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Abstract

We present an exponential time integrator in conjunction with a finite volume

discretisation in space for simulating transport by advection and diffusion

including chemical reactions in highly heterogeneous porous media represen-

tative of geological reservoirs. These numerical integrators are based on the

variation of constants solution and solving the linear system exactly. This is

at the expense of computing the exponential of the stiff matrix comprising

the finite volume discretisation. Using real Léja points or a Krylov subspace

technique to approximate the exponential makes these methods competitive

compared to standard finite difference-based time integrators. We observe

for a variety of example applications that numerical solutions with expo-

nential methods are generally more accurate and require less computational

cost. They hence comprise an efficient and accurate method for simulating
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non-linear advection dominated transport in geological formations.
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1. Introduction1

Advection and diffusion can transport chemically reactive components2

such as dissolved minerals, colloids, or contaminants, over long distances3

through the highly heterogeneous porous media comprising geological for-4

mations. It is hence a fundamental process in many geo-engineering appli-5

cations, including oil and gas recovery from hydrocarbon reservoirs, ground-6

water contamination and sustainable use of groundwater resources, storing7

greenhouse gases (e.g, CO2) or radioactive waste in the subsurface, or min-8

ing heat from geothermal reservoirs. One of the fundamental challenges is9

to forecast these processes accurately because the permeability in heteroge-10

neous porous and fractured media typically varies over orders of magnitude11

in space and possibly time (e.g, [1, 2]). This causes highly variable flow fields12

where local transport can be dominated entirely by either advection (Péclet13

number larger than one) or diffusion (Péclet number less than one), lead-14

ing to macroscopic mixing and “anomalous transport” that is characterised15

by early breakthrough of solutes or contaminants and long tailing at late16

time [3]. Chemical reaction rates and equilibrium constants can vary in a17

similar manner, giving rise to complex mixing-induced reaction patterns at18

the macro-scale because chemical reactions rates can dominate locally over19

transport rates or vice versa (e.g, [4, 5, 6]).20

Predicting the spatial spreading and mixing of reactive solutes in field21
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applications hence requires the efficient and accurate numerical solution of22

advection-diffusion-reaction equations (ADR) which resolve the wide range23

in flow velocities and reaction rates. This is particularly important because24

the exact spatial distribution of the permeability field and reaction rates is25

commonly unknown and therefore a large number of simulations must be26

run to quantify the uncertainty of the transport behaviour [7], for example27

to forecast the possible arrival of highly toxic contaminants at a groundwater28

well and design adequate remediation schemes.29

The ADR can be discretised in space by the full range of spatial dis-30

cretisations (e.g, finite differences, finite volumes, or finite elements) and31

each method comprises its own body of literature. However a fundamental32

challenge remains. How to integrate in time the system of stiff ODEs, repre-33

senting transport and reaction processes evolving over multiple time scales,34

in a stable, accurate and efficient way while avoiding non-physical oscilla-35

tions (e.g, [8, 9]). The key problem in porous media flow is to overcome the36

limitations of stability criteria, such as the Courant-Friedrich-Levy criterion,37

when resolving the huge variation in competing transport and reaction rates.38

Common methods include implicit or adaptive time-stepping (e.g, [12, 13])39

and operator splitting techniques (e.g, [10, 11]). Comparatively new meth-40

ods are streamline-based simulations where transport is computed along the41

time-of-flight [14, 15], adaptive mesh refinement to focus the computational42

effort around the moving fronts and resolve them accurately [16], or event-43

based simulations where only those regions are updated where an event (i.e.44

chemical reaction or transport) occurs [17, 18].45

The family of exponential integrators date back to the 1960’s (see [19]46
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and [20] for history and detailed references). These methods are based on47

approximating the corresponding integral formulation of the non-linear part48

of the differential equation and solving the linear part exactly and com-49

puting the exponential of a matrix. Sidje [24] used the Krylov subspace50

technique and Padé approximation to solve the linear system of ODEs based51

on variation of constants. Cox and Matthews [32] developed the family52

of exponential time differencing methods for solving non-linear stiff ODEs.53

They present the instability issue for computing non-diagonal matrix ex-54

ponential functions, the so called ϕ-functions. Kassam and Trefethen [20]55

used a fourth order exponential time differencing method and the contour56

integral technique for computing the matrix exponential functions to solve57

the Kuramoto-Sivashinsky and Allen-Cahn PDEs in one dimension. Berland58

et al. [33] used a Padé approximation to compute the matrix exponential59

of ϕ-functions and provided a package for exponential integrators which is60

efficient in one dimension.61

Although exponential integrators have the advantage that they solve the62

linear part exactly in time, this is at the price of computing the exponential63

of a matrix, a notorious problem in numerical analysis [36]. However, new64

developments in real fast Léja points and Krylov subspace techniques for65

computing functions of the matrix exponential has revived interest in these66

methods. The real fast Léja points technique is based on matrix interpola-67

tion polynomials at spectral Léja sequences [21, 22]. The Krylov subspace68

technique is based on the idea of projecting the operator on a “small” Krylov69

subspace of the matrix via the Arnoldi process [23, 24].70

In two and three dimensions, the real fast Léja points technique [25, 26,71
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22, 27] and Krylov subspace technique [25, 26] have been used to implement72

the matrix exponential of ϕ-functions efficiently in linear advection diffusion73

equations. The real fast Léja points technique is also used for the exponential74

Euler-Midpoint integrator scheme for solving non-linear ADRs [28] and for75

the exponential Rosenbrock-type integrators for solving semi-linear parabolic76

PDEs [29]. Simulations have been carried out for homogeneous media with77

constant dispersion tensors, uniform velocity fields, and low Péclet number78

flows using finite difference methods or finite element methods for spatial dis-79

cretisations. In contrast to previous work, we consider heterogeneous media,80

the exponential time differencing method of order one with the finite volume81

discretisation in space and examine high Péclet number flows.82

The aim of this paper is to investigate the exponential time differencing83

method of order one (ETD1) and compare its performance in terms of ef-84

ficiency and accuracy to standard semi-implicit and fully implicit schemes85

for solution of non-linear ADRs in highly heterogeneous porous media with86

largely varying Péclet number flows, that is situations where transport is87

locally dominated either by diffusion or advection. We use 2D simulations88

and finite volume discretisations to demonstrate the efficiency and the accu-89

racy of the exponential scheme ETD1. In the implementation of the ETD190

scheme we also compare the efficiency of the real fast Léja points technique91

with the Krylov technique for computing matrix exponential.92

The paper is organised as follows. In the next section we present the93

mathematical and numerical formulations of ADR. Then we discuss the ex-94

ponential time differencing stepping schemes for ADR and implementation95

of the exponential time differencing of order one (ETD1) using the real fast96

5



Léja points and Krylov space techniques. This is followed by two sets of tests97

in 2D from homogeneous porous media with exact solutions. This allows us98

to examine the ETD1 scheme as well as test feasibilty for large systems. We99

then consider heterogeneous porous media where we take first a deterministic100

permeability field and then a random permeability field. In these examples101

we see that the ETD1 method using the real Léja points technique is efficient102

and competitive compared to standard finite difference time ingegrators. Fi-103

nally, the discussions and conclusions are given.104

2. Mathematical and numerical formulations105

2.1. Model problem106

Our model problem is to find the unknown concentration of the solute C107

that satisfies the following advection-diffusion-reaction equation (ADR):108

φ(x)
∂C

∂t
= ∇ · (D(x)∇C)−∇ · (q(x)C) +R(x, C) (x, t) ∈ Ω× [0, T ] . (1)

Here we take Ω to be an open domain of R2 and solve over a finite time109

interval [0, T ]. φ is the porosity (void fraction) of the rock, and D is the110

symmetric dispersion tensor. For simplicity we take D to be111

D =


 D1 0

0 D2


 (2)

with D1 > 0, D2 > 0. The term R is a reaction function. Possible reaction112

mechanisms can be adsorption, for example as described by a Langmuir113

isotherm, biodegradation or radioactive decay. The velocity q is given by114

Darcy’s law as115

q = −k(x)

µ
∇p, (3)
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where p is the fluid pressure, µ is the fluid viscosity, and k the permeability

of the porous medium. Assuming that rock and fluids are incompressible

and sources or sinks are absent, mass conservation is given by ∇ · q = 0.

From this we can formulate the elliptic pressure equation, which allows us to

compute the pressure field in the porous medium

∇ ·
[
k(x)

µ
∇p

]
= 0. (4)

2.2. Space discretisation116

We use the classical finite volume method with a structured mesh T [30].117

First, we solve the pressure equation (Eq. (4)) and then obtain the velocity118

field from Eq. (3). This provides the integral of the velocity {qi,j}i∈T at each119

edge j of a control volume i. Integrating Eq. (1) over i, using the divergence120

theorem and the flux approximations used in [30] we obtain the following121

equation122

φiVi
dCi(t)

dt
= −

edges of i∑
j

[Fi,j(t) + qi,jCj(t))] + ViR(Ci(t)) ∀ i ∈ T . (5)

Here, Ci(t) is the approximation of C at time t at the center of the control123

volume i ∈ T , Fi,j(t) is the approximation of the diffusive flux at time t at124

edge j and qi,jCi(t) is the approximation of the advective flux at time t at125

edge j. ViR(Ci(t)) is the approximation of the integral of the reaction term126

over the ith control volume of area Vi and φi is the mean value of the porosity127

φ in the control volume i. We apply standard upwind weighting [31, 30] to128

the flux term qi,jCj.129

We let h denote the maximum mesh size and use this to indicate our130

spatial discretisation. We can rewrite Eq. (5) in the standard way [31] as the131
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following non-linear system of equations for all control volumes i ∈ T132

dCh(t)

dt
= LCh(t) + N(Ch, t), t ∈ [0, T ] . (6)

Here L is the stiffness matrix coming from the approximations of the ad-133

vective and diffusive fluxes, Ch(t) is the concentration vector at all control134

volumes at time t, and the term N(Ch, t) comes from the boundary condi-135

tions and reaction term. In section 4, we also examine the effects of putting136

the approximation of the advective flux in the non-linear term N(Ch, t).137

2.3. Standard time discretisation138

We briefly describe two standard time-stepping schemes, the implicit Eu-139

ler scheme and the semi implicit Euler scheme. Later we use these for com-140

parison with the exponential scheme of order one, ETD1. Given the initial141

data C0
h = C0, the implicit Euler scheme for Eq. (6) is142

Cn+1
h − Cn

h

∆t
= LCn+1

h +N(Cn+1
h , tn+1) (7)

and the semi implicit scheme is143

Cn+1
h − Cn

h

∆t
= LCn+1

h +N(Cn
h, tn) (8)

where ∆t = tn+1 − tn is the fixed time-step. For the implicit Euler method144

we have to solve a non-linear algebraic equation of the form145

f(X) = (I+∆tL)X + ∆tN(X, tn)− Cn
h = 0

at each time-step. For brevity we denote Cn+1
h as X. We use Newton’s method146

and a variant of Newton’s method designed for semi-linear problems [31].147

We solve the linear systems using the standard solver in MatlabTMat each148
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iteration in the exact Newton’s method. For the variant of Newton’s method,149

the Jacobian of f, J(X), is approximated by its constant linear part so that150

J(X) ≈ I + ∆tL. The corresponding quasi Newton’s iteration is then given151

by152

Xk+1 = Xk − (I+∆tL)−1 f(Xk)

= (I+∆tL)−1 (∆tN(Xk, tn)− Cn
h).

This is equivalent to a fixed point method to solve the equivalent equation153

(I+∆tL)−1 f(X) = 0. The approximation of the Jacobian by its constant154

linear part allows us to compute the matrix factorisation only once and to155

reuse this at each time-step. In the quasi-exact Newton’s method and the156

semi implicit Euler scheme we solve the linear systems using either an LU-157

decomposition or the standard solver in MatlabTM.158

3. Exponential Time Differencing scheme of order one for ADR159

3.1. Review of the Exponential Time Differencing methods160

We introduce the exponential time differencing stepping scheme of order161

one (ETD1) for the ADR problem (Eq. (1)) using the variation of constants.162

This allows us to write the exact solution of Eq. (6) as163

Ch(tn) = etnLC0 + etnL
∫ tn

0

e−sLN(Ch(s), s)ds, tn = n∆t ∈ [0, T ]

where s is the integration time. Then, given the exact solution at the time164

tn, we can construct the corresponding solution at tn+1 as165

Ch(tn+1) = e∆tLCh(tn) + e∆tL

∫ ∆t

0

e−sLN(Ch(tn + s), tn + s)ds. (9)
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Note that the expression in Eq. (9) is still an exact solution. The idea

behind exponential time differencing is to approximate N(Ch(tn + s), tn +

s) by a suitable polynomial [32, 20]. We consider the simplest case where

N(Ch(tn + s), tn + s) is approximated by the constant N(Ch(tn), tn) and for

simplicity consider a constant time-step ∆t = tn+1 − tn. The corresponding

ETD1 scheme is given by

Cn+1
h = e∆tLCn

h +∆tϕ1(∆tL)N(Cn
h, tn) (10)

where ϕ1(G) = G−1
(
eG − I

)
=

(
eG − I

)
G−1 for any invertible matrix G.166

Note that the ETD1 scheme in Eq. (10) can be rewritten as167

Cn+1
h = Cn

h +∆tϕ1(∆tL)(LCn
h +N(Cn

h, tn)). (11)

This new expression has the advantage that it is computationally more effi-168

cient as only one matrix exponential function needs to be evaluated at each169

step.170

3.2. Efficient computation of the action of ϕ1171

It is well known that a standard Padé approximation for a matrix expo-172

nential is not an efficient method for large scale problems [24, 33, 36]. Here173

we focus on the real fast Léja points and the Krylov subspace techniques to174

evaluate the action of the exponential matrix function ϕ1(∆tL) on a vector175

v, instead of computing the full exponential function ϕ1(∆tL) as in a stan-176

dard Padé approximation. The details of the real fast Léja points technique177

and [23, 24] for the Krylov subspace technique are given in [27, 21, 22]. We178

give a brief summary below.179
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3.2.1. Real fast Léja points technique180

For a given vector v, real fast Léja points approximate ϕ1(∆tL)v by181

Pm(∆tL)v, where Pm is an interpolation polynomial of degree m of ϕ1 at the182

sequence of points {ξi}mi=0 called spectral real fast Léja points. These points183

{ξi}mi=0 belong to the spectral focal interval [α, β] of the matrix ∆tL, i.e. the184

focal interval of the smaller ellipse containing all the eigenvalues of ∆tL.185

This spectral interval can be estimated by the well known Gershgorin circle186

theorem [34]. It has been shown that as the degree of the polynomial increases187

and hence the number of Léja points increases, convergence is achieved [27],188

i.e.189

lim
m→∞

‖ϕ1(∆tL)v− Pm(∆tL)v‖2 = 0, (12)

where ‖.‖2 is the standard Euclidian norm. For a real interval [α, β], a190

sequence of real fast Léja points {ξi}mi=0 is defined recursively as follows.191

Given an initial point ξ0, usually ξ0 = β, the sequence of fast Léja points is192

generated by193

j−1∏

k=0

|ξj − ξk| = max
ξ∈[α,β]

j−1∏

k=0

| ξ − ξk | j = 1, 2, 3, · · · . (13)

We use the Newton’s form of the interpolating polynomial Pm given by194

Pm(z) = ϕ1 [ξ0] +
m∑
j=1

ϕ1 [ξ0, ξ1, · · · , ξj]
j−1∏

k=0

(z − ξk) (14)

where the divided differences ϕ1[•] are defined recursively by195





ϕ1 [ξj] = ϕ1(ξj)

ϕ1 [ξj, ξj+1, · · · , ξk] := ϕ1 [ξj+1, ξj+2, · · · , ξk]− ϕ1 [ξj, ξj+1, · · · , ξk−1]

ξk − ξj
.

(15)
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Algorithm 1 : Compute ϕ1(∆tL)v with real fast Léja points. Error em is

controlled to a presrcribed tolerance tol so that eLéjam < tol.

1: Input: L, v,∆t, tol, z {matrix, vector, time-step, tolerance, number of

Léja points to be generated }
2: [α, β] = getfocal(L) {get the focal interval using the Gershgorin circle

theorem [34]}
3: ξ = getLeja(α, β, z) {generate z fast Léja points from (Eq. (13)).}
4: d0 = ϕ1(ξ0).

5: w0 = v, p0 = d0w0, m = 0 {initialisation}
6: while eLéjam = |dm| × ‖wm‖2 > tol do

7: wm+1 = (∆tL− ξmI)wm

8: m = m+ 1

9: dm = ϕ1(ξm)

10: for i = 1, · · · ,m do

11: dm =
dm − di−1

ξm − ξi−1

{compute the next divided difference dm}
12: end for

13: pm = pm−1 + dmwm

14: end while

15: Output: pm
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We summarise in Algorithm 1 the steps for computing ϕ1(∆tL)v. In our196

implementation we estimate the focal interval for L only once and precom-197

pute a sufficiently large number z of Léja points using the efficient algorithm198

of Baglama et al. [21] for a focal interval of ∆tL.199

The data is passed as input parameters during each call of the algorithm200

and scaled by ∆t. We observed the same convergence problems as described201

by Caliari et al. [27], that is problems arising from round-off errors during202

the computation of the divided differences (Eq. (15)) and from the large203

capacity of the spectral focal interval [α, β]. We were able to resolve this204

issue by reducing the time-step size or by using an algorithm for minimising205

rounding errors from the divided differences [35] when computing Eq. (15).206

Note that although it is advised in [27] to compute the divided differences in207

quadruple precision we did not find this necessary.208

3.2.2. Krylov space subspace technique209

The main idea of the Krylov subspace technique is to approximate the210

action of the exponential matrix function ϕ1(∆tL) on a vector v by projec-211

tion onto a small Krylov subspace Km = span {v,Lv, . . . ,Lm−1v} [24]. The212

approximation is formed using an orthonormal basis of Vm = [v1, v2, . . . , vm]213

of the Krylov subspace Km and of its completion Vm+1 =
[
Vm, vm+1

]
. The214

basis is found by Arnoldi iteration [37] which uses stabilised Gram-Schmidt215

to produce a sequence of vectors that span the Krylov subspace (see Algo-216

rithm 2).217

Let eji be the i
th standard basis vector of Rj. We approximate ϕ1(∆tL)v218
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by219

ϕ1(∆tL)v ≈ ‖v‖2Vm+1ϕ1(∆tHm+1)e
m+1
1 (16)

with

Hm+1 =


 Hm 0

¯
0, · · · , 0, hm+1,m 0


 where Hm = VT

mLVm = [hi,j].

The coefficient hm+1,m is recovered in the last iteration of Arnoldi’s iteration.220

For a small Krylov subspace (i.e, m is small) a standard Padé approxi-221

mation can be used to form ϕ1(∆tHm+1), but a efficient way used in [24]222

is to recover ϕ1(∆tHm+1)e
m+1
1 directly from the Padé approximation of the223

exponential of a matrix related to Hm [24]. In our implementation we use224

the function phiv.m of the package Expokit [24], which allows us to compute225

the forward ETD1 solution using the previous solution while controlling the226

local error at each iteration for a given tolerance. The function phiv.m takes227

the time step ∆t, the matrix L, the vectors u and v, the dimension of the228

Krylov subspace m, and the desired tolerance as the input and provides229

u + ∆tϕ1(∆tL)(Lu + v) as the output. This method is accurate for a sym-230

metric matrix with negative eigenvalues but can be less efficient on very large231

non-symmetric matrices [23, 24].232

4. Numerical experiments233

To analyse the convergence and efficiency of the ETD1 method for solving234

ADRs, we apply it to a variety of porous media flow problems and compare235

it to our standard time-stepping methods implicit Euler and semi implicit236

schemes introduced in Section 2.3. We consider the following four problems:237
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Algorithm 2 : Arnoldi’s algorithm

1: Initialise: v1 =
v

‖v‖2 {normalisation}
2: for j = 1 · · ·m do

3: w = Lvj

4: for i = 1 · · · j do

5: hi,j = wTvi {compute inner product to build elements of the matrix

H}
6: w = w− hi,jvi {Gram–Schmidt process}
7: end for

8: hj+1,j = ‖w‖2
9: vj+1 =

w

‖w‖2 {normalisation}
10: end for

1. A linear ADR without reaction term, a heterogeneous dispersion tensor,238

and a non-uniform velocity field representing moderate Péclet number239

flows, for which an analytical solution exists [38].240

2. A non-linear ADR in homogeneous media where transport is controlled241

equally by advection and diffusion (i.e, Péclet number is 1) for which242

an analytical solution exists [28].243

3. A non-linear ADR for a deterministic permeability field representing244

a highly idealised fractured porous media. Here transport is entirely245

dominated by advection (high Péclet number flow).246

4. A non-linear ADR for a stochastically generated permeability field247

where transport is locally dominated by either advection or diffusion.248
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In the two latter applications we use the classical Langmuir isotherm to model

the sorption of the transported species onto the rock surface, i.e.

R(C) =
λβC

1 + λC
.

The parameter λ is an adsorption constant and β the maximum amount of249

the solute that can be adsorbed. We take λ = β = 1 in this work.250

For the sake of simplicity we assume that the porosity φ is constant in251

all applications. In all cases we take our domain to be rectangular Ω =252

[0, L1)× [0, L2) but use both, uniform and non-uniform, rectangular meshes.253

The time has been normalised by the average flow rate and the domain length254

in the direction of flow such that the mean of the concentration has traveled255

through the entire domain at T = 1. In each application example, the matrix256

L is pentadiagonal. For a grid size Nx × Ny, the corresponding matrix has257

the size NxNy ×NxNy with 5×NxNy − 2×Nx − 6 non-zero elements.258

For pressure, we take the Dirichlet boundary Γ1
D = {0, L1} × [0, L2] and259

Neumann boundary Γ1
N = (0, L1)× {0, L2} such that260

p =





1 in {0} × [0, L2]

0 in {L1} × [0, L2]

−k∇p(x, t) · n = 0 in Γ1
N .
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For concentration, we take the Dirichlet boundary ΓD = {0} × [0, L2] and261

Neumann boundary ΓN = {(0, L1]× {0, L2}} ∪ {{L1} × [0, L2]} such that262

C = 1 in ΓD × [0, T ]

−(D∇C)(x, t) · n = 0 in ΓN × [0, T ]

C0 = 0 in Ω (initial solution)

where n is the unit outward normal vector to ΓN (or Γ1
N).263

We report below the local or grid Péclet number Peloc = maxi Pei where264

Pei is computed over each control volume as265

Pei :=
max

j edge of i
|qi,j|

‖Di‖∞ .

Di is the mean value of the diffusion matrix over the control volume i and266

qi,j is the integral of the velocity over the edge j for the control volume i.267

For applications where we do not have an analytic solution we estimate268

the global error by269

‖Ch(t)− C∆t
h (t)‖L2(Ω) ≈ 2‖C∆t

h (t)− C
∆t/2
h (t)‖L2(Ω).

where C∆t
h (t) is the approximation of the solution at time t found with time-270

step ∆t. Unless explicitly stated, the tolerance used for Newton’s method271

and the ETD1 schemes is 10−6 and the Krylov space dimension used ism = 6.272

The tests were performed on a standard PC with a 3 GHz processor and 2GB273

RAM. Our code was implemented in Matlab 7.7. In the legends of all of our274

graphs we use the following notation275

• “Implicit with Newton” denotes results from the implicit Euler with276

standard Newton method.277
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• “Implicit with Newton V” denotes results from the implicit Euler with278

the variant of Newton method.279

• “Léja ETD1” denotes results from ETD1 with real fast Léja points for280

matrix exponential.281

• “Krylov ETD1” denotes results from ETD1 with Krylov subspace for282

matrix exponential.283

• “Semi implicit” denotes results from the semi-implicit scheme.284

4.1. Homogeneous porous media without reaction term285

We use this problem to examine the scaling of the ETD1 method for286

problems with different numbers of unknowns and analyse the convergence287

in space by comparing it to an exact solution [38]. Since the ADR does288

not contain a reaction term, the problem is linear. The domain is defined289

as Ω = [L0, L1) × [L0, L1), L0 = 0.01, L1 = 2. The initial time is given290

as t0 = 0.01. This is necessary because the exact solution is not defined at291

the origin and at t = 0. The dispersion tensor D is heterogeneous and its292

coefficients are given by293





D1(x, y) = D0u
2
0x

2 (x, y) ∈ Ω

D1(x, y) = D0u
2
0y

2 (x, y) ∈ Ω.

The velocity field (Fig. 1(a)) is given explicitly by294





q = (qx, qy)
T

qx(x, y) = u0x (x, y) ∈ Ω

qy(x, y) = −u0y (x, y) ∈ Ω

(17)
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where D0 = 0.1 and u0 = 2. The local Péclet number ranges from 21 to 2 as295

the grid is refined. Initial and boundary conditions are taken according to the296

exact solution [38], assuming an instantaneous release at a point (x0, y0), x0 =297

1.5, y0 = 1.5. We take a fixed time-step of ∆t = 1/3000.298
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Figure 1: Numerical examples for the linear advection-diffusion problem in homogeneous

porous media given in [38] (a) shows the streamlines, (b) shows the CPU time as a function

of number of unknowns required to evaluate the expression ϕ1(∆tL)(LC0
h + N(C0

h, T0)).

A standard PC with a 3 GHz processor and 2GB RAM was used for the simulations. The

number in the four Krylov curves in (b) denotes the dimension m of the subspace taken.

Figure 1(a) shows the streamlines which indicate direction of flow. Fig-299

ure 1(b) shows the CPU time needed to compute single time-step using ETD1300

with real Léja points and Krylov techniques as a function of the number of301

unknowns. The number of the real fast Léja points used to achieve the given302

tolerance are 6 for 100 unknowns, and increases to 69 as the grid is refined.303

In Figure 1(b) we show that good values for the dimension of the Krylov304

subspace are m = 20 and m = 6, but m = 20 appears to be a slightly better305

value for this specific example. To our knowledge, there is no rigorous theory306
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that allows us to predict the optimal value for m a priori. For example,307

the default value used in [24] is m = 30 but we observe that this is not308

the optimal value for our specific example. When m increases, the total309

number of iterations decreases but a penalty occurs due to the additional time310

spent in the orthogonalisation process in Algorithm 2 and the corresponding311

increase in memory requirements. For small m, a penalty can arise from an312

increase in the number of iterations necessary to achieve a given tolerance,313

especially if ∆t is large, but less time is spent in the orthogonalisation process314

and the required memory is lower. Since the memory on the PC used in315

this work is limited to 2 GB, the values of ∆t in our application examples316

are generally small, and we require to compute the action of the matrix317

exponential function ϕ1 on a vector to reach the final time T over 3000318

times, we have chosen m = 6 as the optimal value for the Krylov subspace319

dimension in all our applications.320

For 104 and more unknowns, that is for problem sizes that become repre-321

sentative for real reservoir simulations, the computation of the matrix expo-322

nential with real fast Léja points is more efficient than the Krylov technique323

by a factor of approximately 10, regardless of the Krylov subspace dimension324

m. Similar results were obtained by [25, 26] for constant dispersion tensor,325

constant velocity, and low Péclet number flows. Once the matrix size is326

greater or equal to 104, the CPU time increases linearly with the number of327

unknowns (Figure 1(b)). The time to evaluate a matrix with 106 unknowns328

using 69 real Léja points is 18 seconds. These results suggest that the ETD1329

is a scalable solver and is hence probably applicable to large-scale problems330

with several million of unknowns that are encountered in 3D reservoir simu-331
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lations.332

Figure 2(a) shows a convergence of order O(h) for the spatial discretisa-333

tion with fixed time step ∆t = 1/3000. The error in the L2 norm is computed334

at time T = 1. Figure 2(b) shows the L2 error as a function CPU time, which335

is depicted in Figure 2(a).336

The efficiency for solving this linear ADR problem is roughly similar for337

all methods, that is approximately the same computational cost is required338

to reduce the numerical error by a certain increment. Although Figure 1(b)339

indicates that for small number of unknowns the Krylov technique requires340

significantly less computational effort than the real Léja point method to341

compute one step with one vector v, Figure 2(b) shows that over the course342

of an entire simulation, which involves many individual time-steps, the local343

error control reduces this efficiency, therefore Krylov and Léja point methods344

are comparable. We recall that the Krylov subspace implementation is known345

to be efficient for symmetric matrices. Here we observe good convergence346

even for highly nonsymmetric matrices L.347

4.2. Homogeneous porous media with a non-linear reaction term348

We now evaluate the ETD1 method for a non-linear ADR problem where

the non-linear reaction term is given by R(C) = −γC2(1 − C). We take

γ = 100, use a constant velocity of q = [−0.01,−0.01]T , and the dispersion

tensor has the entries D1 = D2 = 10−4. The domain is Ω = [0, 1) × [0, 1),

which we discretise with h = ∆x = ∆y = 10−2. The local Péclet number

for the flow is 1, that is transport is controlled equally by advection and

diffusion. The initial condition and boundary conditions are defined with
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Figure 2: (a) Convergence of the L2 norm at T = 1 as a function of the grid size h. (b)

The L2 norm at T = 1 as a function of CPU time. Both plots are for the linear ADR in

homogeneous porous media without a reaction term (Problem 1) with fixed ∆t = 1/3000.

Recall here that the Krylov subspace dimension is fixed to be m = 6.

respect to the exact solution [28] given by

C(x, y, t) = (1 + exp (a(x+ y − bt) + a(b− 1)))−1 (18)

where a =
√

γ/ (4× 10−4) and b = −0.02 +
√

γ × 10−4.349

Figure 3(a) shows the convergence as a function of the chosen time-step350

∆t, measuring the error at the final time T = 1. The semi-implicit time-351

stepping method and the ETD1 methods have similar error constants. All352

schemes have the same rate of convergence O(∆t).353

Figure 3(b) shows the L2 error as a function of CPU time, which is given354

in Figure 3(a). Again, the computational effort to reduce the numerical by a355

certain error is approximately equivalent for both, Léja and Krylov subspace356

techniques. They are also similar to a semi-implicit time integrator. However,357

all three methods, ETD1 with Léja points and Krylov subspace technique and358
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semi-implicit time-stepping, outperform the implicit time-stepping methods.359

Those require about 10 times more computational costs to obtain the same360

numerical error. If the advective component of the flux is included in the361

non-linear part rather than the linear part for the ETD1 scheme, then the362

error constant worsens. In this case the graph representing the error would363

lie between that of the ETD1 or semi-implicit error and implicit error in364

Figure 3(a).365
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Figure 3: (a) Convergence of the L2 norm at T = 1 as a function of ∆t. (b) The L2 norm

at T = 1 as a function of CPU time. Both are for the the non-linear ADR in homogeneous

porous media (Problem 2).

4.3. Deterministic heterogeneous porous media and non-linear reaction366

We now test the ETD1 method for a porous media with three parallel367

high-permeability streaks. This could represent, for example, transport in368

a highly idealised fracture pattern. The permeability of the three parallel369

streaks is 100 times greater than the permeability of the surrounding domain370

(Figure 4(a)). Hence flow is diverted from the lower-permeability rocks into371
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the high-permeability matrix (Figure 4(b)). The advection rates increase to-372

wards the high-permeability streaks and are highest in them. This is clearly373

visible by the closer spacing of the streamlines in the high–permeability374

streaks (Figure 4(b)).375

For the non-linear reaction term we now take the Langmuir sorption376

isotherm. The domain is given by Ω = [0, 2) × [0, 3) and discretised in377

space with ∆x = 3/50 and ∆y = 1/25. The dispersion tensor is anisotropic378

with D1 = 10−3, D2 = 10−4. The viscosity is µ = 0.1. The maximum local379

Péclet number is 2975.4.380

Figure 4(c) shows the concentration at t = 0.3 and Figure 4(d) the con-381

centration at T = 1. Again, the flow-focusing due to the high-permeability382

streaks is clearly visible.383

Figure 5(a) shows the convergence at the final time T = 1 in the L2 norm384

for varying time-steps ∆t. All schemes show convergence rates of O(∆t).385

There is now a distinct difference between ETD1 method with Krylov or Léja386

point technique and the implicit and semi-implicit integrators. The EDT1387

methods displays a clear improvement in the error constant. Figure 5(b)388

depicts the L2 error at T = 1 as a function of CPU time. The ETD1 based389

schemes are significantly more accurate and computationally more efficient390

than (semi-)implicit schemes. They require between 10 and 100 times less391

computational effort to achieve the same reduction in numerical error. The392

Léja point method has also a small computational advantage over the Krylov393

subspace technique.394
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Figure 4: Numerical experiments for the non-linear ADR problem in a deterministic het-

erogeneous porous media (Problem 3). (a) shows the log of permeability field, (b) shows

the velocity streamlines, (c) shows the concentration at t = 0.3 and (d) shows the concen-

tration field at T = 1.

4.4. Stochastic heterogeneous porous media with non-linear reaction395

We finally apply the ETD1 method to a stochastically generated perme-396

ability field. Stochastic permeability fields are commonly used to represent397

the unknown heterogeneity in the subsurface. We use the Karhunen-Loeve398

numerical expansion [39] to generate the random permeability field from399
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Figure 5: (a) Convergence of the L2 norm at T = 1 as a function of ∆t. (b) The L2

norm at T = 1 as a function of CPU time. Both plots are for the non-linear ADR in

a deterministic heterogeneous porous media (Problem 3). Although all time integrators

display a convergence rate of O(∆t), there is clear improvement in the error constant.

Hence the ETD1 schemes are significantly more efficient than (semi-)implicit methods,

with the real Léja point method being most efficient.

a log-normal distribution with an exponentially decaying space correlation.400

The correlation in the field is given by401

Q((x1, y1); (x2, y2)) =
1

4b1b2
exp

(
−π

4

[
(x2 − x1)

2

b21
+

(y2 − y1)
2

b22

])
,

where b1 and b2 are the spatial correlation lengths in x-direction and y-402

direction, respectively, and given by b1 = 0.4 and b2 = 0.2. We used the403

first 30 terms in the Kahunen-Loeve numerical expansion. We used the same404

stochastically generated permeability field to evaluate all time integrators.405

The domain is given by Ω = [0, 3) × [0, 2) with ∆x = 1/10 and ∆y = 1/15.406

The dispersion tensor has the entries D1 = 10−3, D2 = 10−4 and the viscosity407

µ = 1. The maximum local Péclet number is Peloc = 1649.3.408
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Figure 6: Numerical experiments for non-linear ADR problem in a stochastic heteroge-

neous porous media (a) shows the log of permeability field, (b) shows the velocity stream-

lines, (c) shows the concentration at t = 0.2 and (d) shows the concentration at T = 1.

Figure 6(a) shows the log of the permeability field, which varies over409

6 orders of magnitude ranging from 10−3 to 103. Figure 6(b) shows the410

corresponding streamlines, which show how flow is focused into regions of411

high permeability. Advection rates are significantly higher in regions of high-412

permeability, reflected by the close streamline spacing, compared to regions413
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of low permeability. Figure 6(c) shows the concentration at t = 0.2 and414

Figure 6(d) the concentration at T = 1. Both show flow flow-focusing into415

the high-permeability regions.416
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Figure 7: (a) Convergence of the L2 norm at T = 1 as a function of ∆t. (b) The L2

norm at T = 1 as a function of CPU time. Both plots are for the non-linear ADR in a

stochastically generated porous media (Problem 4).

Figure 7(a) shows the convergence of the L2 norm at T = 1 as a function of417

∆t. As in all our previous applications, all schemes have similar convergence418

rates of O(∆t), but there is a clear improvement in the error constant for the419

ETD1 schemes. Figure 7(b) shows the L2 error as a function of CPU time.420

The ETD1 methods clearly outperform the implicit time-integrators, with421

the Léja point based scheme being slightly more efficient than the Krylov422

subspace based methods. The latter shows a similar performance as the423

semi-implicit method. Table 1 compares the CPU time necessary to perform424

3200 steps of the ETD1 integration using the real Léja point method and the425

Krylov subspace technique. We analysed how many Léja points are required426

for the first step for different spatial discretisations ranging from 100 × 100427
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grid points to 500 × 2000 grid points. For the largest problem with 106428

unknowns only 10 Léja points are required. The total CPU time necessary429

to find the solution at final time T = 1 is 5293.3 seconds.430

For the Krylov subspace method (with m = 6) the total CPU time re-431

quired to find the solution at the final time T = 1 is 14693 seconds. We432

observe that the real Léja point method seems more efficient than the Krylov433

implementation, taking approximately half the CPU time. We have tested434

several values for m and due to the reasons discussed previously, we do not435

think that the Krylov subspace technique will be more efficient than the436

real Léja point method for other values of m. Nevertheless, this example437

demonstrates that ETD1 methods are probably applicable to large-scale 3D438

reservoir simulations with several million unknowns.439

Nx Ny MLéja CPU time [sec] Léja CPU time [sec] Krylov (m = 6)

100 100 6 21 54

200 200 7 123 316

100 1000 7 430 889

200 1000 8 911 2349

100 3000 10 1589 2715

500 2000 10 5293 14693

Table 1: CPU time for the real Léja points and Krylov subspace methods used in Problem

4 as a function of various grid sizes. Nx is the number of subdivisions in the x direction

and Ny the number in the y direction. Table shows the number of Léja points used for

the first step MLéja and the CPU time to perform 3200 steps of the ETD1 method using

the Léja point method and Krylov subpace technique (with m = 6).
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5. Concluding remarks440

We have developed an exponential time integrator of order one (ETD1)441

where the matrix exponential is computed with either real fast Léja points442

techniques or a Krylov subspace technique. We have applied it to a variety of443

linear and non-linear advection-diffusion-reaction problems in homogeneous444

as well as highly heterogeneous porous media where the spatial discretisa-445

tion was achieved by standard upwind-weighted finite volume meshes on non-446

uniform rectangular grids. The largest problems comprised 106 unknowns.447

We compared the performance of the ETD1 method to standard semi-implicit448

and implicit time integrators. Transport in our example applications was ad-449

vection as well as diffusion dominated. All our numerical examples demon-450

strate that the ETD1 scheme is highly competitive compared to standard451

time integrators. This competitiveness comprises two components: efficiency452

and accuracy. Generally, the ETD1 method requires at least 10 times less453

computational cost compared to implicit time integrators to reduce the nu-454

merical error to a certain value. Semi-implicit time integrators perform at455

best similar to our ETD1 method. The real fast Léja points technique is456

on average equivalent or more efficient than the Krylov subspace technique.457

A similar observation was made in Martinez et al. [25] and Bergamaschi et458

al. [26] for example applications with constant dispersion tensors, uniform459

velocity fields, and low Péclet number flows, where the spatial discretisation460

was achieved by finite difference and finite element space discretisation. A461

single computation of ETD1 with real fast Léja points requires a few seconds462

on a standard PC, even with our uncompiled Matlab code. Importantly, the463

CPU time scales linearly with the number of unknowns, which implies that464
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ETD1 could be readily applied to large-scale 3D reservoir simulations with465

several million of unknowns. It hence may become a viable alternative to466

other scalable solvers such as hierarchical algebraic multigrid methods [40]467

or multi-scale methods (e.g, [41, 42, 43]) which are commonly used for large-468

scale simulations of flow and transport in heterogeneous porous media.469
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