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Abstract

We consider the regularized Ericksen model of an elastic bar on an elastic foundation on

an interval with Dirichlet boundary conditions as a two-parameter bifurcation problem.

We explore, using local bifurcation analysis and continuation methods, the structure of

bifurcations from double zero eigenvalues. Our results provide evidence in support of

Müller’s conjecture [18] concerning the symmetry of local minimizers of the associated

energy functional and describe in detail the structure of the primary branch connections

that occur in this problem. We give a reformulation of Müller’s conjecture and suggest

two further conjectures based on the local analysis and numerical observations. We

conclude by analysing a “loop” structure that characterizes (k, 3k) bifurcations.

Keywords : microstructure, Lyapunov–Schmidt analysis, Ericksen bar model

AMS subject classification: 34C14, 74N15,37M20

1 Introduction

In the late eighties J. M. Ball suggested that an interesting and important question in

material science would be to understand the dynamical creation of microstructure [3]. A
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model for creating microstructure would be a dynamical system with a Lyapunov functional

that does not reach its infimum value on, say, the set of W 1,2
0 (0, 1) functions, the infimum

value being achieved instead by a gradient Young measure. Thus one might expect to

obtain microstructure dynamically, hoping that as the Lyapunov functional decreases along

trajectories, translates in time will form a minimizing sequence.

One of the candidates for such a process proposed by Ball et al. in [4] is Ericksen’s model

of an elastic bar on an elastic foundation [6]. This is given by

utt = (W ′(ux) + βutx)x − αu (1.1)

on the interval [0, 1] with the Dirichlet boundary conditions

u(0, t) = u(1, t) = 0. (1.2)

Here u := u(x, t) is the lateral displacement of the bar, β measures the strength of viscoelastic

effects (the term βuxxt provides the dissipation of energy mechanism) and α measures the

strength of bonding of the bar to the substrate. W ′(ux) is the (non-monotone) stress/strain

relationship; in what follows we specifically take the double well potential

W (z) =
1

4
(z2 − 1)2. (1.3)

It is easily checked that

E1 =
1

2

∫
1

0

[
u2

t + 2W (ux) +
α

2
u2

]
dx (1.4)

is a Lyapunov function for (1.1).

Friesecke and McLeod [8] proved that (1.1) admits an uncountable family of steady states

that are energetically unstable but locally asymptotically stable. They also showed that

initial data evolves, roughly, to a saw-tooth pattern with the same lap number, (i.e minimum

number of non-overlapping intervals where the pattern is monotone) as the initial data. In

other words, as Friesecke and McLeod put it in the title of their paper [7], dynamics is a

mechanism preventing the formation of finer and finer microstructure. These results go some

way to explain the earlier numerical results of Swart and Holmes [19].

Müller [18] considered the regularized version of the Ericksen model,

utt = (W ′(ux) + βutx − γuxxx)x − αu (1.5)
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on the interval [0, 1] with the double Dirichlet boundary conditions

u(0, t) = u(1, t) = 0; uxx(0, t) = uxx(1, t) = 0. (1.6)

The main thrust of Müller’s sophisticated analysis was to describe the global minimizer of

the associated energy functional,

E2 =
1

2

∫
1

0

[
u2

t + γu2

xx + 2W (ux) +
α

2
u2

]
dx. (1.7)

Before we continue, we need to define periodicity more precisely. Consider a stationary

solution u0 of (1.5). Take its odd extension to [1, 2] and identify the points x = 0 and

x = 2. If the resulting function is D2k-periodic on the circle for some k ∈ Z, we say that

u0 is periodic. Then Müller’s result is that the global minimizer is a periodic function with

a precisely defined dependence of the period on α and γ. He also suggested the following

conjecture:

Müller’s Conjecture [18]: Local minimizers of E2 are periodic.

Recently, Yip [26] has proved this conjecture for solutions of small energy where W has the

form

W (p) = (|p| − 1)2.

In this case many calculations of energy of equilibria can be done explicitly. This case, with

more general boundary conditions, was also considered in [20, 24]. Nucleation and ripening

in the Ericksen problem with the above form of free energy density is considered from a more

thermodynamical point of view by Huo and I. Müller [15].

Finally, in a related paper [23], an extension of Ericksen’s model to system of two elastic bars

coupled by springs as a model for martensitic phase transitions is mainly studied numerically.

The dynamics of the regularized Ericksen bar (1.5) was investigated in [16], where global

existence of solutions, existence of a compact attractor and convergence to equilibria was

proved. Furthermore, the case of α = 0 was investigated in detail and an almost complete

characterization of the structure of the attractor was given in that case. A. Novick–Cohen

has observed that if α = 0, the set of stationary solutions of (1.5) is precisely the same as

for the Cahn–Hilliard equation, which was thoroughly investigated in [10, 11]; more work

exploiting this connection between (1.5) and the Cahn-Hilliard equation is in preparation [12].

In particular, the stationary solutions of (1.5) for the double Dirichlet boundary conditions
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correspond to the Cahn-Hilliard equation with mass zero. As a consequence the bifurcation

diagram of the stationary solutions of (1.5) with α = 0 contains only supercritical pitchfork

bifurcations from the trivial solutions; only the branches without internal zeros can be stable.

Other studies of the dynamics of (1.5) include the work of Vainchtein and co-workers

[21, 22, 25], who considered, in particular, time-dependent Dirichlet boundary conditions

(loading/unloading cycles) in order to study hysteresis effects.

In this paper we would like to

• present some evidence towards verifying Müller’s conjecture and reformulate it;

• explain how the situation for α = 0 for (1.5) can be reconciled with the result of

Friesecke and McLeod for (1.1) alluded to above.

In very recent related work, Healey and Miller [13], have considered the two-dimensional

version of the problem with hard loading on the boundary, using methods of global bifur-

cation theory and numerical continuation techniques, concentrating on primary bifurcating

branches and characterizing their symmetry.

We use methods of local bifurcation theory. We start by obtaining the primary and secondary

bifurcation points and presenting the results of numerical continuation using AUTO [5]. In

section 3 we apply directly the Lyapunov-Schmidt theory as detailed in [9]; this suggests

a mechanism for the restabilization of unstable solutions. The analysis has uncovered an

interesting pattern of primary branch connections which we analyse in section 4. To conclude

we present two further conjectures, these are based on the local analysis backed up with the

numerical observations.

2 Preliminaries

We start by reviewing the bifurcation structure of the problem. As shown in [16], the

eigenvalues νk of the linearization of (1.5) around the trivial solution u = ut = 0 satisfy

νk =
1

2

(
βπ2k2 ±

√
β2π4k4 − 4(γπ4k4 − π2k2 + α)

)
. (2.8)

Hence we have the following lemma.
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Lemma 2.1 The eigenvalues of the linearization of (1.5) around the trivial solution u =

ut = 0 are generically simple, and pass through zero at points

γki
=

π2k2
i − α

π4k4
i

, (2.9)

where the integers ki are ordered by their distance from the number

k∗ =

√
2α

π
.

For example, if α = 25, k1 = 2, k2 = 3, k3 = 1, kn = n for n > 3. In other words at α = 25,

based on the eigenfunctions sin(kπx), the first bifurcating solution branch has one internal

zero, the second has two internal zeros, the third has no internal zeros and the nth has n−1

internal zeros.

As we will be working in the (α, 1/γ) plane, it is convenient to use (2.9) to define

Γk = {(α, 1/γ) |α ∈ [0, π2k2], 1/γ = π4k4/(π2k2 − α)}. (2.10)

Thus the curves Γk are the curves on which the linearization has in its kernel the eigenfunction

sin(kπx). Note that Γk has the vertical line α = k2π2 as an asymptote.

We can also determine the double zero eigenvalue points. The curves Γk and Γl will intersect

at a point where

α ≡ αk,l =
π2k2l2

k2 + l2
.

The corresponding values γk,l can be found from

γk,l =
π2k2 − αk,l

π4k4
.

We call these bifurcation points (k, l) bifurcations. Note that one can concoct any (k, l)

bifurcation point, but never a bifurcation point of multiplicity higher than two. From these

double zero eigenvalue points curves of secondary bifurcation points emanate and we denote

these by Γkℓ.

2.1 Numerical Evidence

We use AUTO [5] to investigate numerically the bifurcation diagram of equilibria of (1.5),

that is we look at Φ(u, α, γ) = 0 where

Φ(u, α, γ) = γuxxxx + αu − (u3

x − ux)x, u(0) = u(1) = 0, uxx(0) = uxx(1) = 0. (2.11)
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For fixed α we can compute the bifurcation diagram in 1/γ and two examples are shown

in Fig. 1 for α = 7.5 and α = 33. The figure shows bifurcations from the trivial solutions

occurring at γki
and the secondary bifurcations (k, ℓ), plotting the ℓ2 norm of (u, ux, uxx, uxxx)

(an approximation of the H3 norm) of the solution as γ varies. For α = 7.5, (a)–(d) are

the branches of solutions with 0–3 internal zeros and sample solutions on these branches

are shown in Fig. 2. Sample solutions from the branches (e)–(h) that bifurcate from these

solution branches are also shown in Fig. 2. For α = 33 we have labeled the number of

internal zeros for the branches that bifurcate from the trivial solution.

α = 7.5 α = 33

0. 50. 100. 150. 200. 250. 300.

0.

10.

20.

30.

40.

50.

60.

70.

80.

1/γ

(d)

(e)

(c)

(h)

(g)

(b)

(f)

(a)

L2 Norm
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300.
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500.

600.
700.

800.
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25.
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100.
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1/γ

L2 Norm

2

3

1
4

7

5
6

Figure 1: Two bifurcation diagrams for fixed values of α = 7.5 and α = 33. Figures show

the ℓ2 norm of (u, ux, uxx, uxxx) as γ varies. In Fig. 2 sample solutions are shown from each

of the branches for α = 7.5; the arrows give an indication where each the solution is taken

from. (a)–(d) show solution branches with 0, 1, 2 and 3 internal zeros. For α = 33 labels 1–7

show the number of internal zeros. The “loop” for α = 7.5 connects solutions with 0 and 2

internal zeros whereas for α = 33 it is between solutions with 1 and 5 internal zeros.

We can exploit the fact that the bifurcations (k, ℓ) can be identified as limit points to perform

two parameter continuation. The result of these computations is shown in the (α, 1/γ) plane

in figure 3. We clearly see the curve Γ1 tending to the correct theoretical value of the

asymptote at α = π2. From the bifurcation (1, 2) the Γ21 curve tends to infinite as α

approaches zero as does Γ31; whereas the curves Γ12, Γ13, Γ23 appear to tend to infinite for

some α > 0.
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Figure 2: Sample solutions from the bifurcation diagram with α = 7.5. (a)–(d)

shows solutions on the branches bifurcating from the trivial solution with 1/γ =

123.87, 111.34, 123.78, 218.2. (e)–(h) shows solutions on the secondary bifurcation branches

with 1/γ = 54.35, 121.40, 278.43, 226.78.

3 (k, k + 1)-bifurcations and a mechanism for restabi-

lization

To present a plausible scenario for restabilization of unstable equilibria, we are interested in

the structure of stationary solutions of (2.11) in a neighbourhood of a (k, k + 1) bifurcation

point, when dΦ(0, α, γ) has a double zero eigenvalue with eigenfunctions vk = sin(kπx) and

vk+1 = sin((k +1)πx). To examine this we apply the Lyapunov-Schmidt theory as described

in [9].

Set

X = {u ∈ C4((0, 1)), | u(0) = u(1) = 0, uxx(0) = uxx(1) = 0.},

and let Y = C0((0, 1)). We let L denote the linearization :

L ≡ dΦ(0, αk,k+1, γk,k+1).

Let us examine the symmetries of (2.11). Define on X two operators, R1 and R2 by R1u = −u

and R2u(x) = u(1 − x). It is easily seen that the group {I, R1, R2, R1R2} is isomorphic to
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Figure 3: Two parameter continuation of the bifurcation points. For clarity only the curves

Γk k = 1, 2, 3 and the secondary curves Γk,ℓ, k = 1, 2, 3, ℓ = 1, 2, 3 are plotted.

Z2 ⊕ Z2, that Φ commutes with this group, i.e.

RiΦ(u, α, γ) = Φ(Riu, α, γ),

and that if k is even,

R2vk = vk while R2vk+1 = −vk+1.

Hence the theory of [9, Chapter X] is applicable.

In the Lyapunov-Schmidt framework (see [9, Chapter VII]),

X = sp{vk, vk+1} ⊕ M,

where M is the orthogonal complement to ker L. Similarly,

Y = N ⊕ range L,

where N is the orthogonal complement of the range of L. Since L is self-adjoint, N = kerL,

so we take (vk, vk+1) to be a basis of both the kernel of L and of N .
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By the theory of bifurcations with Z2 ⊕Z2 symmetry, the bifurcation equation will be of the

form

g(x, y, µ) = 0,

where

g(x, y, µ) =

[
g1(x, y, µ)

g2(x, y, µ)

]
=

[
Ax3 + Bxy2 + aµx

Cx2y + Dy3 + bµy

]
.

From now on we fix α at a point αk,k+1, and do not any longer indicate the dependence on

α. We take our distinguished parameter to be λ = 1/γ and let it vary through the critical

value 1/γk,k+1. Clearly,
∂2gi

∂λ∂x
=

dγ

dλ

∂2gi

∂γ∂x
= − 1

γ2

∂2gi

∂γ∂x
,

which means that the case of positive giγx, say, corresponds to the case of negative giλx, so

we are in case (A) of [9, p. 430]. Then varying α will unfold the degenerate bifurcation.

By [9, Appendix 3] (see also (1.14) in [9, Chapter VII]), and since d2Φ ≡ 0 by oddness, we

get, for example, for g1,

∂3g1

∂x3
= 〈vk, d3Φ(0, λ)(vk, vk, vk)〉

∂3g1

∂x∂y2
= 〈vk, d3Φ(0, λ)(vk, vk+1, vk+1)〉

∂2g1

∂x∂γ
= 〈vk, dγΦ(0, λ)(vk)〉,

with similar expressions holding for the partial derivatives of g2.

Note that, for example,

d3Φ(vk, vk, vk) =
∂

∂t1

∂

∂t2

∂

∂t3
|t1=t2=t3=0 Φ(vk

3∑

i=1

ti)

=
∂

∂t1

∂

∂t2

∂

∂t3
|t1=t2=t3=0 (−(vk)x

3∑

i=1

ti)
3

x = −18[(vk)x]
2(vk)xx.

Hence

A =
1

6

∂3g1

∂x3
= 3k4π4

∫
1

0

sin4(kπx) cos2(kπx) =
3

8
k4π4.

Similarly,

D =
3

8
(k + 1)4π4.
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For a and b we have

a = 〈vk, (vk)xxxx〉 =
1

2
k4π4 and b = 〈vk+1, (vk+1)xxxx〉 =

1

2
(k + 1)4π4.

Now to compute B and C:

d3Φ(vk, vk+1, vk+1) =
∂

∂t1

∂

∂t2

∂

∂t3
|t1=t2=t3=0 Φ(t1vk + (t2 + t3)vk+1)

= − ∂

∂t1

∂

∂t2

∂

∂t3
|t1=t2=t3=0 [(vk)xt1 + (t2 + t3)(vk+1)x]

3

x

= −6
[
(vk)xx[(vk+1)x]

2 + 2(vk)x(vk+1)xx(vk+1)x

]
.

Hence

B =
1

2

∂3g1

∂x∂y2
= 3

∫
1

0

k2(k + 1)2π4 sin2(kπx) cos2((k + 1)πx) dx

+
1

2

∫
1

0

k(k + 1)3π4 sin(2kπx) sin(2(k + 1)πx)dx.

Since the second integral is zero, we have that

B = C = 3k2(k + 1)2

∫
1

0

sin2(kπx) cos2((k + 1)πx) dx =
3

4
π4(k + 1)2k2.

Now we can reduce the bifurcation equation to normal form. First note that

ǫ1 = sgn (A) = 1, ǫ2 = sgn (a)sgn (−1/γ2) = −1,

ǫ3 = sgn (D) = 1, ǫ4 = sgn (b)sgn (−1/γ2) = −1,

so that indeed we are in case (A) of [9, p. 430].

By Proposition 2.3 of [9, p. 424] the bifurcation diagram is determined by the modal pa-

rameters

m =

∣∣∣∣
b

Da

∣∣∣∣ B and n =
∣∣∣ a

Ab

∣∣∣ C.

Now,

m =
(k + 1)4

k4

8

3

1

(k + 1)4

3

4
(k + 1)2k2 = 2

(k + 1)2

k2

and

n =
k4

(k + 1)4

8

3

1

k4

3

4
(k + 1)2k2 = 2

k2

(k + 1)2
.

Hence for all k, m ≥ 2, but n can be either smaller or larger than one. If m > 1, n > 1, we

are in region (1) of [9, p. 433]; if m > 1, n < 1, we are in region (2).
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This picture of local bifurcations from a double zero eigenvalue readily leads to a number of

interesting conclusions.

Let us first take the situation where both m and n are larger than one. The first such

bifurcation is the (3,4) one. So assume that k ≥ 3.

Consider the curves Γk and Γk+1 in the (α, 1/γ) plane. For α < αk,k+1, Γk lies below Γk+1, and

at the bifurcation point (αk,k+1, 1/γk,k+1) the situation reverses. The theory of Golubitsky

and Schaeffer tells us that there are two branches of secondary bifurcations, which we call

Γk+1,k and Γk,k+1, from the (k + 1)-st and the k-th primary curves, respectively, such that

close to the double eigenvalue point Γk,k+1 lies to the left of the vertical line α = αk,k+1 and

Γk+1,k lies to the right, see Fig. 4 (a). These two curves of bifurcations form a wedge, which

we call Kk. If below the wedge, to the left of αk,k+1 the unstable manifold of solutions on

the k-th primary branch has dimension 0 and that of the (k + 1)-st branch has dimension

1, then to the right of αkl under the wedge these dimensions switch, while in the interior of

the wedge both the k-th and the (k + 1)-st primary branches are stable.

(a) (b)

Γ

Γ

Γ

ΓK

k

k+1

k,k+1

k+1,k

k

Γ

Γ

k

Kk

k+1

Γ

Γ

k,k+1

k+1,k

Figure 4: Local bifurcation structure as predicted by the Lyapunov–Schmidt analysis, in (a)

m, n > 1 and in (b) m > 1, n < 1. The shaded region indicates the wedge.

In the case of m > 1, n < 1, using [9, Lemma 2.5, p. 426] we have that that both Γk+1,k and

Γk,k+1 lie to the left of the vertical line α = αk,k+1, with Γk,k+1 lying above Γk+1,k; as before,

this defines a wedge Kk in which both the k-th and the (k + 1)-st branches are stable. This

case is illustrated in Fig. 4 (b) and confirms the numerical observation in Fig. 3.
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4 (k, 3k)-bifurcations

During the process of numerical continuation of branches of solutions, we discovered an

interesting “loop” structure connecting each k-th and 3k-th primary branch (see Fig. 1).

We give a simple treatment based on Fourier mode truncations. We will investigate the

(1, 3) bifurcation in detail. By a scaling theorem of Aston [2], the structure of all (k, 3k)

bifurcations is the same.

As the required computations are pretty involved, we proceed as follows: (1) we use α and

γ as our parameters; this has the effect of changing hyperbolae into straight lines; (2) we

work on the interval [0, π], which allows us to get rid of many multiples of π; and (3) we

use MAPLE [17] throughout, particularly its polynomial manipulation abilities, such as the

computation of resultants and of Gröbner bases, and polynomial factorization.

Thus, we are looking at

3u2

xuxx − uxx − γuxxxx − αu = 0, x ∈ [0, π], (4.12)

with double Dirichlet boundary conditions.

Since we are close to the (1, 3) bifurcation point, we use the ansatz u = a1 sin(x)+a3 sin(3x).

Multiplying equation (4.12) by each of sin(kx), k = 1, 3 in turn, integrating from 0 to π and

simplifying, we get the algebraic system

0 = −1

2
αa1 −

9

8
a2

1a3 +
1

2
a1 −

3

8
a3

1 − 1/2γa1 −
27

4
a2

3a1

0 = −1

2
αa3 +

9

2
a3 −

243

8
a3

3 −
81

2
γa3 −

3

8
a3

1 −
27

4
a2

1a3

. (4.13)

Let us examine (4.13) in more detail. We need to work out what the curves Γ1 and Γ3 look

like, and where they intersect. Putting a3 (a1) to zero in the first (second) of the equations

of (4.13) gives that

Γ1 = {γ = 1 − α}, & Γ3 = {γ = 1/9 − 1/81 α}.

These curves are plotted in Fig. 5. Thus in the (α, γ) plane above Γ1 there are no non-trivial

solutions of (4.13). We see that the (1, 3) bifurcation point is at (α, γ) = (9/10, 1/10) where

the two curves intersect.
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Now let us see whether (4.13) will give us a loop, and what this loop really means. To have

a loop we must have a solution with a1 = 0 and a3 6= 0 of equations (4.13).

In other words, we need to solve simultaneously for a3 the equations

−1

2
α +

1

2
− 1

2
γ − 27

4
a2

3 = 0,

and

−1

2
αa3 +

9

2
a3 −

81

2
γa3 −

243

8
a3

3 = 0.

These solutions for a3 are the values of a3 on the pure a3 branch at which a (pitchfork)

bifurcation occurs. There are two equations in one unknown, a3, so for solvability they

define a relation between α and γ. The form of this relation can be found by taking the

resultant of the above two equations with respect to a3 and is given by

γ =
7

153
α +

1

17
. (4.14)

This straight line of course intersects the lines Γ1 and Γ3 at (9/10, 1/10) and as the slope

is positive, such bifurcation points only exist for α < 9/10. For example, it can be checked

numerically that if α = 8/10, the (secondary) bifurcation from the a3 branch is at γ =

.09542483660.

We now turn our attention to the nature of the “loop”. For α < 9/10 there is no pure a1

branch. The mixed mode branch bifurcates at γ = 1 − α; the pure a3 branch bifurcates off

Γ3. It has a secondary bifurcation, a pitchfork, in the a1 direction, on the line (4.14). One

of these branches then hits the primary mixed branch and they disappear in a saddle node

bifurcation. In fact, it is possible to work out where the turning points are. They are given

by the following relation connecting α and γ:

P1(α, γ) :=8748 γ + 8748 α + 5557 α4 − 2994732 αγ3

+6016437 γ4 − 119556 αγ + 406782 γ2 − 7938 α2

+1054782 α2γ2 − 168492 α3γ + 243972 α2γ

−1000188 αγ2 − 3156 α3 + 288684 γ3 − 2187 = 0.

(4.15)

Equation (4.15) is obtained as follows: first divide the first of the equations of (4.13) by a1

and then compute the purely lexicographic Gröbner basis of these two equations using the

ordering a3 > a1. This results in a basis with two elements for the ideal generated by the two
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original equations. One of these basis elements is found to be a polynomial in a1 only. We

can then take the resultant of this polynomial in a1 with its derivative to obtain an enormous

polynomial in α and γ, eliminating a1. Some of the roots of this polynomial correspond by

construction to turning points, so it is just a matter of factorizing the resultant and picking

the right term to obtain P1(α, γ). If in P1(α, γ) we set γ = 1/10 − γ1, α = 9/10 − α1, we

obtain a homogeneous polynomial of degree 4,

P2(α1, γ1) := 5557α4

1 − 2994732α1γ
3

1 + 1054782α2

1γ
2

1 − 168492α3

1γ1 + 6016437γ4

1.

If we now set γ1 = hα1, Descartes’ rule of signs tells us that we will have two real solutions h1

and h2 of P2(α1, hα1)/α
4
1 = 0. Using Maple to compute them, we obtain the approximations

for the curves of turning points,

γ ≈ 1/10 − 0.203171(9/10− α) and γ ≈ 1/10 − 0.043484(9/10− α).

(a) (b)
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Figure 5: (a) Plot in the α–γ plane of the bifurcations (b) plot illustrating the loop in a1,

a3 and 1/γ space.

In Fig. 5 we plot in (a) Γ1, Γ2, the pitchfork bifurcations given by (4.14) and the curves

of turning points as determined by (4.15) local to the bifurcation point. We also illustrate

schematically the bifurcations in a1,a3,1/γ space.

Remark: this phenomenon can also be analysed in the framework of bifurcations with

hidden symmetries [1, 14, 13].
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5 Two new conjectures

We showed in section 3 that there are wedges Kk in parameter space (α, 1/γ) where both

the kth and (k + 1)st branches are stable. Unfortunately though this analysis is only local

in nature. Local to the bifurcation point our numerics of section 2.1 agrees with the local

analysis we have presented. This lends some confidence to the numerics. If we combine the

local analysis with our observations from the numerical continuation in Fig. 3, we make the

following conjectures.

Conjecture 1. The wedges Kk are non-empty for all γ < γk,k+1. Along the curves Γk+1,k,

as α → 0, 1/γ → ∞, while along Γk,k+1, 1/γ → ∞ as α → α̃k 6= 0.

This automatically means that the curves Γk,k+1 and Γl+1,l intersect if l > k. The upshot of

this conjecture is that the different wedges Kk, Kl intersect, and increasingly so as γ → 0,

which for each N creates regions of parameter values in which there are N different stable

equilibria. This is partially consistent with the Friesecke and McLeod result, at least for

α < α̃1. Furthermore we can give a reformulation of Müller’s conjecture that we stated

in the introduction, namely

Müller’s conjecture. All stable equilibria are created by the above mechanism.

The two statements of this conjecture are equivalent as all the stabilized branches have D2k

symmetry for some k.

To conclude we propose another conjecture.

Conjecture 2. If α > k2π2, there are no equilibria with less than (k − 1) internal zeroes.

This is again based on the local analysis combined with the steady state bifurcation picture

given in section 2.1, the hope is this may be easier to prove than the other two. Note that

if this conjecture is true, then for α > k2π2, an initial condition without internal zeroes will

have to evolve at least k − 1 interfaces.
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