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Abstract—We propose a new fast algorithm for solving one of
the standard formulations of image restoration and reconstruction
which consists of an unconstrained optimization problem where
the objective includes an �� data-fidelity term and a nonsmooth
regularizer. This formulation allows both wavelet-based (with
orthogonal or frame-based representations) regularization or
total-variation regularization. Our approach is based on a vari-
able splitting to obtain an equivalent constrained optimization
formulation, which is then addressed with an augmented La-
grangian method. The proposed algorithm is an instance of the
so-called alternating direction method of multipliers, for which
convergence has been proved. Experiments on a set of image
restoration and reconstruction benchmark problems show that
the proposed algorithm is faster than the current state of the art
methods.

Index Terms—Augmented Lagrangian, compressive sensing,
convex optimization, image reconstruction, image restoration,
inverse problems, total variation, variable splitting, wavelets.

I. INTRODUCTION

A. Problem Formulation

I MAGE restoration/reconstruction is one of the earliest and
most classical linear inverse problems in imaging, dating

back to the 1960s [1]. In this class of problems, a noisy indirect
observation , of an original image , is modeled as

where is the matrix representation of the direct operator and
is noise. As is common, we are adopting the vector notation for
images, where the pixels on an image are stacked into a
an -vector in, e.g., lexicographic order. In the sequel, we
denote by the number of elements of , thus, , while

( and may or may not be equal).
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In the particular case of image deblurring/deconvolution, is
the matrix representation of a convolution operator; if this con-
volution is periodic, is then a (block) circulant matrix. This
type of observation model describes well several physical mech-
anisms, such as relative motion between the camera and the sub-
ject (motion blur), bad focusing (defocusing blur), or a number
of other mechanisms which are well modeled by a convolution.
In more general image reconstruction problems, represents
some linear direct operator, such as a set of tomographic pro-
jections (Radon transform), a partially observed (e.g., Fourier)
transform, or the loss of part of the image pixels.

It is well known that the problem of estimating from is
ill-posed; thus, this inverse problem can only be solved satis-
factorily by adopting some sort of regularization (or prior infor-
mation, in Bayesian inference terms). One of the standard for-
mulations of wavelet-based, regularization of image restoration/
reconstruction problems is built as follows. Let the unknown
image be represented as a linear combination of the elements
of some frame, i.e., , where , and the columns
of the matrix are the elements of a wavelet1 frame
(an orthogonal basis or a redundant dictionary). Then, the co-
efficients of this representation are estimated from the noisy
image, under one of the well-known sparsity inducing regular-
izers, such as the norm (see [15], [18], [21]–[23], and further
references therein). Formally, this leads to the following opti-
mization problem:

(1)

where , usually called the regularizer or regulariza-
tion function, is often nonsmooth, or maybe even nonconvex,
and is the regularization parameter. This formulation is
referred to as the synthesis approach [19], since it is based on a
synthesis equation where is synthesized from its representa-
tion coefficients which are the object of the estima-
tion criterion. Of course, the final image estimate is computed
as .

An alternative formulation applies a regularizer directly to the
unknown image, leading to criteria of the form

(2)

where is the regularizer. This type of criteria
are usually called analysis approaches, since they are based
on a regularizer that analyzes the image itself, , rather
than the coefficients of a representation thereof. Arguably, the

1We adopt the generic term “wavelet” to mean any wavelet-like multiscale
representation, such as “curvelets,” “beamlets,” “ridgelets.”
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best known and most often used regularizer used in analysis
approaches to image restoration is the total variation (TV) norm
[11], [40]. Wavelet-based analysis approaches are also possible
[19], but will not be considered in this paper.

Finally, it should be mentioned that problems (1) and (2) can
be seen as the Lagrangians of constrained optimization prob-
lems: (1) is the Lagrangian of the constrained problem

(3)

while (2) is the Lagrangian of

subject to (4)

Specifically, a solution of (3) (for any such that this problem
is feasible) is either the null vector, or else is a minimizer of (1),
for some (see [39, Theorem 27.4]). A similar relationship
exists between problems (2) and (4).

B. Previous Algorithms

For any problem of nontrivial dimension, matrices , ,
and cannot be stored explicitly, and it is costly, even imprac-
tical, to access portions (lines, columns, blocks) of them. On
the other hand, matrix-vector products involving or (or
their conjugate transposes and ) can be done quite ef-
ficiently. For example, if the columns of contain a wavelet
basis or a tight wavelet frame, any multiplication of the form

or can be performed by a fast wavelet transform al-
gorithm [34]. Similarly, if represents a circular convolution,
products of the form or can be performed with the
help of the fast Fourier transform (FFT) algorithm. These facts
have stimulated the development of special purpose methods, in
which the only operations involving or (or their conjugate
transposes) are matrix-vector products.

To present a unified view of algorithms for handling (1) and
(2), we write them in a common form

(5)

where , in the case of (1), while , for (2).
Arguably, the standard algorithm for solving problems of the

form (5) is the so-called iterative shrinkage/thresholding (IST)
algorithm. IST can be derived as an expectation-maximization
(EM) algorithm [22], as a majorization-minimization (MM,
[29]) method [15], [23], or as a forward-backward splitting
technique [13], [27]. A key ingredient of IST algorithms is
the so-called shrinkage/thresholding function, also known as
the Moreau proximity mapping [13] or the denoising function,
associated with the regularizer , which provides the solution
of the corresponding pure denoising problem. Formally, this
function is denoted as and defined as

(6)

Notice that if is proper and convex, the function being mini-
mized is proper and strictly convex, thus, the minimizer exists
and is unique making the function well defined [13].

For some choices of , the corresponding denoising
functions have well-known closed forms. For ex-
ample, choosing (the
norm) leads to , where
denotes the component-wise application of the function

.
If , usually referred to as the
“norm” (although it is not a norm), despite the fact that this

regularizer is not convex, the corresponding shrinkage/thresh-
olding function also has a simple closed form: the so-called
hard-threshold function, , where

denotes the component-wise application of the
function . A comprehensive coverage of Moreau
proximal maps can be found in [13].

Each IST iteration for solving (5) is given by

(7)

where is a step size. Notice that is the gra-
dient of the data-fidelity term , computed at

. Thus, each IST iteration takes a step of length in the
direction of the negative gradient of the data-fidelity term, fol-
lowed by the application of the shrinkage/thresholding function
associated with the regularizer .

It has been shown that if and is convex, the al-
gorithm converges to a solution of (5) [13]. However, it is known
that IST may be quite slow, specially when is very small and/or
the matrix is very ill-conditioned [4], [5], [21], [27]. This ob-
servation has stimulated work on faster variants of IST, which
we will briefly review in the next paragraphs.

In the two-step IST (TwIST) algorithm [5], each iterate de-
pends upon the two previous iterates, rather than only on the
previous one (as in IST). This algorithm may be seen as a non-
linear version of the so-called two-step methods for linear prob-
lems [2]. TwIST was shown to be considerably faster than IST
on a variety of wavelet-based and TV-based image restoration
problems; the speed gains can reach up to two orders of magni-
tude in typical benchmark problems.

Another two-step variant of IST, named fast IST algorithm
(FISTA), was recently proposed and also shown to clearly
outperform IST in terms of speed [4]. FISTA is a nonsmooth
variant of Nesterov’s optimal gradient-based algorithm for
smooth convex problems [35], [36].

A strategy recently proposed to obtain faster variants of IST
consists in relaxing the condition . In
the SpaRSA (standing for sparse reconstruction by separable
approximation) framework [44], [45], a different is used in
each iteration (which may be smaller than , meaning larger
step sizes). It was shown experimentally that SpaRSA clearly
outperforms standard IST. A convergence result for SpaRSA
was also given in [45].

Finally, when the slowness is caused by the use of a small
value of the regularization parameter, continuation schemes
have been found quite effective in speeding up the IST algo-
rithm. The key observation is that IST benefits significantly
from warm-starting, i.e., from being initialized near a minimum
of the objective function. This suggests that we can use the
solution of (5), for a given value of , to initialize IST in solving
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the same problem for a nearby value of . This warm-starting
property underlies continuation schemes [24], [27], [45]. The
idea is to use IST to solve (1) for a larger value of (which is
usually fast), then decrease in steps toward its desired value,
running IST with warm-start for each successive value of .

C. Proposed Approach

The approach proposed in this paper is based on the tech-
nique known as variable splitting, which goes back at least to
Courant in the 40s [14], [43]. Since the objective function (5) to
be minimized is the sum of two functions, the idea is to split the
variable into a pair of variables, say and , each to serve as
the argument of each of the two functions, and then minimize
the sum of the two functions under the constraint that the two
variables have to be equal, so that the problems are equivalent.
Although variable splitting is also the rationale behind the re-
cently proposed split-Bregman method [25], in this paper, we
exploit a different type of splitting to attack problem (5). In the
following, we will explain this difference in detail.

The constrained optimization problem resulting from
variable splitting is then dealt with using an augmented La-
grangian (AL) scheme [37], which is known to be equivalent
to the Bregman iterative methods recently proposed to handle
imaging inverse problems (see [46] and references therein). We
prefer the AL perspective, rather than the Bregman iterative
view, as it is a standard and more elementary optimization
tool (covered in most textbooks on optimization). In particular,
we solve the constrained problem resulting from the variable
splitting using an algorithm known as alternating direction
method of multipliers (ADMM) [17].

The application of ADMM to our particular problem involves
solving a linear system with the size of the unknown image
(in the case of problem (2)) or with the size of its representa-
tion (in the case of problem (1)). Although this seems like an
unsurmountable obstacle, we show that it is not the case. In
many problems of the form (2), such as (circular) deconvolu-
tion, recovery of missing samples, or reconstruction from par-
tial Fourier observations, this system can be solved very quickly
in closed form (with or cost). For problems of
the form (1), we show how exploiting the fact that is a tight
Parseval frame, this system can still be solved efficiently (typi-
cally with cost.

We report results of a comprehensive set of experiments, on a
set of benchmark problems, including image deconvolution, re-
covery of missing pixels, and reconstruction from partial Fourier
transform, using both frame-based and TV-based regulariza-
tion. In all the experiments, the resulting algorithm is consis-
tently and considerably faster than the previous state of the art
methods FISTA [4], TwIST [5], and SpaRSA [45].

Arguably, the speed of the proposed algorithm, which we
term SALSA (split augmented Lagrangian shrinkage algo-
rithm), comes from the fact that it uses (a regularized version
of) the Hessian of the data fidelity term of (5), that is, ,
while the previously mentioned algorithms essentially only use
gradient information.

D. Organization of the Paper

Section II describes the basic ingredients of SALSA: variable
splitting, augmented Lagrangians, and ADMM. In Section III,

we show how these ingredients are combined to obtain the
proposed SALSA. Section IV reports experimental results, and
Section V ends the paper with a few remarks and pointers to
future work.

II. BASIC INGREDIENTS

A. Variable Splitting

Consider an unconstrained optimization problem in which the
objective function is the sum of two functions, one of which is
written as the composition of two functions

(8)

where . Variable splitting is a very simple proce-
dure that consists in creating a new variable, say , to serve as
the argument of , under the constraint that . This
leads to the constrained problem

subject to (9)

which is clearly equivalent to unconstrained problem (8): in the
feasible set , the objective function in (9)
coincides with that in (8). The rationale behind variable splitting
methods is that it may be easier to solve the constrained problem
(9) than it is to solve its unconstrained counterpart (8).

The splitting idea has been recently used in several image
processing applications. A variable splitting method was used
in [43] to obtain a fast algorithm for TV-based image restora-
tion. Variable splitting was also used in [6] to handle problems
involving compound regularizers; i.e., where instead of a single
regularizer in (5), one has a linear combination of two
(or more) regularizers . In [6] and [43], the
constrained problem (9) is attacked by a quadratic penalty ap-
proach, i.e., by solving

(10)

by alternating minimization with respect to and , while
slowly taking to very large values (a continuation process), to
force the solution of (10) to approach that of (9), which in turn
is equivalent to (8). The rationale behind these methods is that
each step of this alternating minimization may be much easier
than the original unconstrained problem (8). The drawback is
that as becomes very large, the intermediate minimization
problems become increasingly ill-conditioned, thus, causing
numerical problems (see [37, Ch. 17]).

A similar variable splitting approach underlies the recently
proposed split-Bregman methods [25]; however, instead of
using a quadratic penalty technique, those methods attack the
constrained problem directly using a Bregman iterative algo-
rithm [46]. It has been shown that, when is a linear function,
i.e., , the Bregman iterative algorithm is equivalent
to the augmented Lagrangian method [46], which is briefly
reviewed in the following subsection.
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B. Augmented Lagrangian

Consider the constrained optimization problem

(11)

where and , i.e., there are linear equality
constraints. The augmented Lagrangian function for this
problem is defined as

(12)

where is a vector of Lagrange multipliers and is
called the penalty parameter [37].

The so-called augmented Lagrangian method (ALM) [37],
also known as the method of multipliers (MM) [28], [38],
consists in minimizing with respect to , keeping
fixed, then updating , and repeating these two steps until some
convergence criterion is satisfied. Formally, the ALM/MM
works as follows:

Algorithm ALM/MM

1. Set , choose , and .

2. repeat

3.

4.

5.

6. until stopping criterion is satisfied.

It is also possible (and even recommended) to update the
value of in each iteration [3], [37, Chap. 9]. However, unlike
in the quadratic penalty approach, the ALM/MM does not re-
quire to be taken to infinity to guarantee convergence to the
solution of the constrained problem (11).

Notice that (after a straightforward complete-the-squares pro-
cedure) the terms added to in the definition of the aug-
mented Lagrangian in (12) can be written as a
single quadratic term (plus a constant independent of , thus,
irrelevant for the ALM/MM), leading to the following alterna-
tive form of the algorithm (which makes clear its equivalence
with the Bregman iterative method [46]):

Algorithm ALM/MM (Version II)

1. Set , choose and .

2. repeat

3.

4.

5.

6. until stopping criterion is satisfied.

It has been shown that, with adequate initializations, the
ALM/MM generates the same sequence as a proximal point
algorithm applied to the Lagrange dual of problem (11) [30].
Moreover, the sequence converges to a solution of this
dual problem and all cluster points of the sequence are
solutions of the (primal) problem (11) [30].

C. ALM/MM for Variable Splitting

We now review how the ALM/MM can be used to address
problem (9), in the particular case where , i.e.,

subject to (13)

where Problem (13) can be written in the form (11)
using the following definitions:

(14)

and

(15)

With these definitions in place, Steps 3 and 4 of the ALM/MM
(version II) can be written as follows:

(16)

(17)

The minimization problem (16) is not trivial since, in general,
it involves nonseparable quadratic, and possibly nonsmooth,
terms. A natural way to address (16) is to use a nonlinear
block-Gauss-Seidel (NLBGS) technique, in which (16) is
solved by alternatingly minimizing it with respect to and ,
while keeping the other variable fixed. Of course this raises sev-
eral questions: for a given , how much computational effort
should be spent in approximating the solution of (16)? Does
this NLBGS procedure converge? Experimental evidence in
[25] suggests that an efficient algorithm is obtained by running
just one NLBGS step. It turns out that the resulting algorithm
is the so-called alternating direction method of multipliers
(ADMM) [17], which works as follows:

Algorithm ADMM

1. Set , choose , , and .

2. repeat

3.

4.

5.

6.

7. until stopping criterion is satisfied.
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For later reference, we now recall the theorem by Eckstein
and Bertsekas, in which convergence of (a generalized version
of) ADMM is shown. This theorem applies to problems of the
form (8) with , i.e.,

(18)

of which (13) is the constrained optimization reformulation.
Theorem 1 (Eckstein-Bertsekas, [17]): Consider problem

(18), where and are closed, proper, convex functions,
and has full column rank. Consider arbitrary

and . Let and
be two sequences such that

Consider three sequences ,
, and that satisfy

Then, if (18) has a solution, the sequence converges,
, where is a solution of (18). If (18) does not have

a solution, then at least one of the sequences or
diverges.

Notice that the ADMM algorithm defined previously gener-
ates sequences , , and which satisfy the condi-
tions in Theorem 1 in a strict sense (i.e., with ). One
of the important consequences of this theorem is that it shows
that it is not necessary to exactly solve the minimizations in lines
3 and 4 of ADMM; as long as sequence of errors is absolutely
summable, convergence is still guaranteed.

The proof of Theorem 1 is based on the equivalence between
ADMM and the so-called Douglas-Rachford splitting method
(DRSM) applied to the dual of problem (18). The DRSM was
recently used for image recovery problems in [12]. For recent
and comprehensive reviews of ALM/MM, ADMM, DRSM, and
their relationship with Bregman and split-Bregman methods,
see [26], [42].

III. PROPOSED METHOD

A. Constrained Optimization Formulation of Image Recovery

We now return to the unconstrained optimization formulation
of regularized image recovery, as defined in (5). This problem
can be written in the form (18), with

(19)

(20)

(21)

The constrained optimization formulation is, thus

(22)

At this point, we are in a position to clearly explain the dif-
ference between this formulation and the splitting exploited in
split-Bregman methods (SBM) for image recovery [25]. In those
methods, the focus of attention is a nonseparable regularizer that
can be written as , as is the case of the TV
norm. The variable splitting used in SBM addresses this non-
separability by defining the following constrained optimization
formulation:

subject to (23)

In contrast, we assume that the Moreau proximal mapping
associated to the regularizer , i.e., the function defined
in (6), can be computed efficiently. The goal of our splitting is
not to address the difficulty raised by a nonseparable and non-
quadratic regularizer, but to exploit second-order (Hessian) in-
formation of the function , as will be shown in the following.

Algorithm and Its Convergence

Inserting the definitions given in (19)–(21) in the ADMM pre-
sented in the previous section yields the proposed SALSA (split
augmented Lagrangian shrinkage algorithm).

Algorithm SALSA

1. Set , choose , , and .

2. repeat

3.

4.

5.

6.

7. until stopping criterion is satisfied.

Since SALSA is an instance of ADMM with , the full
column rank condition in Theorem 1 is satisfied. If the mini-
mizations in lines 3 and 4 are solved exactly, we can then invoke
Theorem 1 to guarantee the convergence of SALSA.

In line 3 of SALSA, a strictly convex quadratic function has
to be minimized, which leads to the following linear system:

(24)

where . As shown in the next subsection, this
linear system can be solved exactly (naturally, up to numerical
precision), i.e., noniteratively, for a comprehensive set of sit-
uations of interest. The matrix can be seen as a
regularized (by the addition of ) version of the Hessian of

, thus, SALSA does use second-order
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information of this function. Notice also that (24) is formally
similar to the maximum a posteriori (MAP) estimate of , from
observations (where is white Gaussian noise of
variance ) under a Gaussian prior of mean and covari-
ance .

The problem in line 4 is, by definition, the Moreau proximity
mapping of applied to , thus, its solution can
be written as

(25)

If this mapping can be computed exactly in closed form (for ex-
ample, if , thus, is simply a soft threshold), then,
by Theorem 1, SALSA is guaranteed to converge. If does not
have a closed form solution and requires itself an iterative algo-
rithm (e.g., if is the TV norm), then convergence of SALSA
still holds if one can guarantee that the error sequence (see
Theorem 1) is summable. In principle, this can be achieved if the
iterative algorithm used to approximate is initialized with the
result of the previous outer iteration, and a decreasing stopping
threshold is used; this idea will be exploited in a future paper. In
our experiments with TV regularization reported in this paper,
we use a fixed number of iterations of Chambolle’s algorithm to
approximate ; this was empirically found not to compromise
the convergence of SALSA.

B. Computing

As previously stated, we are interested in problems where it is
not feasible to explicitly form matrix ; this might suggest that
it is not easy, or even feasible, to compute the inverse in (24).
However, as shown next, in a number of problems of interest,
this inverse can be computed very efficiently. Problems such as
noncyclic deconvolution, for which the term is
not invertible will be addressed in a future paper.

1) Deconvolution With Analysis Prior: In this case, we have
(see (1), (2), and (5)), where is the matrix represen-

tation of a circular convolution. This is the simplest case, since
the inverse can be computed in the Fourier do-
main. Although this is an elementary and well-known fact, we
include the derivation for the sake of completeness. Assuming
that the convolution is periodic (other boundary conditions can
be addressed with minor changes), is a block-circulant matrix
with circulant blocks which can be factorized as

(26)

where is the matrix that represents the 2-D discrete Fourier
transform (DFT), is its inverse ( is unitary, i.e.,

), and is a diagonal matrix containing
the DFT coefficients of the convolution operator represented by

. Thus

(27)

(28)

where denotes complex conjugate and the squared
absolute values of the entries of the diagonal matrix . Since

is diagonal, its inversion has linear cost . The

TABLE I
DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS

products by and can be carried out with cost
using the FFT algorithm. The expression in (28) is a Wiener
filter in the frequency domain.

2) Deconvolution With Frame-Based Synthesis Prior:
In this case, we have a problem of the form (1), i.e.,

, thus, the inversion that needs to be performed
is . Assuming that represents a
(periodic) convolution, this inversion may be sidestepped under
the assumption that matrix corresponds to a normalized
tight frame (a Parseval frame), i.e., . Applying
the Sherman–Morrison–Woodbury (SMW) matrix inversion
formula yields

Let us focus on the term ; using
the factorization (26), we have

(29)

Since all the matrices in are diagonal,
this expression can be computed with cost, while the prod-
ucts by and can be computed with cost using
the FFT. Consequently, products by matrix (defined in (29))
have cost.

Defining , al-
lows writing (24) compactly as

(30)

Notice that multiplication by corresponds to applying a
filter in the Fourier domain. Finally, notice also that the term

can be precomputed, as it does not change during
the algorithm.

The leading cost of each application of (30) will be either
or the cost of the products by and . For

most tight frames used in image processing, these products cor-
respond to direct and inverse transforms for which fast algo-
rithms exist. For example, when and are the inverse
and direct translation-invariant wavelet transforms, these prod-
ucts can be computed using the undecimated wavelet transform
with total cost [32]. Curvelets also constitute a Par-
seval frame for which fast implementations of the
forward and inverse transform exist [7]. Yet another example of
a redundant Parseval frame is the complex wavelet transform,
which has computational cost [31], [41]. In conclusion,
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Fig. 1. Objective function evolution (redundant wavelets): (a) experiment 1A;
(b) experiment 2B; (c) experiment 3A.

for a large class of choices of , each iteration of the SALSA
algorithm has cost.

3) Missing Pixels (Image Inpainting): In the analysis prior
case (TV-based), we have , where the observation ma-
trix models the loss of some image pixels. Matrix is, thus,
an binary matrix, with , which can be obtained
by taking a subset of rows of an identity matrix. Due to its par-
ticular structure, this matrix satisfies . Using this fact
together with the SMW formula leads to

(31)

Fig. 2. Objective function evolution (orthogonal wavelets): (a) experiment 1A;
(b) experiment 2B; (c) experiment 3A.

Since is equal to an identity matrix with some zeros in the
diagonal (corresponding to the positions of the missing observa-
tions), the matrix in (31) is diagonal with elements either equal
to or . Consequently, (24) corresponds simply to
multiplying by this diagonal matrix, which is an

operation.
In the synthesis prior case, we have , where is the

binary subsampling matrix defined in the previous paragraph.
Using the SMW formula yet again, and the fact that ,
we have

(32)
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TABLE II
IMAGE DEBLURRING WITH REDUNDANT WAVELETS: COMPUTATIONAL COSTS AND ISNR VALUES. ALGORITHMS:

� � �����, � � �����, �� � ��	
��, � � �����.

TABLE III
IMAGE DEBLURRING WITH ORTHOGONAL WAVELETS: COMPUTATIONAL COSTS AND ISNR VALUES. ALGORITHMS:

� � �����, � � �����, �� � ��	
��, � � �����.

As noted in the previous paragraph, is equal to an iden-
tity matrix with zeros in the diagonal (corresponding to the posi-
tions of the missing observations), i.e., it is a binary mask. Thus,
the multiplication by corresponds to synthesizing
the image, multiplying it by this mask, and computing the repre-
sentation coefficients of the result. In conclusion, the cost of (24)
is again that of the products by and , usually .

4) Partial Fourier Observations: MRI Reconstruction: The
final case considered is that of partial Fourier observations,
which is used to model magnetic resonance image (MRI)
acquisition [33], and has been the focus of much recent interest
due to its connection to compressed sensing [8], [9], [16]. In
the TV-regularized case, the observation matrix has the form

, where is an binary matrix, with ,
similar to the one in the missing pixels case (it is formed by a
subset of rows of an identity matrix), and is the DFT matrix.
This case is similar to (32), with and instead of and

, respectively. The cost of (24) is again that of the products
by and , i.e., if we use the FFT.

In the synthesis case, the observation matrix has the form
. Clearly, the case is again similar to (32), but with

and instead of and , respectively. Again,
the cost of (24) is , if the FFT is used to compute the
products by and and fast frame transforms are used for
the products by and .

IV. EXPERIMENTS

In this section, we report results of experiments aimed at com-
paring the speed of SALSA with that of the current state of the
art methods (all of which are freely available online): TwIST2

[5], SpaRSA3 [45], and FISTA4 [4]. We consider three stan-
dard and often studied imaging inverse problems: image de-
convolution (using both wavelet and TV-based regularization);
image restoration from missing samples (inpainting); image re-
construction from partial Fourier observations, which (as men-

2Available at http://www.lx.it.pt/~bioucas/code/TwIST_v1.zip
3Available at http://www.lx.it.pt/~mtf/SpaRSA/
4Available at http://iew3.technion.ac.il/~becka/papers/wavelet_FISTA.zip

tioned previously) has been the focus of much recent interest
due to its connection with compressed sensing and the fact that
it models MRI acquisition [33]. All the experiments were per-
formed using MATLAB, on a computer equipped with an Intel
Pentium-IV 3.0 GHz processor, with 1.5 GB of RAM, and run-
ning Windows XP. To compare the speed of the algorithms,
in a way that is as independent as possible from the different
stopping criteria, we first run FISTA and then SALSA and the
other algorithms until they reach the same value of the objec-
tive function. The value of for fastest convergence was found
to differ (though not very much) in each case, but a good rule
of thumb, adopted in all the experiments, is . The
number of calls to the operators , the number of itera-
tions, computation times, and improvement in SNR (ISNR) tab-
ulated for each experiment are the average values over 10 in-
stances of each experiment. The average ISNR was computed as

, where is the orig-
inal image, is the observed image at the th iteration, and
is the corresponding estimated image. The plots of the objective
functions, for each experiment, were with a logarithmic x-axis
which was started at 0.01 s, for the purpose of display.

A. Image Deblurring With Wavelets

We consider five benchmark deblurring problems [22], sum-
marized in Table I, all on the well-known Cameraman image,
with size 256 256 pixels. The regularizer is ,
thus, is an element-wise soft threshold. The blur operator

is applied via the FFT. The regularization parameter is hand
tuned in each case for best improvement in SNR, so that the
comparison is carried out in the regime that is relevant in prac-
tice.

In the first set of experiments, is a redundant Haar wavelet
frame with four levels. The average number of calls to the oper-
ators , the number of iterations, the computation times,
and the ISNR achieved by each of the algorithms are presented
in Table II. In the second set of experiments, is an orthogonal
Haar wavelet basis; the results are reported in Table III. To visu-
ally illustrate the relative speed of the algorithms, Figs. 1 and 2
plot the evolution of the objective function [see (1)], versus time,
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TABLE IV
TV-BASED IMAGE DEBLURRING: COMPUTATIONAL COSTS AND ISNR VALUES. ALGORITHMS: � � �����, � � �����, �� � ��	
��, � � �����

Fig. 3. Image deblurring with TV regularization—Objective function evolu-
tion: (a) 9� 9 uniform blur, � � ��
�; (b) Gaussian blur, � � �; (c) � �
���� � � � � � blur, � � �.

in experiments 1, 2B, and 3A, for redundant and orthogonal
wavelets, respectively.

B. Image Deblurring With Total Variation

The same five image deconvolution problems listed in Table I
were also addressed using total variation (TV) regularization
(more specifically, the isotropic discrete total variation, as de-
fined in [10]). The corresponding Moreau proximal mapping is
computed using 5 iterations of Chambolle’s algorithm [10].

The average number of calls to the operators , the
number of iterations, computation times, and the ISNR values
obtained by SALSA, TwIST, SpaRSA, and FISTA are listed in
Table IV. The evolutions of the objective functions (for experi-
ments 1, 2B, and 3A) are plotted in Fig. 3.

We can conclude from Tables II–IV that, in image deconvolu-
tion problems, both with wavelet-based and TV-based regular-
ization, SALSA is clearly faster by at least an order of mag-
nitude of the computation time, under our experimental con-
ditions. If an approximate solution is needed, in some prob-
lems such as experiment 3A for deconvolution with orthogonal
wavelets, it may be possible to get a solution using TwIST or
FISTA, quicker than SALSA.

C. MRI Image Reconstruction

We consider the problem of reconstructing the 128 128
Shepp-Logan phantom [shown in Fig. 4(a)] from a limited
number of radial lines [22, in our experiments, as shown in
Fig. 4(b)] of its 2-D discrete Fourier transform. The projections
are also corrupted with circular complex Gaussian noise, with
variance . We use TV regularization (as
described in Section IV-B), with the corresponding Moreau
proximal mapping implemented by 40 iterations of Cham-
bolle’s algorithm [10].

Table V shows the CPU times, numbers of products by or
, numbers of iterations, and MSE values, while Fig. 5 plots

the evolution of the objective function over time. Fig. 4(c) shows
the estimate obtained using SALSA (the others are, naturally,
visually indistinguishable). As in the case of some of the image
deconvolution problems, if an approximate solution is needed, it
may be possible to get a solution using TwIST or FISTA, quicker
than SALSA. SALSA is faster by almost an order of magnitude
of the computation time, under our experimental conditions.

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-
plained in Section III-C. The original image is again the
256 256 Cameraman, and the observation consists in losing
40% of its pixels, as shown in Fig. 6. The observations are
also corrupted with Gaussian noise (with an SNR of 40 dB).
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Fig. 4. MRI reconstruction: (a)128� 128 Shepp Logan phantom; (b) mask
with 22 radial lines; (c) image estimated using SALSA.

Fig. 5. MRI reconstruction: evolution of the objective function over time.

The regularizer is again TV implemented by 20 iterations of
Chambolle’s algorithm.

TABLE V
MRI RECONSTRUCTION: COMPARISON OF THE VARIOUS ALGORITHMS

Fig. 6. Image inpainting with TV regularization: (a) original cameraman
image; (b) image with 40% pixels missing; (c) estimated using SALSA.

The image estimate obtained by SALSA is shown in Fig. 6,
with the original also shown for comparison. The estimates ob-
tained using TwIST and FISTA were visually very similar. For
this experiment, SpARSA was unable to reach the value of the
objective function reached by the others, even after 5000 itera-
tions and, thus, will not be compared here. Table VI compares
the performance of SALSA with that of TwIST and FISTA and
Fig. 7 shows the evolution of the objective function for each of
the algorithms. For our experimental conditions, SALSA is con-
siderably faster than the alternative algorithms.
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Fig. 7. Image inpainting: evolution of the objective function over time.

TABLE VI
IMAGE INPAINTING: COMPARISON OF THE VARIOUS ALGORITHMS

V. CONCLUSIONS

We have presented a new algorithm for solving the un-
constrained optimization formulation of regularized image
reconstruction/restoration. The approach, which can be used
with different types of regularization (wavelet-based, total
variation), is based on a variable splitting technique which
yields an equivalent constrained problem. This constrained
problem is then addressed using an augmented Lagrangian
method, more specifically, the alternating direction method of
multipliers (ADMM). The algorithm uses a regularized version
of the Hessian of the data-fidelity term, which can be com-
puted efficiently for several classes of problems. Experiments
on a set of standard image recovery problems (deconvolution,
MRI reconstruction, inpainting) have shown that the proposed
algorithm (termed SALSA, for split augmented Lagrangian
shrinkage algorithm) is faster than previous state-of-the-art
methods. Current and future work involves using a similar
approach to solve constrained formulations of the forms (3) and
(4), addressing the case where the term in (24)
is not invertible, and using as the MPM for TV regularization,
an iterative algorithm initialized with the result of the previous
outer iteration, and a decreasing stopping threshold.
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