of
this approach are the following.

1) The noise present in most hyperspectral data sets is not
i.i.d., and thus, the signal subspace is no longer given by
the span of the p eigenvectors corresponding to the largest
eigenvalues nor by any other set of eigenvectors.

2) Even if the noise were i.i.d., the aforementioned proce-
dure to infer the subspace dimension would be prone
to errors, owing to random perturbations that are always
present in the estimates of J,%, E, and X.
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Fig. 1.
Subspace inferred by SVD. (Dashed line) Subspace inferred by MNF.

We illustrate these limitations with an experiment built on a
simulated hyperspectral image composed of 10° pixels and
generated according to the linear mixing scattering mechanism.
Each pixel is a mixture of five endmembers’ signatures (p = 5)
selected from the U.S. Geological Survey (USGS) digital spec-
tral library [48]. Abundance fractions are generated according
to a Dirichlet distribution given by

“(e50) g

Jj=1

D(Sl,SQ, ey sp|01,02, .

L 0p) =
3)

where I'(-) denotes the Gamma function and {s1,...,s,} €
A,. The mean value of the jth endmember fraction is E[s;] =
0;/>7_, 6, (E[-] denotes the expectation operator) [49]. The
Dirichlet density, besides enforcing positivity and full additivity
constraints, displays a wide range of shapes, depending on its
parameters. On the other hand, as noted in [50], the Dirichlet
density is suited to model fractions.

Consider that the noise correlation matrix is R, =
diag(cf,...,0%) and that the diagonal elements follow a
Gaussian shape centered at the band L/2, i.e.,

_G-r/2)?
(2n2)

_ 2 ¢ T
v (G—L/2)2

E:L 2
2n
j 16 ( )

fort=1,..., L. The parameter 7 plays the role of variance in
the Gaussian shape (17 — oo corresponds to white noise; n — 0
corresponds to one-band noise). The parameter o2 controls the
total noise power. We set 02 = 8.1 x 1073, leading to SNR =
17 dB, where

“4)

E[x
SNR = 101 e
810 E[nTn]
To measure the dissimilarity between the signal subspace and

the subspace inferred by SVD, we adopt the chordal distance
[51], [52], which is defined as

®)

Up = Unllr (6)

1
V2
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(a) Noise variance in each band given by (4) for different values of 7). (b) Chordal distance as a function of parameter n for SNR = 17 dB. (Solid Line)
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Fig. 2. (a) Eigenvalues of the signal correlation matrix R,. (b) Eigen-
values of observed data correlation matrix R,. (c) Decreasing ratio
of (VIRyv;)/(vIRnv;) [v; represents the left-hand eigenvectors of
RnRgl]. Simulation parameters: SNR = 12 dB, 7 = 18, and p = 5.

where | - ||r denotes the Frobenius norm of a matrix, U, =
EpEg and Uy, = EyE}, are projection matrices onto the
subspace of dimension p spanned, respectively, by the first p
singular vectors of R, and by the columns of IM. We note that
the chordal distance is a measure of the projection error norm,
i.e., it is a measure of the errors (U, — Up)x for ||x]| =1
and x € RY. When this distance is zero, the two projections
are equal.

Fig. 1(a) shows the shape of the noise variance o7 for n €
{18, 38,74, }. Fig. 1(b) shows the chordal distance between
the signal subspace and the subspace inferred by SVD as
a function of 7. Notice the clear increasing of the chordal
distance with 7, i.e., the chordal distance increases as the noise
correlation shape becomes less flat. The degradation of the
signal subspace estimate, owing to the violation of the white-
noise assumption, is quite clear.

In the example just presented, the subspace dimension was
assumed to be known. However, this dimension is unknown in
most real applications and must be inferred from data, which is
as already referred to. This is a model-order inference problem
that, if based only on the eigenvalues of the observed data
correlation matrix (R, ), may lead to poor results. This aspect
is shown in Fig. 2, where we have plotted the eigenvalues of
the signal correlation matrix R, [plot (a)] and the eigenvalues
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of R, [plot (b)] computed in the aforementioned experiment
with SNR = 12 dB and n = 18. From plot (a), it is clear that
the signal subspace dimension is p = 5. However, considering
that R, is not known in real applications, we resort to R,. An
estimate of the signal subspace dimension based on plot (b)
would lead, most probably, to p = 3. We will see that HySime
is able to infer the correct subspace dimension in the similar
scenarios.

B. MNF

The MNF is a another popular subspace inference tool in
remote sensing, which takes into account the noise statistics.
Nonetheless, it has limitations that are similar to SVD-based
approaches, as we illustrate in the following.

MNF finds non-orthogonal directions, minimizing the noise
fraction (or, equivalently, maximizing the SNR). Assuming
that the noise correlation matrix R,, or an estimate is known,
this procedure consists of finding non-orthogonal directions,
minimizing the ratio

T
viR,v;

T .
v, Ryv;

(7

with respect to v;. This problem is known as the generalized
Rayleigh quotient, and its solution is given by the left-hand
eigenvectors v; of RnRgl, which are fori =1,..., L [53].

For the iid. noise, we have R, =0,°I; and R,' =
E(X +021.) 'E", and therefore, the MNF and SVD yield
the same subspace estimate. However, if the noise is not i.i.d.,
the directions found by the MNF transform maximize the SNR
but do not correctly identify the signal subspace. To illustrate
this aspect, we apply the MNF transform to the data set gen-
erated in the previous section. The dashed line in Fig. 1(b)
represents the chordal distance between the signal subspace and
the subspace inferred by the MNF transform for different values
of the parameter 7 and assuming that p = 5.! The chordal
distance exhibits a pattern that is similar to that of the SVD-
based approach, being, however, larger for 77 # oo (white-noise
case). If the space is unknown, it shall be inferred from the
ratio (Vi R, v;)/(vIR,v;). Plot (c) in Fig. 2 shows a plot of
this ratio, which is by decreasing order for p = 5, n = 18, and
SNR = 12 dB. The inference of the signal subspace dimension
based on this plot may be even worse than that obtained in the
SVD case, considering that the curve does not display any clear
drop nor any floor.

III. SIGNAL SUBSPACE ESTIMATION

This section formally introduces the HySime algorithm.
The method starts by estimating the signal and the noise
correlation matrices, and then, it selects the subset of eigen-
vectors that best represents the signal subspace in the mini-
mum mean square error (mse) sense. The application of this
criterion leads to the minimization of a two-term objective
function. One term corresponds to the power of the signal

The chordal distance is based on the projection matrix computed from
directions v; obtained from (7).
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projection error and is a decreasing function of the subspace
dimension; the other term corresponds to the power of the
noise projection and is an increasing function of subspace
dimension.

A. Noise Estimation

Noise estimation is a classical problem in data analysis
and, particulary, in remote sensing. Arguably, in hyperspectral
imagery, the simplest noise estimation procedure is the shift
difference method, which is also denoted as the nearest neigh-
bor difference [23]. This approach assumes that noise samples
taken from adjacent pixels are independent and have the same
statistics, but the signal component is practically equal. To
obtain meaningful noise estimates, the shift difference method
shall be applied in homogeneous areas rather than on the entire
image. This method has the following two weaknesses. First, it
assumes that adjacent pixels have the same signal information,
which is not valid in most hyperspectral data sets; second, to
improve the noise estimation, the selection of a homogeneous
area must be carried out.

In this paper, we follow a multiple regression theory-based
approach [43], [54], which outperforms the shift difference
method, which is used, for example, in the NAPC [24] algo-
rithm. The high correlation between neighboring spectral bands
is the main reason underlying the good performance of the
multiple regression theory in hyperspectral applications.

Let Y denote an L x N matrix holding the NV spectral
observed vectors of size L. Define the matrix Z = YT and the
N x 1 vector z; = [Z]. ;, where [Z]. ; stands for the ith column
of Z (i.e., z; contains the data read by the hyperspectral sensor
at the ith band for all image pixels), and the N x (L — 1)
matrix Zy, = [21,...,%i-1,Zit1,- .-, 2L

Assume that z; is explained by a linear combination of the
remaining L — 1 bands. Formally, this consists in writing

Z; = Zalﬂi + 51 (8)

where Zj, is the explanatory data matrix, 3; is the regression
vector of size (L — 1) x 1, and &, is the modeling error vector
of size N x 1. For each i € {1,..., L}, the least squares esti-
mator of the regression vector 3; is given by

B, = (23 25) " 23 2. )

The noise is estimated by

~

& =12, —ZLyB; (10)
and the  correlation matrix by f{n: [/5\1, PN
En]TI€r, ..., En]/N. Notice that the determination of each

noise vector &; implies the computation of the pseudoinverse
2} = (2} Zo,) ' 23, of size (L —1) x (L — 1), which is
for each ¢ =1,...,L. This computational complexity can,
however, be greatly reduced by taking advantage of the relation

between Z’gi and Z. Let the L x L symmetric and positive
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definite matrices R and R~! be partitioned into block matrices
as follows:

(1)

where A and A’ are (L — 1 x L — 1) matrices, b and b’ are
(L —1 x 1) vectors, and ¢ and ¢ are scalars. As R, R, A,
A1 and ¢ are positive definites, thus

AA' +bbT =1;_,
Ab +bd =0,

12)
13)

where 077 is an (L — 1 x 1) vector with null entries. By
replacing A~!'b = —b’/c/, which is derived from (13), into
(12), we obtain
A=A -bDb7T/Cc. (14)
Based on this relation, the inversion of the matrix zgizai,
which is for i = 1,..., L, can be obtained by removing the ith
row and the ith column of the matrix (Z7Z) ! and implement-
ing (14) with the necessary adjustments.
The pseudocode for the noise estimation is shown in the

~

Algorithm 1. The symbol [R]s, 5, denotes the matrix obtained
from R by deleting the ith row and the ith column, [f{]za de-
notes the ith row of [ﬁ];,ai, and [R]», i denotes R] L5, Steps 2)
and 3) compute the matrix R = Z"7Z and its inverse, respec-
tively. Steps 5) and 6) estimate, respectively, the regression
vector ﬁz and the noise 'éi, which are foreach:=1,..., L.

Algorithm 1: Noise estimation
INPUTY = [y1,y2,...
2)Z:=YT R:=(Z72);
HR =R
4)fori:=1to L do R

5) Bi = ([R]o, 0, — [R']o,i[Ri.0./[R]i.0)[R]o, i3
{Note that9; = 1,...i —1,i+1,... L}
6) &, =12z, — Zy,B;;
7)end for
8) OUTPUT &;
{€isan N x L matrix with the estimated noise}

ayN]

The main advantage of Algorithm [ is that the computation
of R and of R’ = R~ are out of the for loop. Thus, the compu-
tational complexity, i.e., the number of floating-point operations
(flops), of Algorithm 1 is substantially lower than that of an
algorithm implementing the multiple regression without using
the relation (14). Note that the computation of the observed data
correlation matrix and of its inversion demands, approximately,
2NL? + L? flops, whereas the multiple regression algorithm,
without using (14), has to compute the aforementioned matrices
L times, thus demanding, approximately, 2N L3 + L* flops.
Table I presents the approximated expressions for the number of
floating-point operations used by each algorithm. For N > L,
Algorithm 1 demands approximately L/2 less flops, which
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TABLE 1
COMPUTATIONAL COMPLEXITY OF THE NOISE ESTIMATION ALGORITHMS

Algorithm 1 ANL? + 6L

Algorithm without relation (14) ANL? + 2NL? + L*

is a significant figure, considering that L/2 takes, in many
applications, values on the order of 100. For example, the
computational complexity of Algorithm 1, when applied to a
subimage (145 x 145 pixels and 224 bands) of the Indian Pines
test site acquired by the AVIRIS instrument is 2.8-G flops,
whereas the algorithm implemented without using (14) has a
computational complexity of 253.1-G flops.

The next experiments illustrate Algorithm 1 working. The
input data is a simulated hyperspectral image composed of
10* spectral vectors, each one following the linear mixing
model (1). The abundance fractions are generated according
to a Dirichlet distribution; the number of endmembers is set
to p =5, and their signatures are selected from the USGS
digital spectral library. The noise is zero-mean independent
with variances along the bands, following the Gaussian shape
(4) [see Fig. 1(a)]. The value of the parameter o2 in (4) is
defined by the desired SNR.

Fig. 3(a) shows the noiseless spectral vector x and the noisy
version x + n, which are for SNR =20 dB and = 18. Fig. 3(b)
shows the true and the estimated noises for the same SNR.
The improvement in the SNR (i.e., E[||n|?]/E[||x—x|?]) is
about 13 dB. Fig. 4 shows the plots of three noise covariances
curves and the respective estimates, which are as a function of
the band, for the three experiments. The SNR and covariance
parameter 7 are the following: (a) SNR = 10 dB, and n = 18;
(b) SNR =10 dB, and n = 72; and (c) SNR = 20 dB, and
1 = 18. Notice that the three estimates are very accurate.

B. Signal Subspace Estimation

This section presents the core structure of the proposed
method. The first step, which is based on the noise estimation
procedure introduced in the previous section, identifies a set
of orthogonal directions, of which an unknown subset spans
the signal subspace. This subset is then determined by seeking
the minimum mse between x, the original signal, and a noisy
projection of it obtained from the vector y = x + n. In the
following, we assume that n ~ N'(0,R,,), i.e., the noise is
zero-mean Gaussian distributed with the covariance matrix f{n

Let the eigen decomposition of the signal sample correlation
matrix R, = [X1,...,Xn][X1,...,Xn|"/N be written as

R, = EXE" (15)
where E = [eq,...,er] is a matrix with the eigenvectors of
ﬁm. Given a permutation m = {iy,...,45,} of indices i =
1,..., L, let us decompose the space R” into two orthogonal
subspaces, namely: the k-D subspace (Ej) spanned by E;, =
l€i,,...,€;,] and (Ej)* spanned by E; = [e;,,,,...,€;,],
i.e., the orthogonal complement of the subspace Ey.

Let U, = EkE;f be the projection matrix onto (E) and
X, = Uy be the projection of the observed spectral vector
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covariance matrix for three scenarios. (a) SNR = 10 dB and p = 18. (b) SNR = 10 dB and n = 72. (c) SNR = 20 dB and n = 18.

y onto the subspace (Ej). The first- and the second-order
moments of X, given x are

E[xy[x] = UxE[y[x]
=UiE[x + n|x]

E [(ﬁk — Xk)(ﬁk — Xk)T|X] =E [(Uky — ka)

=E [(Uynn"UY) |x]
=U,R, U} (17)
The mse between x and X}, is
mse(k|x) =E [(x — %) " (x — %) |x]
=E | (x —xx —Ukn)T(x —x; —Ugn)|x
~—— ~——
bk bk
—bTby + tr (UkﬁnUE) . (18)

Computing the mean of (18) with respect to x, noting that b, =
x — x; = Ujpx and using the properties U = UT, U% = U,

and U+ = I — U of the projection matrices, we get

mse(k) =E [(Upx)" (Upx)] +tr (ka{nUg>

~

=t (UfR,) + (UR,,)

=t (UpRy) + 2u(UgR,,) + ¢ (19)
where c is an irrelevant constant. The criterion that we propose
to estimate the signal subspace, which is called X, is the mini-
mization of mse(k) given by (19), with respect to all the
permutations 7 = {iy,...,i5} of size L and to k, with the
correlation matrix R, replaced with the sample correlation
matrix R, = YYT/N, i.e.,

()

(k,7) = arg min {tr (Uiﬁy) + 2tr(Ukﬁn)} 21)

X = (20)

where the dependence on the permutation 7 is through Uy =
EE}, considering that E; = [e;,,...,e;,]. For a given per-
mutation 7, each term of (21) has a clear meaning, namely:
the first term accounts for the projection error power and is a
decreasing function of k; the second term accounts for the noise
power and is an increasing function of k.

Authorized licensed use limited to: Instituto de Telecomunicacoes. Downloaded on November 11, 2008 at 10:28 from IEEE Xplore. Restrictions apply.



BIOUCAS-DIAS AND NASCIMENTO: HYPERSPECTRAL SUBSPACE IDENTIFICATION

By exploiting, again, the fact that the Uy is a projection
matrix and that tr( AB) = tr(BA), which is for A, B € RE*E,
the minimization (21) can be rewritten as

k

(E, 7T) = arg r]rcuT{l c+ Z —pi; + 201-%_
) jzlﬁ/_/

i

(22)

J

2

where ¢ is an irrelevant constant and p;; and o7

forms given by

are quadratic

pij :eZ ﬁyeij (23)

2
o
25

=e/Rye;,. (24)
Based on the right-hand side of (22), it follows that the corre-
sponding minimization is achieved simply by including all the
negative terms d;, which are for ¢ = 1,..., L, and only these,
in the sum.

The pseudocode for HySime is shown in Algorithm 2.
HySime inputs are the spectral observed vectors and the sample
correlation matrix R,,. Step 2) estimates the noise correlation
matrix f{n Step 3) estimates the signal correlation matrix
R.. Steps 4) and 5) calculate the eigenvectors of the signal
correlation matrix and the terms §; based on the quadratic forms
(23) and (24). Steps 6) and 7) implement the minimization (22).
Finally, Step 8) retrieves the signal subspace from % and 7.

Algorithm 2: HySime R
DINPUTY = [y1,y2,...,yn). Ry = (YYT)/N;
DR, = 1/N Y€€ ): (€, is given by (10))
3R, =1/N S, (yi—&)(yi — &, )): {estimate of R, }
4)E :=[ey,...,eL]; {e; are the eigenvectors of f{w}
5)6 :=[01,...,05]; {; is given by (22)}
6) (8,7) := sort(8);

{sort §; by ascending order; save the permutation 7}

7 E:: number of terms Sl < 0;
8) X = ([ea, ..., ]); {signal subspace}

k

An alternative to the projection U3 f{y consists of projecting
the sample mean y =1/N Zf\lz 1Yi onto the subspace that
is orthogonal to the signal subspace. This alternative method,
which is called HySime,,, has been developed in [1] and [2].
The underlying rationale is that spectral vectors are nonnega-
tive, and then, ¥ accumulates information about every spectral
vector in the data set. Of course, for this approach to work, the
projection of y onto any eigenvector vector e;, j =1,...,k
must be nonzero. Although we have no proof of this state-
ment, we believe, supported by practical evidence, that the
probability of ¥ e; = 0 is practically zero in real data sets.
Another difference between HySyme and HySime,, is that the
latter, which is as proposed in [1] and [2], does not search the
signal subspace over all the permutations 7 of the eigenvectors;
instead, it searches only over the sequence of nested subspaces
Sk = [e1,...,ex], where the eigenvectors are ordered by de-
creasing magnitude of the corresponding eigenvalues. We give
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Fig. 5. Plot of mse versus k, with SNR = 35 dB and p = 5 for HySime
method.

evidence, in the next section, that HySime slightly outperforms
HySime,,,.

IV. EVALUATION OF HYSIME WITH SIMULATED DATA

In this section, we apply the proposed HySime algorithm
to simulated scenes and compare it with HFC and NWHFC
eigen-based Neyman—Pearson detectors [43]. As concluded in
[43], these algorithms are the state of the art in hyperspectral
signal subspace identification, outperforming the information
theoretical criteria approaches, namely, the MDL [40], [41]
and the AIC [42]. HySime and HySime,, algorithms are also
compared, given their structural similarity.

The spectral signatures are selected from the USGS digital
spectral library [48]. The abundance fractions are generated
according to a Dirichlet distribution defined in (3). The results
presented here are organized into the following two experi-
ments. In the first experiment, the method is evaluated with
respect to the SNR [see (5)] to the number of endmembers p,
and to the spectral noise shape (white and nonwhite). In the
second experiment, the methods are evaluated with respect to
their ability to detect rare pixels.

Experiment 1: Fig. 5 shows the evolution of the mse for
the HySime method as a function of the parameter k, which
is for SNR = 35 dB and p = 5. The minimum of the mse
occurs at k = 5, which is exactly the number of endmembers
present in the image. As expected, the projection of the error
and noise powers displays decreasing and increasing behaviors,
respectively, as a function of the subspace dimension k.

Tables II and III present the signal subspace order estimates
yielded by the HySime and HySime,, algorithms and the VD
determined by the NWHFC and the HFC algorithms [43] as a
function of the SNR and of the number of endmembers p for
n = 0and n = 1/18, respectively.

The NWHFC algorithm is basically the HFC one [45]
preceded by a noise-whitening step, which is based on the
estimated noise correlation matrix. In implementing this step,
we got poor results in very high SNRs and colored-noise
scenarios. This is basically because the noise estimation step
in NWHFC needs to invert the noise correlation matrix, which
gives inaccurate results when the noise power is small. For
this reason, we have used both the true and estimated noise
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TABLE 1I
SIGNAL SUBSPACE DIMENSION k, WHICH IS BASED ON 50 MONTE CARLO
RUNS, AS A FUNCTION OF SNR AND p FOR 77 = O (NOISE SHAPE).
FIGURES IN BRACKETS WERE COMPUTED BASED ON THE
TRUE NOISE STATISTICS
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TABLE III
SIGNAL SUBSPACE DIMENSION k, WHICH IS BASED ON 50 MONTE CARLO
RUNS, AS A FUNCTION OF SNR AND p FOR ) = 1/18 (NOISE SHAPE).
FIGURES IN BRACKETS WERE COMPUTED BASED ON THE
TRUE NOISE STATISTICS

correlation matrices. The results based on the true correlation
matrix are in brackets. We stress that for the setting of this ex-
periment both HySime and HySime,,, methods yield the same
results, whether using the estimated or the true noise correlation
matrices. Table III (noise-colored scenario, = 1/18) does not
present results for the HFC method because this method was
designed only for white noise.

Another central issue of NWHFC and HFC algorithms is the
false-alarm probability P; they are parameterized with. This
probability is used in a series of Neyman—Pearson tests, each
one designed to detect a different orthogonal signal subspace
direction. There is the need, therefore, to specify the false-alarm
probability P of the tests. Based on the hints given in [43] and
in our own results, we choose Pr € {1073,1074,107°}.

White Noise (n = 0) Gaussian shaped noise ( = 1/18)
SNR | Method p=3 p=5 p=10 p=15 SNR | Method p=3 p=5 p=10 p=15
HySime 3 5 10 15 HySime 3 5 10 15
HySime,, 3 5 10 15 HySime,,, 3 5 10 15
HFC (Pf =107%) 3 5 7 1 50dB | NWHFC (P; = 107%) | 59 3) 41 (5 61 (10) 45 (10)
50dB | HFC (P; = 10~*) 3 5 7 8 NWHFC (P; =10"%) | 48 (3) 33 (5) 54 (10) 34 (10)
HFC (P; =107%) 3 4 6 8 NWHFC (P; =107%) | 43 (3) 28(5) 419 2710
NWHFC (P =107% | 33) 5() 7() 101D HySime 3 5 10 15
NWHFC (P; =10"% | 3(3) 5(5) 7)) 8@®) HySime, 3 5 10 15
NWHFC (P; =107 | 39 44 706 8® 35dB | NWHFC (P; =107%) | 9(3) 10(5) 12(10) 10 (10)
HySime 3 5 10 15 NWHEC (P; =10"%) | 93) 9(5) 11(10) 8 (10)
HySimen, 3 5 10 15 NWHFC (P; =107%) | 7(3) 7() 109 8(10)
HFC (P = 1077 3 4 7 ? HySime 3 5 10 15
35dB | HFC (P; = 107" 3 4 6 8 HySime, 3 5 10 2
HEC (Py = 107) 3 4 6 8 925dB | NWHFC (P; =107%) | 4(3) 5(5) 11(10) 9(11)
NWHEC (Py = 10_2) 3@ 4 TO 90 NWHFC (P; =107% | 4(3) 5(5 11(10) 9 (10)
NWHFC (P =107 | 3 4@ 7© 8@ NWHEC (P; =107%) | 43) 5(5 11(9 8(10)
NWHEC (P; = 1075303 4@ 6 (6) 8 (8) -
HySime 3 5 8 12
HySime 3 5 10 14 .
HySime,, 3 5 9 12 HySime,, 3 ; > s
s 15dB | NWHEFC (Py = 1073 | 43) 5(5) 11 (10) 10 (10)
HEC (P; = 1077) 3 5 6 8 4
25dB | HFC (Py — 104 3 5 6 . NWHEC (Py =10 r) 4 (3) 5(¢6) 1100 810
HEC (Py = 109 3 4 5 . NWHFC (Py =107°) | 4 (3) 5(0) 11 9) 8 (10)
NWHFC (P; = 107%) | 3 (3) 50 6 (6) 9(®)
NWHEC (P; =104 | 3(3) 5(5) 66 7 The figures shown in Tables II and III, which are based on 50
NWHFC (P =10-%) | 33) 44 505 70N Monte Carlo runs, display the following behavior.
HySime 3 5 Py 12 1) HySime and HySime,, algorithms show similar perfor-
HySime,y, 3 3 6 3 mance, which is with a small advantage for the former,
HEC (P} = 10~ 3 5 4 5 nam@ly, at small SNRs and col.ored noise. . .
15dB | HEC (P — 104 3 4 3 ) 2) Hy81me7§nd NW.HF.C algorithms parameterized with
HFC (P; = 10°5) 3 . 3 5 P.f = 1Q show similar performances .at IOW subspac.e
dimension, for example p < 5, and white noise. This is
NWHEC (P; =107°) | 33) 5 54 504 also true for colored noise and NWHFC working with
NWHFC (P =107% | 33) 4@ 33 30 known a noise covariance matrix. However, if the noise
NWHFC (P =10"%) | 3(3) 4®) 303 20 statistics are unknown, NWHFC performs much worse

than HySime.
3) HySime performs better than NWHFC for high space
dimensions, for example p > 5.

We conclude, therefore, that the HySime algorithm is slightly
better than the HySime,,, one, yielding systematically equal or
better results than the NWHFC and HFC algorithms. Another
advantage of the HySime approach is that it does not depend on
any tunable parameter.

Experiment 2: In this experiment, we set SNR = 35 dB and
p = 8. The first five endmembers are mixed according to a
Dirichlet distribution, where, as in the previous experiment,
the sixth, the seventh, and the eighth endmembers are present
as pure in 8, 4, and 2 pixels, respectively. Fig. 6 shows the
mse versus the subspace dimension k for the HySime method.
The minimum of the mse occurs at £ = 8. Thus, the HySime
algorithm infers the correct subspace dimension.
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Fig. 6. Plot of mse versus k, with SNR =35 dB and p = 8 (second
experiment).

TABLE 1V
SIGNAL SUBSPACE DIMENSION k AS A FUNCTION OF PARAMETER 7
IN EXPERIMENT 2 (FEW PURE PIXELS), WITH SNR = 35 dB

Method (p = 8) n=0|n=1/18
HySime 8 7
HySime , 7 7
HFC (P; = 107%) 6 -
HFC (P = 107%) 6 -
HFC (P; = 107°) 6 _
NWHFC (P; = 107%) 6 13
NWHEC (P; = 107%) 6 11
NWHFC (P; = 107%) 6 11

Table IV displays the results of this experiment computed
by HySime, HySime,,, HFC, and NWHFC algorithms. The
HySime method systematically yields the best performance. We
observe the same pattern of behavior shown in Tables II and III.

V. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this section, the proposed method is applied to real hy-
perspectral data collected by the AVIRIS [55]. A subset of
the Indian Pines test site in northwestern Indiana’ acquired by
AVIRIS in June 1992 is considered. The data set is composed
of 185 spectral bands with 10-nm bandwidth acquired in the
0.4-2.5 pum region (noisy and water absorption bands {1-4,
103-113, and 148-166} were removed). The data set contains
145 x 145 pixels (21 025 pixels) with a ground resolution of
17 m [56]. This observed region contains a mixture of agri-
culture and forestry. There is a major dual-lane highway (U.S.
52 and U.S. 231), a rail line crossing near the top, a major
secondary road (Jackson Highway) near the middle, several
other county roads, and houses (Fig. 7 shows band 29 of the data
set). A detailed ground truth map for this region is published
in [57]. Table V lists the 16 ground truth materials considered
in [57].

Table VI shows the signal subspace dimension inferred by
HySime, Hysime,,,, HFC, and NWHFC. The value obtained by
HySime coincides with the number of ground truth materials

2 Available at http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.
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Fig. 7. Band 29 (A = 0.666 pm) of the Indian Pines hyperspectral data set.
TABLE V
SUBSTANCES DETECTED ON THE INDIAN PINES TEST SITE

Alfalfa Oats

Corn-notill Soybeans-notill

Corn-min Soybeans-min

Corn Soybeans-clean

Grass/Pasture Wheat

Grass/Trees Woods

Grass/pasture-mowed | Bldg-Grass-Tree-drives

Hay-windrowed Stone-steel towers

TABLE VI N
INFERRED SIGNAL SUBSPACE DIMENSION k
FOR THE INDIAN PINES DATA SET

Method k
HySime 16
HySime 12
HFC (P; =107%) 25
HFC (P; = 1074 22
HFC (P; = 1075) 21
NWHFC (P; =107%) | 18
NWHFC (P; = 107%) | 18
NWHEC (P = 107%) | 18

listed in Table V. Although these results are an indicator of the
HySime competitiveness, a better assessment of each algorithm
performance is obtained by computing (||[Exx||?)/(]|x/|?), i.e.,
the relative power of the signal component that is orthogonal
to the identified subspace and, therefore, not modeled by this
subspace. Fig. 8(a)—(d) shows this ratio in gray level and for
each pixel; we have used X = y — n, with n given by (10), as
an estimate of x. HySime yielded the lowest values followed
by HySime,,,, HFC, and NWHEFC. The relative advantage of
HySime over HySime,,, HFC, and NWHFC is on the order
of 10, 20, and 103, respectively. Furthermore, there is no
perceptible structure in the HySime relative error, which is not
the case, at least with NWHFC, where the agriculture fields
are clearly perceived, indicating the presence of signal where
it should not be.
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VI. CONCLUSION

The huge volumes and rates of data generated by hyper-
spectral sensors demand expensive processors with very high
performance and memory capacities. Dimensionality reduction
is, therefore, a relevant first step in the hyperspectral data
processing chain. This paper introduced the HySime algorithm,
which is a new computationally efficient and automatic (in the
sense that it dispenses with any tunable parameter) approach
to infer the signal subspace in hyperspectral imagery. HySime
estimates the signal and the noise correlation matrices and then
selects the subset of eigenvalues that best represents the signal
subspace in the minimum mse sense. A set of experiments with
simulated and real data led to the conclusion that the HySime
is an effective and useful tool, yielding comparable or better
results than the state-of-the-art algorithms.
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