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Abstract—Sparse unmixing has been recently introduced in hy-
perspectral imaging as a framework to characterize mixed pixels.
It assumes that the observed image signatures can be expressed
in the form of linear combinations of a number of pure spectral
signatures known in advance (e.g., spectra collected on the ground
by a field spectroradiometer). Unmixing then amounts to finding
the optimal subset of signatures in a (potentially very large)
spectral library that can best model each mixed pixel in the scene.
In this paper, we present a refinement of the sparse unmixing
methodology recently introduced which exploits the usual very
low number of endmembers present in real images, out of a very
large library. Specifically, we adopt the collaborative (also called
“multitask” or “simultaneous”) sparse regression framework that
improves the unmixing results by solving a joint sparse regression
problem, where the sparsity is simultaneously imposed to all pixels
in the data set. Our experimental results with both synthetic and
real hyperspectral data sets show clearly the advantages obtained
using the new joint sparse regression strategy, compared with the
pixelwise independent approach.

Index Terms—Collaborative sparse regression, hyperspectral
imaging, sparse unmixing, spectral libraries.

I. INTRODUCTION

S PECTRAL mixture analysis of remotely sensed hyperspec-
tral images has been a very active research area in recent

years, since it faces important challenges [1]–[3]. Linear spec-
tral unmixing [2], [4]–[7] is a standard technique for spectral
mixture analysis that infers a set of pure spectral signatures,
called endmembers, and the fractions of these endmembers,
called abundances, in each pixel of the scene. This model
assumes that the spectra collected by the imaging spectrom-
eter can be expressed in the form of a linear combination
of endmembers, weighted by their corresponding abundances.
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Given the available spatial resolution of state-of-the-art imaging
spectrometers and the presence of the mixture phenomenon
at different scales (even at microscopic levels), in some cases
the assumption that the remotely sensed data contain one pure
observation for each distinct material present in the scene may
not be valid [2]. To address this issue, several endmember de-
termination techniques have been developed without assuming
the presence of pure signatures in the input data [8]–[12]. This
is in contrast with a plethora of algorithms designed under the
pure pixel assumption (see [13] and the references therein).

A recently developed approach to tackle the problems related
to the unavailability of pure spectral signatures is to model
mixed pixel observations as linear combinations of spectra from
a library collected on the ground by a field spectro-radiometer.
For this purpose, sparse linear regression techniques [14], [15]
can be used. Unmixing then amounts to finding the optimal
subset of signatures in a (potentially very large) spectral library
that can best model each mixed pixel in the scene [16]. In
other words, hyperspectral vectors are approximated with a
linear combination of a “small” number or regressors (spectral
signatures in the library). The regressor weights (fractional
abundances) are obtained by minimizing an objective function,
often containing a quadratic data term and a sparsity-inducing
regularizer, usually the �1-norm.

Let A = [a1, . . . ,am] denote a spectral library with m spec-
tral signatures, each with L spectral bands. In real applica-
tions, the high mutual coherence of the hyperspectral libraries,
defined as the largest cosine between any two columns (i.e.,
η(A) ≡ max1≤k,j≤m,k �=j(|aTk aj |/‖ak‖2‖aj‖2)), imposes lim-
its to the performance of sparse unmixing techniques, namely
in what concerns the uniqueness of the solutions [17]. In other
words and, as expected, more similar signatures mean more
difficult unmixing. Recent works [2] and [16] present a detailed
analysis of the strong influence that high mutual coherences
of the libraries have on the hyperspectral unmixing solutions.
The mutual coherence is also related to the restricted isometric
properties (RIP) of the libraries [18] (see also [15], [19] and the
variant proposed in [20]), which establish sufficient conditions
under which the unmixing solutions can be exactly recovered
through linear programming techniques.

In this paper, we exploit the fact that a hyperspectral image
always contains a small number of endmembers to remove
part of the aforementioned limitations. This means that, if
the fractional abundances of the spectral library signatures are
collected in a matrix with the number of columns equal to
the number of pixels, there should be only a few lines with
nonzero entries. In other words, the nonzero abundance lines
should appear in a few distinct lines, which implies sparsity
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Fig. 1. Graphical illustration of the performance of the proposed collaborative regularizer. Active members of the considered spectral library A are represented
in blue color, and non-active members of the considered spectral library A are represented in white color.

along the pixels of a hyperspectral image in terms of the sub-
pixel information that they convey. At this point, the mutual
coherence should have a weaker impact on the unmixing,
as the pixels are constrained to share the same active set
of endmembers. In fact, the advantages of the collaborative
sparse regression approach over the noncollaborative ones have
been demonstrated under different approaches (see [21] and
the references therein). Here, we exploit the aforementioned
observations by adopting a collaborative sparse model strongly
related with works [21]–[24] to refine the sparse unmixing
methodology. For this purpose, we use a new collaborative
sparse regression algorithm based on the ideas described in
[25], which constitute a generalization of the sparse unmixing
by variable splitting and augmented Lagrangian (SUnSAL)
introduced in [26]. Both SUnSAL and the newly developed
algorithm, called collaborative SUnSAL (CLSUnSAL) [25], are
instances of the methodology introduced in [27].

The remainder of the paper is organized as follows. Section II
introduces the proposed collaborative sparse regression frame-
work and summarizes the CLSUnSAL algorithm. Section III
shows a quantitative comparison between CLSUnSAL and pre-
vious sparse unmixing algorithms, using simulated hyperspec-
tral data. Section IV provides a comparative assessment using
a well-known hyperspectral scene collected by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS) instrument
[28] over the Cuprite mining district in NV. Finally, Section V
concludes the paper with some remarks and hints at plausible
future research lines.

II. COLLABORATIVE SPARSE REGRESSION

Let y denote an L× 1 column vector representing an L-
dimensional pixel vector of a hyperspectral image with L
spectral bands. The pixel observation y can be expressed in
terms of a linear combination of spectral signatures in a L×m
spectral library A as follows [16]:

y = Ax+ n (1)

where x is an m× 1 vector containing the estimated fractional
abundances and n is an L× 1 vector collecting the errors
affecting the measurements at each spectral band. Assuming

that the data set contains n pixels organized in the matrix
Y = [y1, . . . ,yn] we may write then

Y = AX+N

where X = [x1, . . . ,xn] is the abundance fraction matrix and
N = [n1, . . . ,nn] is the noise matrix. The constraints x ≥ 0
and 1Tx = 1 termed, in hyperspectral jargon, abundance non-
negativity constraint (ANC) and abundance sum-to-one con-
straint (ASC), respectively, are often imposed into the model
described in (1) [7].

Let ‖X‖F ≡
√

trace{XXT } be the Frobenius norm and
λ > 0 denote a regularization parameter. With these defini-
tions in mind, we propose to solve the following optimization
problem:

min
X

‖AX−Y‖2F + λ

m∑
k=1

‖xk‖2

subject to : X ≥ 0 (2)

where xk denotes the k-th line of X and X ≥ 0 is to be
understood componentwise. The convex term

∑m
k=1 ‖xk‖2 is

the so-called �2,1 mixed norm which promotes sparsity among
the lines of X, i.e., it promotes solutions of (2) with small
number of nonzero lines of X.

Fig. 1 illustrates the effect of the mixed �2,1 norm∑m
k=1 ‖xk‖2 imposing sparsity among the endmembers simul-

taneously (collaboratively) for all pixels. CLSUnSAL enforces
the presence of the same singletons in the image pixels. Note
that a term imposing sparsity for each individual pixel could
have been included in the objective function. However, from our
experience, the �2,1 regularizer already imposes sparsity in the
solution, making an �1 term in (2) somehow redundant. On the
other hand, the �1 term slightly improves the unmixing results
in certain situations. The great advantage of CLSUnSAL, with
the objective function composed by only two terms, is that
there is only one regularization parameter used, which strongly
alleviates the computational load and the parameter setting
process.

Criterion (2) is similar to that of the collaborative (also
called “multitask” or “simultaneous”) sparse coding problem
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[21]–[24]. The only difference is the introduction of the con-
straint X ≥ 0. Accordingly, we term (2) the constrained col-
laborative sparse regression (CCSR) problem. Notice that the
classical nonnegative constrained least squares (NCLS) solu-
tion corresponds to setting λ = 0.

To solve the optimization problem in (2), we use the
Collaborative Sparse Unmixing via variable Splitting and
Augmented Lagrangian (CLSUnSAL) algorithm [25], which
is an ellaboration of the SUnSAL algorithm introduced in
[26]. SUnSAL solves the �2 + �1,1 norm optimization prob-
lem: minX ‖AX−Y‖2F + λ‖X‖1,1, subject to X ≥ 0, where
‖X‖1,1 =

∑n
j=1 ‖xj‖1 is the �1,1 norm of X ≥ 0 and xj

represents the vector of abundances corresponding to the j-th
pixel. Here, the first term accounts for the pixel reconstruction
error, while the second term imposes sparsity in the solution.
The main difference between SUnSAL and CLSUnSAL is that
the former employs pixelwise independent regressions, while
the latter enforces joint sparsity among all the pixels, which
is important in the unmixing due to the fact that the pixels
share the same support. CLSUnSAL solves an �2 + �2,1 opti-
mization problem in addition to the nonnegativity constraint.
CLSUnSAL is an instance of the methodology introduced in
[27] for solving �2 plus a linear combination of convex regular-
izers, based on the alternative direction method of multipliers
(ADMM) [29].

In the literature, many efforts were dedicated to solving
problems in which structured variables appear, which is also
the case of CLSUnSAL. In [30], the authors study the risk
minimization problem for linear supervised learning with reg-
ularization by structured sparsity-inducing norms. The risk, in
this case, is defined as the sum between a loss function and an
�2 norm regularization term (which, in more general cases, can
be replaced by the �q norm with q ≥ 1). The �2 norm applied
to overlapping subsets of variables is used to infer allowed
nonzero patterns for the solutions. By comparison, CLSUnSAL
does not allow overlapping subsets, as all the subsets are
considered singletons. In [31], the same structured character-
istic of the variables (when the library atoms are organized
in groups according to their degree of similarity) is exploited
on a per-pixel basis to obtain sparse solutions at both group
and individual levels. This approach is known as sparse group
lasso and it was adapted for sparse hyperspectral unmixing to
minimize the number of groups of materials present in each
pixel of an image, treated individually [32]. CLSUnSAL could
be also regarded as an instance of the methodology presented
in [33], called collaborative hierarchical lasso, which also
considers the presence of groups of atoms in the library and
imposes sparsity across the pixels, both at group and individual
level. The major differences are that CLSUnSAL considers the
groups as being singletons while enforcing the ANC. Combined
�2,1 and �1,1 norm regularizers (i.e., sums of �2 or �1 norms,
respectively) are used in [34] to deal with multivariate response
regression problems in which the data are high-dimensional,
but a low number of samples is available. Other works [35],
[36] consider tree-organization models of the output to exploit
the structured nature of the dictionary or to exploit the group
characteristic of the variables. Another library organization was
tested in [37], in which the dictionary is organized in two

separate blocks, one accounting for texture representation and
one dealing with natural scene parts assumed to be piecewise
smooth. In the respective work, a total variation (TV) reg-
ularizer [38]–[40] is also employed such that the the image
fits the piecewise smooth model. The TV regularizer was also
used recently in hyperspectral unmixing (see [41]) and, despite
the relatively high computational complexity of the model,
it brings important improvements in the quality of the final
abundance maps. All the aforementioned methods constitute
examples of how the a priori information regarding the image
(on the one hand) and the library (on the other hand) can be
exploited to find sparse reconstructions with high accuracy of
the estimated coefficients. In this respect, as mentioned before,
CLSUnSAL looks for a structured solution as the matrix of
fractional abundances contains only a few nonzero lines. This
approach was not used before for hyperspectral unmixing and
the theoretical background is supported by the results shown
in [21], in which the authors exploit exactly the �2,1 norm op-
timization problem for recovering jointly sparse multichannel
signals from incomplete measurements.

A valuable theoretical result of [21] is the proof of the su-
periority that multichannel sparse recovery has over the single
channel methods, as the probability of recovery failure decays
exponentially in the number of channels. In other words, sparse
methods have more chances to succeed when the number of
acquisition channels increases, which is extremely important
for the sparse unmixing applications, as the number of spectral
bands is often in the order of hundreds or even thousands.
Herein, we resume the results of Theorem [4.4] in [21], which
assumes that the dictionary A is normalized and composed by
i.i.d. Gaussian entries, the observations are generated by a set
of atoms whose support is S ⊂ {1, 2, . . . ,m} of cardinality k
(i.e., there are at most k rows in the solution matrix which are
not identically zero) and ‖A+

S al‖2 ≤ α < 1 holds for all l �∈ S,
where A+

S is the pseudoinverse of the matrix AS containing
the atoms from A corresponding to the indices in S. The same
Theorem states that, under these assumptions, the solution X of
the linear system of equations Y = AX is recovered by solving
an �2,1-norm optimization problem with probability at least
1−m · exp(−(L/2)(α−2 − log(α−2)− 1)). The exponential
decay of the error is obvious as α < 1. Although the conditions
from the aforementioned Theorem are not met in common
hyperspectral data, in which the dictionary atoms (that is, the
pure spectral signatures) are highly correlated leading to high
values of ‖A+

S al‖2, we have systematically observed the same
type of behavior in our applications, for which we will give
experimental evidence.

We now introduce the details of the CLSUnSAL algorithm.
Using the notation ‖X‖2,1 =

∑m
k=1 ‖xk‖2 to denote the �2,1

norm, the optimization problem (2) can be written in the
following equivalent form:

min
X

‖AX−Y‖2F + λ‖X‖2,1 + ιR+(X) (3)

where ιR+(X) =
∑n

i=1 ιR+(xi) is the indicator function (xi

represents the i-th column of X and ιR+(xi) is zero if xi

belongs to the nonnegative orthant and +∞ otherwise).
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The optimization problem (3) has the following (constrained)
equivalent formulation:

min
U,V1,V2,V3

1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

subject to V1 = AU
V2 = U
V3 = U (4)

which, in compact, form, becomes

min
U,V

g(V) subject to GU+BV = 0 (5)

where

V ≡ (V1,V2,V3)

g(V) ≡ 1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

G =

⎡
⎣A

I
I

⎤
⎦ , B =

⎡
⎣−I 0 0

0 −I 0
0 0 −I

⎤
⎦

.

Algorithm 1 Alternating direction method of multipliers
(ADMM) pseudocode for solving problem (5).

1. Initialization: set k = 0, choose μ > 0, U(0), V(0), D(0)

2. repeat:
3. U(k+1) ← argminU L(U(k),V(k),D(k))
4. V(k+1) ← argminV L(U(k+1),V(k),D(k))
5. D(k+1) ← D(k) −GU(k+1) −BV(k+1)

6. until some stopping criterion is satisfied.

The ADMM algorithm for the formulation (5) is shown in
Algorithm 1, where (see [27], [42])

L(U,V,D) ≡ g(U,V) +
μ

2
‖GU+BV −D‖2F (6)

is the augmented Lagrangian for problem (5), μ > 0 is a
positive constant, and D/μ denotes the Lagrange multipliers
associated to the constraint GU+BV = 0. In each itera-
tion, Algorithm 1 sequentially optimizes L with respect to U
(step 3) and V (step 4), and then updates the Lagrange multi-
pliers (step 5).

The convergence conditions from [29, Theorem 1] are met:
matrix G is full column rank and function g introduced in (5)
is closed, proper, and convex. Under these conditions, the same
theorem states that, for any μ > 0, if (5) has a solution, say U∗,
then the sequence {U(k)} converges to U∗. If (5) does not have
a solution, then at least one of the sequences {U(k)} or {D(k)}
diverges. The stopping criterion adopted in the algorithm is
‖GU(k) +BV(k)‖F ≤ ε.

In the ADMM scheme, the setting of the parameter μ has
a strong impact over the convergence speed. The evaluation
of such a parameter is an active research topic. For example,
previous works [43], [44] (see also [45]) use an adaptive scheme
(based on the primal and the dual ADMM variables) that
performs very well in our case. In this scheme, μ is updated with

the objective of keeping the ratio between the ADMM primal
and dual residual norms within a given positive interval, as they
both converge to zero.

The details of the optimizations with respect to U and V
of the ADMM Algorithm 1 (CLSUnSAL) are shown in [25]
and we include them in an Appendix, at the end of the paper,
for self-contentedness. The optimizations with respect to V1,
V2 and V3 are very light. The optimization of U amounts at
solving a linear system of equations of size m×m. The matrix
involved in this system of equations is fixed and then can be
precomputed involving low complexity as the rank of A is
min{L,m}. The optimization with respect to V is decoupled
with respect to V1, V2 and V3.

Concerning the computational complexity, the most expen-
sive step is the calculus of U, which has the order of complexity
O(nL2), while the others have complexity O(n), where L is
the number of bands and n is the number of pixels in the image.
The overall complexity is, then, O(nL2).

III. EXPERIMENTAL RESULTS WITH SYNTHETIC DATA

In this section, we give an illustration of the performance of
our newly proposed collaborative sparse unmixing approach in
a simulated environment. We will compare the results obtained
by our proposed method to those obtained with the SUnSAL
algorithm [26], and also to the classic NCLS solution. The
remainder of the section is organized as follows. Section III-A
describes how the simulated data sets have been generated. We
consider only scenes affected by noise, because in the noiseless
case the true solutions can always be recovered with very high
accuracy [2]. Section III-B describes the adopted performance
discriminators. Section III-C analyzes the performance of the
considered algorithms when the observations are affected by
white noise. Finally, Section III-D analyzes the performance of
the considered algorithms when the observations are affected
by correlated noise.

A. Simulated Datacubes

The spectral library that we use in our experiments is a
dictionary of minerals extracted from the USGS library de-
noted splib061 and released in September 2007. It comprises
spectral signatures with reflectance values given in 224 spectral
bands, distributed uniformly in the interval 0.4–2.5 μm. Our
library, denoted by A, contains m = 240 members with L =
224 bands. In real applications, it often happens that there
are several signatures assigned to a certain endmember, due
to the specific conditions of the sample whose spectrum was
acquired in the laboratory (e.g., grain size, particle orientation
etc.). This is also the case of the considered spectral library A,
in which there are 55 materials included, each endmember
having a number of variations that ranges between 1 and 17.
The mutual coherence of the library is very close to one. In the
library, the signatures are grouped such that the various spectra
corresponding to the same endmember are consecutive.

1Available online: http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 2. (a) Position of two groups of mineral signatures (alunite and olivine) in library A (delimited by black rectangles), and (b) Spectral signatures
corresponding to the same material (alunite) included in a group.

As an example, we show in Fig. 2 the position of two groups
of mineral signatures (alunite and olivine) within this library
[see Fig. 2(a)] and the spectral signatures corresponding to
different variations of the same mineral (alunite) collected in
one of such groups [see Fig. 2(b)]. We remind that CLSUnSAL
does not take into account any group structure. However, the
group structure of the library will be used for a more detailed
quality assesment of the unmixing results.

Using the library A, we generated various datacubes of
500 pixels, each containing a different number of endmembers:
k1 = 2 (generically denoted by DC1), k2 = 4 (DC2) and k3 =
6 (DC3). The endmembers were randomly chosen signatures
from the library. In each simulated pixel, the fractional abun-
dances of the endmembers follow a Dirichlet distribution [46].
In each group of materials, at most one endmember is used
for the generation of the images. The obtained datacubes were
then contaminated with both i.i.d. Gaussian noise and corre-
lated noise, having different levels of the signal-to-noise ratio
SNR(dB) = E‖Af‖2/E‖n‖2: 20, 30 and 40 dB. The correlated
noise was obtained by low-pass filtering i.i.d. Gaussian noise,
using a normalized cutoff frequency of 5π/L. Each noise level
corresponds to different sets of endmembers. The rationale be-
hind the experiments with correlated noise is that, as we argued
in our previous paper [16], the noise is highly correlated in
real hyperspectral applications as it represents mainly modeling
noise and the spectra are of low-pass type with respect to the
wavelength.

B. Performance Discriminators

Regarding the performance discriminators adopted in our
experiments, the quality of the reconstruction of a spectral
mixture was measured using the signal to reconstruction error:
SRE ≡ E[‖x‖22]/E[‖x− x̂‖22], expressed in dB: SRE(dB) ≡
10 log10(SRE). The higher the SRE, the better the quality of
the unmixing. We use this measure instead of the classical
root-mean-squared error (RMSE) as it gives more information

regarding the power of the signal in relation with the power
of the error. We also computed a so-called “probability of
success”, ps, which is an estimate of the probability that the
relative error power be smaller than a certain threshold. This
metric is a widespread one in sparse regression literature,
and is formally defined as follows: ps ≡ P (‖x̂− x‖2/‖x‖2 ≤
threshold). For example, if we set threshold = 10 and get
ps = 1, this means that the total relative error power of the
fractional abundances is, with probability one, less than 1/10.
This gives an indication about the stability of the estimation that
is not inferable directly from the SRE (which is an average). In
our case, the estimation result is considered successful when
‖x̂− x‖2/‖x‖2 ≤ 3.16 (5 dB). This threshold was demon-
strated in previous work to provide satisfactory results [16].

In addition, we use the same performance discriminators
applied for groups of materials, i.e. by considering that one
group represents an endmember and that the sum of the
abundances of the group members represent the abundance
of the respective endmember. We will define these perfor-
mance discriminators by SREg ≡ E[‖xg‖22]/E[‖xg − x̂g‖22]
measured in dBs: SREg(dB) ≡ 10 log10(SREg), and ps,g ≡
P (‖x̂g − xg‖2/‖xg‖2 ≤ threshold), where xg and x̂g are
vectors whose j-th element is the sum of the true and inferred
abundances of the members in group j, respectively. By using
this measure, we will show that, despite the similarity of
the signatures, CLSUnSAL is able to better infer the correct
endmembers, compared to the methods acting pixelwise.

Moreover, we count the number of nonzero inferred abun-
dances in the two situations: per member (i.e., considering
each member of the library as a potential endmember) and per
group (i.e., considering each group of materials as a potential
endmember). The unmixing problem is solved by NCLS, SUn-
SAL (which proved to outperform other methods which do not
impose sparsity explicitly, see [16]) and CLSUnSAL. For all
the algorithms, the parameters were carefully tuned for optimal
performance. Next, we describe the results obtained using
observations contaminated with white and correlated noise.
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TABLE I
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER MEMBER IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

TABLE II
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER GROUP IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

C. Performance in Simulated Data Cubes Contaminated
With White Noise

Table I shows the SRE(dB) and the ps (per member) obtained
after applying NCLS, SUnSAL, and CLSUnSAL to the three
simulated datacubes contaminated with white noise. Similarly,
Table II shows the same performance indicators, but this time
computed per group. From Tables I and II, it can be seen
that CLSUnSAL outperforms the other two techniques, both
in terms of unmixing accuracy per pixel and per group. As
shown by the tables, CLSUnSAL attains the highest SRE(dB)
and ps values in all cases. As expected, NCLS exhibits poorer
performance than SUnSAL and CLSUnSAL. The accuracy of
all algorithms decreases when the cardinality of the solution
increases, which is in line with our observations in [16]. This in-
dicates that the sparsity of the solution mitigates the difficulties
encountered in unmixing because of the high mutual coherence
of the libraries. In all cases, the performance per group is
superior to the one corresponding to individual endmembers.

On the other hand, Table III shows the average number
of nonzero fractional abundances obtained by each algorithm
when calculating the performance metrics reported in Tables I
and II, both for individual endmembers in the library and for
groups of materials. For simplicity, we declare the fractional
abundances larger than 0.001 as “nonzero abundances” to avoid

counting negligible values. From Table III it can be observed
that NCLS provides solutions containing many nonzero entries
(especially when the noise is high) while SUnSAL uses less
endmembers and attains better unmixing performance than
NCLS. Finally, CLSUnSAL not only provides the most accu-
rate SRE(dB) and ps values, but also proves to be the algorithm
with the sparsest solutions as it uses the lowest number of
individual endmembers and groups to explain the data.

D. Performance in Simulated Data Cubes Contaminated
With Correlated Noise

Table IV shows the SRE(dB) and the ps (per member)
obtained after applying NCLS, SUnSAL and CLSUnSAL to the
three simulated datacubes contaminated with correlated noise.
Similarly, Table V shows the same performance indicators, but
this time computed per group. From Tables IV and V, it can be
observed that CLSUnSAL outperforms the other algorithms in
terms of SRE(dB) and ps, regardless of whether these metrics
are computed per member or per group. This was already the
case in the experiments with white noise. As expected, NCLS
does not provide optimal performance although it exhibits high
values of ps when the noise is low. While SUnSAL is more
accurate than NCLS, it is also less accurate than the proposed
CLSUnSAL.
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TABLE III
AVERAGE NUMBER OF NONZERO FRACTIONAL ABUNDANCES OBTAINED BY DIFFERENT UNMIXING ALGORITHMS FOR INDIVIDUAL

ENDMEMBERS AND FOR GROUPS OF MATERIALS WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

TABLE IV
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER MEMBER IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

TABLE V
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER GROUP IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

On the other hand, Table VI shows the average number
of nonzero fractional abundances obtained by each algorithm
when calculating the performance metrics reported in Tables IV
and V, both for individual endmembers in the library and for
groups of materials. From Table VI it can be observed that
CLSUnSAL uses a much lower number of nonzero abundances
than the other two algorithms. In turn, SUnSAL reduces signif-

icantly the cardinality of the solution when compared to NCLS
but it still needs a larger number of members/groups to explain
the observed data as compared to CLSUnSAL.

To illustrate further the advantages of the proposed collab-
orative framework using computer simulations, Fig. 3 shows
a graphical comparison of the performances of the consid-
ered unmixing algorithms in a simulated datacube containing
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TABLE VI
AVERAGE NUMBER OF NONZERO FRACTIONAL ABUNDANCES OBTAINED BY DIFFERENT UNMIXING ALGORITHMS FOR INDIVIDUAL

ENDMEMBERS AND FOR GROUPS OF MATERIALS WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

Fig. 3. (a) Ground-truth abundances in a simulated data set containing 50 pixels and k = 4 endmembers randomly extracted from library A. The data set is
contaminated with correlated noise having SNR of 30 dB. (b) Abundances estimated by NCLS. (c) Abundances estimated by SUnSAL. (d) Abundances estimated
by CLSUnSAL.

50 pixels and simulated using k = 4 endmembers randomly
extracted from library A. The datacube was contaminated with
correlated noise having SNR of 30 dB. The algorithms were

applied after tuning their corresponding parameters to obtain
the most accurate solution for each of them. The abundance
maps shown in Fig. 3 are in line with our previous observations.
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Note that CLSUnSAL produces abundance maps which are
more similar to the ground-truth maps than those produced by
the other algorithms. This is because CLSUnSAL constrains the
pixels to share the same set of endmembers. Even visually, the
superiority of CLSUnSAL with respect to the other algorithms
is clearly discernible.

In summary, the experimental results with simulated data
cubes reported in this section reveal that CLSUnSAL can
improve significantly the cardinalities of the solutions by de-
creasing the number of nonzero components used to explain
the observed data. Further, it is important to emphasize that
CLSUnSAL improves significantly the accuracy of the unmix-
ing solutions over those provided by other algorithms such as
NCLS or SUnSAL. In all cases, the performances obtained
by CLSUnSAL are higher when entire groups of materials
are considered as endmembers. This is a consequence of the
fact that, due to the noise affecting the simulated scenes, the
algorithms are not always able to correctly identify the exact
endmembers. Instead, they often identify variations of the
respective endmembers present in the spectral library. This is
particularly important when one endmember is represented by
several variants in the image, indicating the direction toward a
possible improvement of the CLSUnSAL algorithm, in which
sparsity should be enforced for groups of materials, similar to
the work presented in [33]. This will be a research topic for our
future work. The results obtained with simulated data sets are
very encouraging, but further evaluation with real hyperspectral
scenes is highly desirable. This will be accomplished in the
following section.

IV. EXPERIMENTAL RESULTS WITH

REAL HYPERSPECTRAL DATA

The scene used in our real data experiments is the well-
known AVIRIS Cuprite data set, available online in reflectance
units.2 This scene has been widely used to validate the perfor-
mance of endmember extraction algorithms. The portion used
in experiments corresponds to a 204 × 151-pixel subset of the
sector labeled as f970619t01p02_r02_sc03.a.rfl in the online
data. The scene comprises 224 spectral bands between 0.4 and
2.5 μm, with nominal spectral resolution of 10 nm. Prior to
the analysis, bands 1–2, 105–115, 150–170, and 223–224 were
removed due to water absorption and low SNR in those bands,
leaving a total of 188 spectral bands. The Cuprite site is well
understood mineralogically, and has several exposed minerals
of interest, all included in the USGS library considered in
experiments, denoted splib063 and released in September 2007.
In our experiments, we use spectra obtained from this library
as input to the unmixing methods described in Section II.
Specifically, the spectral library used in this experiment is the
same library A used in our experiments with simulated data.
We recall that it contains m = 240 members corresponding
to 55 minerals, with L = 224 bands. The noisy bands were
also removed from A. For illustrative purposes, Fig. 4 shows
a mineral map produced in 1995 by USGS, in which the

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://speclab.cr.usgs.gov/spectral.lib06

Tricorder 3.3 software product [47] was used to map different
minerals present in the Cuprite mining district.4 It should be
noted that the Tricorder map is only available for hyperspectral
data collected in 1995, while the publicly available AVIRIS
Cuprite data was collected in 1997. Therefore, a direct com-
parison between the 1995 USGS map and the 1997 AVIRIS
data is not possible. However, the USGS map serves as a
good indicator for qualitative assessment of the fractional abun-
dance maps produced by the unmixing algorithms described
in Section II.

Fig. 5 shows a qualitative comparison between the classi-
fication maps produced by the USGS Tetracorder algorithm
and the fractional abundances inferred by NCLS, SUnSAL and
the proposed CLSUnSAL algorithm for four different miner-
als (alunite, buddingtonite, chalcedony and montmorillonite)
which are very prominent in the considered hyperspectral
scene. The regularization parameter used for CLSUnSAL in
this experiment was empirically set to 0.01, while the one
corresponding to SUnSAL was set to 0.001. As it can be
seen in Fig. 5, the unmixing results show a good correlation
of the features present in the abundance maps estimated by
CLSUnSAL with regard to the classification maps produced
by the USGS Tetracorder algorithm. It is also worth noting
that the fractional abundances estimated by CLSUnSAL are
generally comparable or higher in the regions assigned to the
respective materials in comparison to NCLS and SUnSAL.
We also emphasize that the average number of endmembers
with abundances higher than 0.05 estimated by CLSUnSAL is
5.53 (per pixel), while the average number of groups with total
abundances higher than 0.05 is 5.07. The small difference be-
tween these two values leads to the conclusion that CLSUnSAL
enforces the sparseness both at the group and individual levels.
This means that, inside the selected groups, the algorithm uses a
minimum number of members to explain the data. This result is
in line with the information provided by the USGS Tetracorder
classification map, in which the four selected endmembers are
quite dominant in the scene. Overall, the qualitative results
reported in this section indicate the improvements that the
newly developed CLSUnSAL algorithm can provide by taking
advantage of the special characteristics of available spectral
libraries and hyperspectral images when conducting the sparse
unmixing process.

V. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the performances of a
new collaborative sparse regression framework that improves
hyperspectral unmixing results by taking advantage of the fact
that the number of endmembers in a given hyperspectral scene
is generally low and all the observed pixels are generated by the
same set of endmembers. These aspects are addressed through
a new algorithm called CLSUnSAL which is shown in this
work to be able to accurately infer the abundance fractions in
both simulated and real environments. The proposed approach
reduces the number of endmembers needed to explain the data
and provides more robust solutions than those obtained by

4http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Fig. 4. USGS map showing the location of different minerals in the Cuprite mining district in NV. The map is available online at:
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

other state-of-the-art competitors. Although the experimental
results obtained in this paper are very encouraging, further
experimentation with additional hyperspectral scenes is needed
to fully substantiate our contributions. Also, despite the fact that
the proposed algorithm is quite fast as compared to the other
tested methods, a possible direction in our future research is the
implementation of CLSUnSAL on high performance comput-
ing environments to fully exploit its inherently parallel nature
to accelerate its computational performance. Other possible
improvements of the methodology, including the optimization
of objective functions which impose sparsity for groups of
materials, will be investigated.

APPENDIX

In this appendix, we detail the CLSUnSAL algorithm in-
troduced in Section II. We start by expanding the augmented
Lagrangian introduced in (6)

L(U,V1,V2,V3,D1,D2,D3)

=
1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

+
μ

2
‖AU−V1 −D1‖2F +

μ

2
‖U−V2 −D2‖2F

+
μ

2
‖U−V3 −D3‖2F . (7)
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Fig. 5. Qualitative comparison between the fractional abundance maps estimated by NCLS, SUnSAL, CLSUnSAL and the classification maps produced by
USGS Tetracorder for the considered 204 × 151-pixel AVIRIS Cuprite scene. (a) USGS Tetracorder classification map for alunite; (b) NCLS abundance
map for alunite; (c) SUnSAL abundance map for alunite; (d) CLSUnSAL abundance map for alunite; (e) USGS Tetracorder classification map for
buddingtonite; (f) NCLS abundance map for buddingtonite; (g) SUnSAL abundance map for buddingtonite; (h) CLSUnSAL abundance map for budding-
tonite; (i) USGS Tetracorder classification map for chalcedony; (j) (f) NCLS abundance map for chalcedony; (j) SUnSAL abundance map for chalcedony;
(k) CLSUnSAL abundance map for chalcedony; (l) USGS Tetracorder classification map for montmorillonite; (m) NCLS abundance map for montmorillonite;
(n) SUnSAL abundance map for montmorillonite; (o) CLSUnSAL abundance map for montmorillonite.
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The pseudocode of CLSUnSAL is shown in Algorithm 2. It is
the expansion of the ADDM algorithm presented in Algorithm 1.

Algorithm 2 Pseudocode of the CLSUnSAL algorithm.
1. Initialization: set k = 0, choose μ ≥ 0, U(0), V(0)

1 , V(0)
2 ,

V
(0)
3 , D(0)

1 , D(0)
2 , D(0)

3

2. repeat:
3. U(k+1) ← argminU L(U, V

(k)
1 , V

(k)
2 , V

(k)
3 ,

D
(k)
1 ,D

(k)
2 ,D

(k)
3 )

4. V(k+1)
1 ← argminV1

L(U(k),V1,V
(k)
2 ,V

(k)
3 )

5. V(k+1)
2 ← argminV2

L(U(k),V
(k)
1 ,V2,V

(k)
3 )

6. V(k+1)
3 ← argmin

V
(k)
3

L(U(k),V
(k)
1 ,V

(k)
2 ,V3)

7. Update Lagrange multipliers:
D

(k+1)
1 ← D

(k)
1 −AU(k+1) +V

(k+1)
1

D
(k+1)
2 ← D

(k)
2 −U(k+1) +V

(k+1)
2

D
(k+1)
3 ← D

(k)
3 −U(k+1) +V

(k+1)
3

8. Update iteration: k ← k + 1
9. until some stopping criterion is satisfied.

The goal of the Step 3 in Algorithm 2 is to determine the
value of the variable U at each iteration. Given that we run
an optimization over the variable U, the terms of the objective
function (7) which do no contain this variable are not taken into
account. The reduced optimization function becomes, then

U(k+1) ← argmin
U

μ

2
‖AU−V

(k)
1 −D

(k)
1 ‖

2

F

+
μ

2
‖U−V

(k)
2 −D

(k)
2 ‖

2

F +
μ

2
‖U−V

(k)
3 −D

(k)
3 ‖

2

F . (8)

The solution of (8) is simply

U(k+1) ← (ATA+ 2I)−1(AT ξ1 + ξ2 + ξ3) (9)

where I is the identity matrix, AT represents the transpose
of A and: ξ1 = V

(k)
1 +D

(k)
1 , ξ2 = V

(k)
2 +D

(k)
2 , ξ3 = V

(k)
3 +

D
(k)
3 .
Steps 4–6 of CLSUnSAL compute the values of the variables

V1,V2,V3 at the current iteration. To compute V1, the opti-
mization problem to be solved is

V
(k+1)
1 ←argmin

V1

1

2
‖V1−Y‖2F +

μ

2
‖AU(k)−V1−D

(k)
1 ‖

2

F

(10)

whose solution is

V
(k+1)
1 ← 1

1 + μ

[
Y + μ

(
AU(k) −D

(k)
1

)]
. (11)

To compute V2, the optimization problem to be solved is

V
(k+1)
2 ←argmin

V2

λ‖V2‖2,1+
μ

2
‖U(k)−V2−D

(k)
2 ‖

2

F (12)

whose solution is the well-known vect-soft threshold (see,
e.g., [48]), applied independently to each row r of the update

variable

V
(k+1)
2,r ← vect-soft

(
ξ2,r,

λ

μ

)
(13)

where ξ2 = U(k) −D
(k)
2 and vect-soft(·, τ) denotes the row-

wise application of the vect-soft-threshold function b �→
y(max{‖y‖2 − τ, 0}/max{‖y‖2 − τ, 0}+ τ).

To compute V3, we solve the optimization problem

V
(k+1)
3 ←argmin

V3

ιR+(V3)+
μ

2
‖U(k)−V3−D

(k)
3 ‖

2

F . (14)

In (14), the role of the ιR+ term is to project the solution onto
the nonnegative orthant and the value of V3 is given by

V
(k+1)
3 ← max

(
U(k) −D

(k)
3 , 0

)
. (15)
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