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Abstract

The aim of this paper is to present a numerical technique for the com-
putation of connections between periodic orbits in non—autonomous and
autonomous systems of ordinary differential equations. First the existence
and computation of connecting orbits between fixed points in discrete dy-
namical systems is discussed; then it is shown that the problem of finding
connections between equilibria and periodic solutions in continuous sys-
tems may be reduced to finding connections between fixed points in a dis-
crete system. Implementation of the method is considered: the choice of a
linear solver discussed and phase conditions are suggested for the discrete
system. The paper concludes with some numerical examples: connections
for equilibria and periodic orbits are computed for discrete systems and
for non—autonomous and autonomous systems, including systems arising
from the discretization of a partial differential equation.
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1 Introduction

Consider the autonomous dynamical system in IR™ given by

dx .
- = flz), z(0) = 29 € IR™, (1.1)

which is possibly dependent on a parameter y € IR".
Let x_ and x4 be two invariant sets of (1.1), for example fixed points or
periodic orbits. We assume that x_ and x4 are compact. If z(¢) is a solution of

(1.1) such that
lim x(t) = a_, lim x(t) = a4
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then x(t) is a connecting orbit, which is heteroclinic if x_ # x4 and homoclinic
ifx_ =ay.

Connecting orbits play an important role in the analysis of dynamical systems.
In order to understand the behaviour of a dynamical system the first step usually
involves the computation of o and w limit sets (such as x_ and x4 above) and
the orbits connecting these sets. Heteroclinic and homoclinic connections also
arise naturally in the analysis of travelling wave phenomena in parabolic partial
differential equations [Doedel & Kernévez, 1984].

In a fundamental paper, Beyn [1990] presented a new approach on the compu-
tation of homoclinic and heteroclinic connections between hyperbolic fixed points
in an autonomous dynamical system. Essentially the technique involves the set-
ting up of an approximating boundary value problem over a finite time interval
with boundary conditions obtained using the asymptotic boundary condition ap-
proach of [de Hoog & Weiss, 1980] and [Lentini and Keller, 1980].

Beyn’s approach was used by Bai et al. [1993] to compute heteroclinic con-
nections in partial differential equations with a gradient structure. A different
approach is used by Friedman and Doedel [1991] who use an expansion approach
to approximate the boundary conditions. They further generalised their tech-
nique in [Friedman & Doedel, 1993] making use of higher order boundary condi-
tions, which can be incorporated in AUTO, to compute a homoclinic connection
at a saddle-node. Beyn’s approach is extended by Bai and Champneys [1994] to
compute saddle-node homoclinic orbits of both codimension one and two.

More recently Beyn [1993] has extended the work in [Beyn, 1990] to include
connections between hyperbolic and non-hyperbolic compact sets, and in par-
ticular, connections between equilibria and periodic orbits, for which a rigorous
analysis is given. The problem is formulated as a well posed boundary value
problem that includes the computation of the periodic orbits. The boundary
value problem may then be approximated numerically.

The problem we treat in this paper is related to, but different from, that
in [Friedman & Doedel, 1991] and [Bai & Champneys, 1994] and our approach
differs from that in [Beyn, 1993]. The aim of this paper is to present a numeri-
cal technique for the computation of heteroclinic connections between (possibly
unstable) periodic orbits in both autonomous and non-autonomous dynamical
systems. To achieve this we consider connections between fixed points in discrete
dynamical systems.

We present in Sec. 2 an analogue of Beyn’s approach in [Beyn, 1990] and
[Beyn, 1993] for computing connections between hyperbolic or non-hyperbolic
fixed points in discrete dynamical systems. The existence of such connections for
discrete systems is briefly discussed and the problem is formulated as a discrete
boundary value problem.

In Sec. 3 we show that the problem of finding connections between equilibria
and periodic solutions for autonomous and non—autonomous continuous systems
may be reduced to finding connections between fixed points in a discrete system.



In contrast to the method of [Beyn, 1993], in this discrete setting we do not
explicitly solve for the periodic orbit, instead we asssume that the periodic orbit
is either known analytically or is found computationally from some code such
as AUTO [Doedel & Kernévez, 1984]. Since we do not solve directly for the
periodic orbit this reduces the size of the system and hence larger computations
are possible.

The implementation of the method is considered in Sec. 4, in particular the
choice of linear solver. It is noted that the reduction of the continuous problem
to the discrete setting makes the calculation of connections for periodic solutions
feasible for a large system of ordinary differential equations such as those arising
from the discretization of a partial differential equation. Discrete phase conditions
are also suggested.

The paper concludes with some numerical examples. First we present exam-
ples of connections in discrete dynamical systems, then we compute connections
between equilibria and periodic solutions for non—autonomous and autonomous
systems. Our examples include computations for a system of ordinary differential
equations arising from the discretization of a partial differential equations.

2 Connections for Discrete Dynamical System

In this section we discuss the existence and numerical computation of connecting

orbits between hyperbolic and non-hyperbolic fixed points and periodic points

for maps. These results are closely connected to the work of Beyn [1990, 1993]

for the continuous case and some familiarity with those papers is assumed.
Consider the non—linear map in IR™ given by

Upsr = G(U,) (2.1)

which is possibly dependent on a parameter y € IR". Then we let S : IR™ — IR™
denote the evolution semi-group for (2.1), so that given Uy € IR™ we have that

Un = SUn—l = SnUo, Vn - ]N (22)

Then the set {S™}, . enjoys the usual semi-group properties, that is SnSk =
S+ and S = 1.

Let U_ := U_(u) and Uy := Uy (p) be two invariant sets for (2.2), so that
Vn € Z,5"Us = Ux. Then the orbit v = {Uy,},c is said to be a connecting
orbit from U_ to Uy if

dist(U,,,Us) — 0 as n — +o0. (2.3)

When Uy = U_ the orbit ~ is called a homolinic connection, whereas if Uy £ U_,
~ is termed a heteroclinic connection.



Remark 2.1 Note that to find connections between a set of periodic points 11_
of period ki and a set of periodic points 11, of period ky for the mapping S we
simply form the map S = S"* and seek connections between the fived points
U_ e _ and Uy € 11y of S. Thus there is no restriction in considering Uy as
fized points in the discussion below.

Let the points Uy have centre manifold M. and stable and unstable mani-
folds My and My, of dimension my. + mas and my, + my, respectively (in-
dependent of any parameter x). Then

m = M_e+M_y+m_y = Mie+ Myy + Mgy, (2.4)

and a connecting orbit, 7, lies in the intersection of the unstable manifold for

M_, and the stable manifold of M, i.e.
yC M, ﬂ M.
We expect the connecting orbit 4 to lie in a ¢ + 1 dimensional manifold if
m_y+m_+mys+mi.=m+1+4q. (2.5)

For ¢ = 0, ~ is contained in a 1 dimensional manifold, whereas for ¢ > 0 we
require ¢ further determining conditions in order to compute a single connection.
Any determining conditions are denoted by

Wy(v) = 0. (2.6)

For ¢ < 0 the connecting orbit is not structurally stable but may be stabilized by
introducing —¢q further parameters into the system (see Beyn [1990] for details).
For the examples taken in this paper it is generally found that ¢ > 0.

A connecting orbit v satisfying (2.2), (2.3) and (2.6) is constrained to lie in
a one dimensional submanifold M, C M_, N My,. Suppose we were given a
connection v € M., and any perturbation ¢ € M., then v + ¢ € M, is also a
connection from U_ to Uy. Therefore ~ is not uniquely determined by (2.2), (2.3)
and (2.6). This leads to the introduction of a discrete version of the continuous
phase condition which fixes one connection from the family of connections given
by the one dimensional submanifold M.,. We call this a discrete phase condition
and denote it by

U,(y)=0. (2.7)

The numerical implementation of a discrete phase condition is discussed in Sec.
4.1.

We conclude that a connection v C M_, My, from U_ to Uy satisfies the
following discrete boundary value problem:

U, = 5"U, for neiz,;

lim U, =U- and nh_}rgo U,=Uy; (2.8)
Uy(y) = 0;
and, if required, Uy(y) = 0.



In order to solve this problem numerically we need to truncate the system (2.9)
to a finite dimensional problem. Hence we consider

U, =5"Uy for n € [N_,Ny|;
b_(Uy_)=0 and bi(Un,) =0 (2.9)
Wp(v) = 0;
and, if required, Uy(v) =0

where b(Uy_) and by (Un, ) denote the boundary conditions at Uy_ and Uy,
respectively. We choose to consider projection boundary conditions such as are
taken in [Beyn, 1990] for the continuous case. To this end we let L_g; € IR™~=*"™
denote the projection operator from IR™ onto M_, and L., € IR™***" denote
the projection operator from IR™ onto M ,. Then,

b_(Un.) = L., |U-—Uy_| (2.10)
ba(Uny) = Ly [Uy — U] (2.11)

and the number of boundary conditions is given by m_, + m4, which by (2.4)
and (2.5) becomes

Mm_s+my, = m—(m_,+m_.)+m—(my,+mq.)
= 2m—(m+1+4q)
= m—-1—gq.

Hence the truncated problem is a well determined problem.

3 Connections between Periodic Orbits in Con-
tinuous Dynamical Systems

The aim now is to show how the problem of computing heteroclinic connections
between equilibria and periodic orbits, and heteroclinic or homoclinic connections
between periodic orbits may be reduced to one of finding connections between
fixed points of a map. The case of connections between periodic solutions in a
non-autonomous system is simplest and we discuss this case first.

Consider the non-autonomous system,

dx

E:g(xvtvﬂ)v xERm7 tER, /LERK (31)

with ¢ being T-periodic, i.e.

g(x.t,p) = g(e,t +T,p),  VeeR™,puc R



Assume (3.1) has two T-periodic orbits #_, 74 given by
rr={z € R" [ & = ps(l),p+(t) = p£(t + 1), Vi € IR}

The case of two orbits with periods T_ and T, can be considered by an obvious
extension (as discussed in Remark 2.1), so the assumption that both orbits have
period T'is not restrictive. Let S(?) : IR™ — IR™ denote the evolution semigroup

defined by (3.1), so that x(¢) = S(¢)x(0). Then one may define the map
Upyr := S(T)U,, U, e R™. (3.2)

Then any point of 7_ and 74 is a fixed point of the (3.2). It is clear that
heteroclinic connections between two periodic orbits of (3.1) can be found by
computing heteroclinic connections between fixed points of the map (3.2). A
numerical example illustrating this technique is given in Sec. 5.

For the autonomous system

d
C=gle),  weR" peR, (3.3)

the technique is essentially the same as that for non—autonomous system (3.1).
To illustrate this suppose we wish to find a connection 7. between two equilibria
x_ and x4 of (3.3). Then both x_ and x4 correspond to fixed points of the map

Uppr = S(T,)U,, (3.4)

where T}, could either vary with n or remain fixed. Furthermore given the connec-
tion 7. exists for (3.3) there clearly exists a connection between the fixed points
for the map (3.4). We see from the numerical discussion in Sec. 4 below, that the
numerical approach using the map is equivalent to a multiple shooting method
over interval of length T, for solving the differential system in [Beyn, 1990].

Connections between a fixed point and a periodic solution or between periodic
solutions for the continuous system (3.3) are determined in a similar way. For
simplicity of presentation consider the connection from a fixed point z_ to a
periodic orbit 7 of period T for the system (3.3). We make use of the following
observation :

Remark 3.1 Given a connection 7. between a fizred point x_ and periodic orbit
74+ of period T for (3.3) there exists a connection v for the map (3.4) between any
point x_ and any point vy € Ty.

Fix T, = T'in (3.4) and suppose we are given any point 4 € 7;. Then 2_ and
x4 are fixed points of the map defined by U1 = S(T)U,, and any connection v
from x_ to x4 satisfies

U1 = S(IU,, ne 4 (3.5)
lim U, =x-  and li{l_n U, =x,. (3.6)



We now show that a connection between fixed points for the map (3.4) uniquely
determines, up to a suitable phase shift, a connection for (3.3) between a fixed
point and a periodic solution. Given any T, € w, there exists a unique phase
shift 7 € [0,T") such that

Ty = S(7)s. (3.7)

Consider the map given by
U, = S(T+7)VU,y = S(T)S(T)Unqy = S(1)U,.
Then we see that
lim U, = lim S(1)Up—r = S(7)re = 74.

n—=oo n—=oo
Thus, given the connection to one point on the periodic orbit, z, the connection
to any other point 7, is determined by a suitable phase shift.

Note that it is not necessary to restrict T, = T" in map (3.4). In fact all that
is required is that lim,_.. 1, = T.

Clearly a similar argument holds for connections between periodic orbits 7_
of period T_ and periodic orbits 7y of period T;. We do not present any details
here but note that in this case T}, may be taken to vary, so that lim,_+o.71, = T4,
or be taken as fixed so that U,41 = S(T)U, with T'= T, T_.

4 Numerical Implementation

In this section we discuss the computational techniques used in the determination
of the connecting orbits for maps. Recall that we seek a solution of the following
system of nonlinear equations:

U, = 5"Uy for n € [N_, Ny
b_(Un_)=0 and bi(Un,) =0 (4.1)
Uy(v) =0
and, if required, Uy(y) = 0.

We solve the nonlinear system (4.1) by Newton or chord Newton method. At
each iteration we have to solve sequence of linear system of the form:

Ar =5 (4.2)
where A has the block form
Jn_ —1
J(N__|_1) —]

A= e (4.3)

JN+—1 _]

L_ Ly

By_ Bu_41y - Bo -+ Bui-o1 By,




with J; = DS[U,], the linearization of the map S : IR™ — IR™ with respect to Uj,
and B; = DWy/,(U) the linearization of the determining and phase conditions.
The blocks L._ and Lj arise from the linearization of the boundary conditions.

If m is small then it is likely that (4.2) is best solved using gauss elimination,
ignoring the structure in A. However for large m an efficient, stable direct method
is needed. The obvious block elimination (i.e. do not interchange rows from
different blocks) would retain structure, but is unstable [Ascher et al., 1988].
The matrix A has a similar form to that arising from a multiple shooting or
finite difference approach to the solution of two-point boundary value problems,
except for the last two (block) rows. A combination of the ideas of stable block
elimination, [Govaerts & Pryce, 1993], [Chan, 1984a], [Chan, 1984b] and [Moore,
1987]. and stable algorithms for boundary value problem, [Wright, 1992], [Wright,
1993], [Ascher et al., 1988], can be used to solve (4.2).

Apart from the solution of (4.2), a major cost in the algorithm is the setting
up of J; blocks in the matrix A. This is particularly expensive for the continuous
systems (3.1) or (3.3) since each evolution of the map S(7)U,, involves the solution
of a p dimensional initial value problem over T' time units. Also it is very likely
that we will not be able to evaluate the elements in J; efficiently. To decrease
the cost of setting up A we approximate the elements in J; by the simplest
finite difference approximation, which involves an extra evolution of the map per
component in J;. This makes our algorithm feasible for large problems, such
as those obtained by semi-discretization of PDE’s. Also, as can be seen from
the results in Example 5.3, Chord Newton method is preferred instead of full
Newton to eliminate the repeated re-evaluation of A. This again cuts down the
work dramatically.

Remark 4.1: We note that as j — N_, U; — Uy_ and J; — Jy_. Hence if
|U; —U_|| < TOL, a given tolerance, we set .J; = Jy_. A similar strategy is used
at n = Ny. The effect of this approximation is also discussed in Example 5.3.

4.1 Implementation of the Phase Condition

In order to solve the truncated boundary value problem (4.1) a form of phase
condition (2.7) is required.

Suppose that some approximation 7 = {ﬁn} e to the connecting orbit ~
is known and that this approximation is constrained to lie in a one dimensional
manifold M. Furthermore suppose that the tangent vector V,, at U, to the
manifold Mz is known. Then the simplest form of phase condition is the discrete

analogue of the classical phase condition which fixes the orbit at one point :

p

WE(y) = V' [Uo — U] - (4.4)

An alternative to this condition is the discrete analogue of the integral phase



condition

V()= > VUL - T (4.5)

Note that if the mapping arises from the flow of a differential equation such
as (3.1) or (3.3) then the tangent vectors are given by the time derivative as in
[Beyn, 1990], [Beyn, 1993] Therefore in the case where the discrete system (2.2)
arises from a continuous system as described in Sec. 3 the phase conditions (4.4)
and (4.5) are implemented using tangent vectors from the underlying continuous
system.

However, for a general discrete dynamical system (2.2), the tangents to the
manifold containing the connecting orbit 4 are not known analytically or readily
available.

The method we employed for approximating the tangent for a general mapping
is based on the observation that the connecting orbit ~ is constrained to lie in
a one dimensional C'* submanifold M., C M_, M, and that the sequences
{Upn} e and {U_,}, o are Cauchy sequences. Thus in an e-neighbourhood of
the fixed points UL we may approximate the tangent V. at U, € N(Ug,¢) by
Vni for ny < Ny and n_ > N_ where

s . Un_—l—l - Un_

- U, 1 —U,
V., = and V, = —tt it
NUn_ 1 — Un_]|| ’

o HUH++1 o Un+ H

(4.6)

From which we form the following approximations to the classical phase condition
Ve = Vo, U, = U] =0, (4.7)
Ve = Vo |U - U] =0, (4.8)
which may be combined to give a composite condition

U =Wt + P = 0. (4.9)

p

We note that the phase conditions (4.7-4.9) require few additional computations.

5 Numerical Examples

Now we illustrate the numerical method with six examples, with our special in-
terest being in the computations for the connections to periodic solutions. We
emphasize that in all cases the connections are to unstable fixed points for the
map (and hence unstable equilibria or periodic solutions in the continuous dy-
namical system). When computations were done involving continuation, the code
PITCON [Rheinboldt, 1986] was used. In all cases of maps derived from con-
tinuous problem, the computation of U, 4 that is the evolution of S(T)U, was
carried out using VODE [Brown et al., 1989].

9



Example 5.1 :  As a first illustration we consider connections between two
unstable fixed points in the simple map:

U1 = alU,(1 =U,)+ uV?Z (5.1)

n

Virr = an—I-/LUs(Un—l—I—l/a)z,
For1 <a<3and b>1,u =0, it is clear that
(U, V)= Wi = (Ug,0), whereU_ =0, U, =1-1/a

are fixed points of the mapping (5.1)—(5.2). Restricting to the one-dimensional
subspace V' =0, U_ is unstable and Uy is stable. The connecting orbit U_ — U,
can be found readily by merely iterating the map forward with a very small
positive starting value. However in IR*, both W_ and W, are unstable. They
are fixed points of mapping (5.1)—(5.2) for all 4 > 0 and their stability does not
change as pu changes. The connections for various values of y were computed using
continuation. Figure 1 shows the connections, (a) for g =0, (b) for x = 74.5808
and (c) for p = —15.7227. In all cases N_ =0 and N; = 100.

Next consider @ = 4 and b < 1. With g = 0, and restricting to the subspace
V = 0, we are in the chaotic regime for the famous quartic map. There is a
homoclinic orbit for this map, see [Henry, 1981]. Using this as the initial condition
for the two dimensional map at ¢ = 0 we compute a path of homoclinic orbit for
i # 0. Figure 2 shows the connections for different values of p, namely (a) for

p =0, (b) for g = 2.3953, and (c) for p = —9.0277. Again N_ =0, N, = 100.

Example 5.2 :  This following example is also based on the quadratic map
and is used to illustrate the connection between a fixed point and periodic orbit
for maps. Consider the simple system

Upsr = alU,(1—=1,) (5.3)
Vo = bV, /(c+dV,) (5.4)
Wiy = oW, /(B +~Wy). (5.5)

For ¢ = 3.2 the map (5.3) has a stable period 2 solution = and the origin is
unstable. The map given by (5.4) has two equilibria, one at the origin, the other
at V := (b—¢)/d, and for b = 2, ¢ = 1, d = 4 the origin is unstable and V is
stable. Similarly the map given by (5.5) has two equilibria, one at the origin, the
other at W := (a—f3)/~, and for « = 5, 3 = 2, v = 0.25 the origin is unstable and
W is stable. We consider connections from the origin to the unstable solution
(7,0, W) which lie in a 2 dimensional manifold. We introduce a parameter u
given by

Ny
K= Z Wj2

j=N_

10



Figure 1: The heteroclinic connection at a = 3
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Figure 2: The homoclinic connection at a = 4
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and use numerical continuation in g to force the connection to move in the 2
dimensional manifold. In Fig. 3 we see the results of the such a computation.
The circles mark the start of the continuation and the crosses the end of the
continuation. In Fig. 4 we have plotted the connections at the start ’o” and end
'x” of the continuation process.

Figure 3: Continuation of a heteroclinic connection.

Figure 4: Heteroclinic connections to a period 2 orbit.

o=t 3
12 P00 O

Example 5.3 : As a final example of connections for discrete systems we compute
the connection between a hyperbolic and a nonhyperbolic fixed point of a map.
Consider the map

3
Tpy1 = ﬁl‘n@ — Ry)'? o+ pzl, (5.6)

3
Ynt1 = ﬁyn@ — RV — 22, (5.7)

2
Zny1 = 2zt :u(g - Ri)Riv (5'8)

13



where R? = 22 +y2. We observe that this map has fixed point (z,y,z) = (0,0,0)
which is hyperbolic and nonhyperbolic fixed points

(0.9:2) = {(,9,0) - 2 447 = 5. (5.9
When g = 0, the subspace z, = 0 is invariant and the fixed points in (5.9) are
stable. Hence we can find a connection from (0,0,0) to one of those in (5.9), say
U, by starting at the unstable manifold of (0,0,0) and iterating forward. This
connection is used as starting value in a continuation process as u varies. The
projection boundary condition at U, asks that the connection be orthogonal to
the tangent space at U, of the circle of fixed points given by (5.9). Figure 5
shows the connection at g = 0; Fig. 6 shows that for p = 1.7782.

Figure 5: The heteroclinic connection at g =0
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Example 5.4 : Next we discuss the computation of connections between

hyperbolic equilibria in an autonomous dynamical system. First consider the
well-known Chafee—Infante [Chafee & Infante, 1974]. problem,

ou 0%u

527@—f(u)7 z€(0,1), t>0, (5.10)
u(0,¢) = u(1,t) =0, t>0, (5.11)
u(x,0) = up(x), «€]0,1], (5.12)

14



Figure 6: The heteroclinic connection at g = 1.7782
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where it is assumed that

f(s) =D b b, >0, by=—L (5.13)

Applying the Galerkin spectral technique gives the following system of ODE’s:
(see [Bai et al., 1993] for details)
dA(t)

— = G(A(),7), A(0) = Ay, (5.14)

where
A = (a(l)v agv T 7a(r)n)T'

are coefficients in the spectral expansion of ug(x). We note here that in this case
the projection boundary conditions for the map are precisely the same as those
obtained by the method of [Bai et al., 1993] and [Beyn, 1990]. The difference in
the methods is only in how the truncated systems are solved. For this example
we can use the map in the form U,y = S(T,)U, for varying T,. Prescribing the
values of T, is precisely the same as prescribing the length of the intervals in a
multiple shooting approach to solving the corresponding boundary value problem
in [Beyn, 1990]. The heteroclinic connections for this problem are very well
known. Theoretical results can be found in for example, [Hale, 1988], [Henry,
1981], or [Temam, 1988] and numerical computation may be found in [Bai et

15



al., 1993]. The starting value for a connecting orbit is found using the same
approach as [Bai et al., 1993]. The results from the approach of this paper agree
exactly with what we have presented in [Bai et al., 1993] and are not reproduced
here. In fact, if we wished to merely compute connections between equilibria in
autonomous systems, we recommend the use of the technique in [Beyn, 1990].
However we use this example to illustrate the effect of the various options for
the setting up of the matriz A in (4.2). Fquation (5.14) with m = 20 was used
in a continuation procedure to compute heteroclinic connections between unstable
equilibria for 20 different values of p with v = 130. To construct the map we use
N_ = 0,Ny =20. In Table 5.1 we list the average time taken to compute one
connection using the following five different methods:

(1) Full Newton solution of (4.1).

(2) Chord-Newton solution of (4.1) with the Jacobian formed only once.

(3) As (2) but use the saving strategy given by Remark 4.1 with TOL =
5x 1072,

(4) As (3) but with TOL = 1075.

(5) As (3) but with TOL =5 x 107°.

Method (1) (%) (3) (1) (5)
Average CPU | 6962.9 | 3861.1 | 2699.5 | 2854.2 | 2925.1

Table 5.1: Comparison for different methods

Computations were done on SGI workstation and CPU time are in seconds.
In all cases over 98% of the cost was taken up by ODE solver, both to evaluate
J; blocks and the right hand sides.

Example 5.5 :  Neat we consider the computation of heteroclinic connections
in a non-autonomous system. Consider the following problem

ou 0%u ,

il i flu) + Pusin2prt, x€(0,1), t>0, (5.15)
u(0,1) = u(l,t) =0, t>0, (5.16)
u(z,0) = uo(x), x€l0,1], (5.17)

which is a forced Chafee—Infante equation. Here f(u) is defined as (5.13), p is a
positive integer, 3 is another parameter. Applying the Galerkin spectral technique
to (5.15)—(5.17), gives the following system of ODE’s:

dA(1)

where G is as in (5.14) and
g(A), 1, 3) = (91,92, gm)", g; = Ba(t) sin 2prt.
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At 8 = 0, both the steady states and connecting orbits are well known, see Bai
et. al. [1993]. The first question to ask is what happen to the steady states as
B becomes non-zero. Analytically, T'—periodic solutions are born from each of
the steady states for 3 small enough. Numerically, we find periodic solutions for
values of up to 3 =~ 0. Next we can look for connections between those periodic
solutions. We note that the invariant subspace technique discussed in [Bai et al.,
1993] Sec. 4.2 remains valid for  # 0 in this example to find good starting
values for continuation on connections. Again we use m = 20, v = 130 here and
N_ =0,Ny =20 to construct the corresponding map. After we find connections
for the discrete dynamical system, we could recover the connecting orbits for the
system of ODFE (5.18) using the semigroup S(t). Finally solutions for (5.15)-
(5.17) are recovered by spectral transformation. We denote U](k) as the kth element
of the vector U;. The parameter p in this problem is introduced by

Ny
3 3
p=Y U0
J=N_
Figures 7-8 show connections for f = 0.1. Specifically, in Fig. 7 p = 0.0116
and in Fig. 8§ p = 5.00. In the latter case we have forced the connection from

a equilibrium to periodic orbit to approach closely a second periodic orbit in the
same way that heteroclinic connections between equilibria were manipulated in

[Bai et al., 1993].

Example 5.6 : Neat we discuss the computation of connections between a steady
state and a periodic solution in an autonomous differential equation. Consider
the following system,

dx

o = ve +y — (x+y)(e® +y*) + pz?, (5.19)
d

d_?; = —vt+vy—(y—a)(a® +y°) - pt (5.20)
dz

o = Atu@ )@t + ) =, (5.21)

When u = 0, the equations decouple and the solutions are easily found with z = 0
being invariant subspace. If v > 0, the set

(z,y,2) = {(z,y,0) : 2> + y* = v}. (5.22)

is a periodic solution of (5.19)—(5.21) with period T =2x[|lv—1]|. For0 < v <1,
the periodic solution rotates clockwise on the xy plane; for v > 1 this periodic
solution rotates anti-clockwise, see [Stuart, 1990]. Also x_ = (x,y,z) = (0,0,0)
is a steady state solution of (5.19)—(5.21). We also note that, restricted to the
(x,y) plane, the periodic solution given by (5.22) is stable. Hence we could find
a connection from x_ to the periodic solution (5.22) easily. We remark that x_
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remains a steady state solution and (5.22) is still a periodic solution of (5.19)—
(5.21) for any p # 0. Also their stability properties do not change as p changes.
Starting at the connection for p = 0, we carry out continuation on p to get
connecting orbits for larger p values. Figure 9 shows the connecting orbit at
w=0; and Fig. 10 shows the connections for p = 0.91 which is no longer inside
the invariant subspace. Thus we have computed a connection in (5.19)—(5.21)
from an unstable steady state to an unstable periodic orbit.

Figure 9: The heteroclinic connection at g =0
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