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1 Introduction

We consider the pathwise numerical approximation of the stochastic evolution
equation

du(t) = [−Au(t) + F (u(t))] dt + dW (t), t ≥ 0, (1)

u(0) = u0,

on the Hilbert space H = L2([a, b]d). Here, −A is the generator of an analytic
semigroup (e−tA, t ≥ 0) on H, u(0) ∈ D(A), W = (W (t), t ≥ 0) is a Q-
Wiener process on (Ω,A,P) with values in H and the mapping F : H → H
is nonlinear, precise assumptions are given in Section 2.1. Finally, we assume
that A and the covariance operator Q of the Wiener process have the same
eigenfunctions φn, i.e.

Aφn = αnφn, Qφn = λnφn, n ∈ Nd,

where αn, λn ≥ 0 and φn, n ∈ Nd, is an orthonormal basis of H. In particular,
we have the representation

W (t) =
∑

n∈Nd

λ1/2
n βn(t) · φn, t ≥ 0,

with independent scalar Brownian motions βn, n ∈ Nd.

Typical examples for equations of the above type are the stochastic cable
equation

du(t) = [∆u(t)− u(t)] dt + dW (t)

or the stochastic Allen-Cahn equation

du(t) = [ν∆u(t) + u(t)− u(t)3] dt + dW (t)

with periodic boundary conditions, where ∆ denotes the Laplace operator and
ν > 0 is a parameter. However, our assumptions cover also the case that A is
e.g. a fractional power of the Laplacian. This paper builds on the error analysis
for the exponential integrator method, introduced in [8], [9] for equation (1)
with A being the one-dimensional Laplacian. H1 error bounds for smooth
Gevrey noise, i.e. with exponential spatial correlation, were derived in [8], an
L2 and Hm error analysis for a post processing variant of the exponential
integrator scheme is given in [9], in the case of an arbitrary driving infinite
dimensional Wiener process W . Here, we extend these results in the following
way. We consider a general differential operator A in d-dimensions instead of
the one-dimensional Laplacian and we derive pathwise error bounds for this
exponential integrator scheme. To do this we first derive error bounds in the p-
th mean for all p ≥ 1. Then by a Borel-Cantelli type argument, which has been
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used in a similar way e.g. in [2], [7], [10], we obtain the pathwise convergence
rates.

Pathwise error bounds for the approximation of SDEs have been studied in
several articles. However, pathwise approximation of SPDEs with an infinite-
dimensional Wiener process has been considered so far mainly for stochastic
parabolic PDEs with multiplicative space-time white noise, i.e. for equations
with one space dimension, see e.g. [5], [3] and [4]. In these articles the pathwise
convergence rates of several finite difference schemes are determined. Moreover
– simultaneously to the preparation of this article – pathwise convergence rates
for an exponential type approximation scheme for equation (1), which uses
linear functionals of the driving noise, have been derived in [6].

2 Numerical Scheme

We now describe our numerical scheme for the approximation of (1). For this,
recall that φn are the eigenvectors of A, so that Aφn = αnφn, n ∈ Nd, and
moreover that the driving Wiener process is given by

W (t) =
∑

n∈Nd

λ1/2
n βn(t) · φn. (2)

So, consider the mild solution of equation (1), i.e.

u(t) = e−tAu(0) +
∫ t

0
e−(t−s)AF (u(s)) ds +

∫ t

0
e−(t−s)A dW (s). (3)

Writing the solution as a Fourier series u(t) =
∑

n∈Nd un(t) · φn we obtain the
infinite system of coupled equations

un(t) = e−tαnun(0) +
∫ t

0
e−(t−s)αnFn(u(s)) ds +

∫ t

0
e−(t−s)αnλ1/2

n dβn(s). (4)

Here Fn(u) denotes the n-th Fourier coefficient of F (u), that is we have F (u) =∑
n∈Nd Fn(u) · φn.

Now let ∆t > 0 denote the time step and N the size of the Galerkin truncation.
Consider the discretization of (1) at times tk = k∆t given by

ûn

(
tk+1

)
= e−∆tαn

(
ûn(tk) + ∆tFn(û(tk)) + λ1/2

n ∆Bk,n

)
, (5)

ûn(0) = un(0),
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where |n| ≤ N and ∆Bk,n = βn(tk+1) − βn(tk). The time continuous version
of this scheme is given by

ûn(t) = e−tαnun(0) +
∫ t

0
e−(t−bsc∆t)αnFn(û(bsc∆t)) ds (6)

+
∫ t

0
e−(t−bsc∆t)αnλ1/2

n dβn(s).

Here we use the notation bsc∆t = maxk∈N{tk : tk ≤ s}. We study a version of
the post processing method introduced in [9]:

ûn(tk+1) = e−∆tαn

(
ûn(tk) + ∆tFn(û(tk)) + 1{|n|≤Nw}λ

1/2
n ∆Bk,n

)
, (7)

ûn(0) = un(0),

where |n| ≤ N . The constant Nw describes the number of modes used to
approximate the Wiener process W . If the noise is smooth, then fewer modes
for the approximation of the noise than for the approximation of the non-
linearity can be used, see Corollary 3.4 in [9].

For the numerical analysis we use the following interpolant of ûn(tk) in time:

ûn(t) = e−tαnun(0) +
∫ t

0
e−(t−bsc∆t)αnFn(û(bsc∆t)) ds (8)

+ 1{|n|≤Nw}

∫ t

0
e−(t−bsc∆t)αnλ1/2

n dβn(s).

So, finally our approximation of u(t) is given by û(t) =
∑

|n|≤N ûn(t) for t ≥ 0.
Note that û(t) depends on N , the size of the Galerkin truncation, on Nw, the
number of the Fourier modes for the approximation of the noise W , and on
the stepsize ∆t.

2.1 Error bounds in the p-th mean

We make the following assumptions on the nonlinearity F and on the operators
A and Q:

Assumption 1 Let F ∈ C2(H; H), i.e. the mapping F : H → H is twice
continuously Fréchet-differentiable, and there exist constants K0, K1, K2 > 0
such that

‖F (u)‖H ≤K0(1 + ‖u‖H) (9)
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and

‖dF (u)‖L(H;H) ≤K1, (10)

‖d2F (u)‖L(H×H;H) ≤K2. (11)

for all u ∈ H.

Moreover, we have the following assumption on the eigenvalues of the covari-
ance operator Q, which is by definition self-adjoint and positive.

Assumption 2 There exist γ ≥ 0 and constants C1, C2 > 0 such that

C1 · |n|−γ ≤ λn ≤ C2 · |n|−γ

for n ∈ Nd.

Note that for γ > d we have the so called trace class noise and Q = id is
included in the case γ = 0. For the eigenvalues of the operator A we assume
that they are strictly positive and have a polynomial growth.

Assumption 3 The operator A : H → H is self-adjoint and positive. More-
over, αn > 0 for n ∈ Nd, αm ≤ αn for |m| ≤ |n| and there exists a κ > 0 and
constants C3, C4 > 0 such that

C3 · |n|κ ≤ αn ≤ C4 · |n|κ

for n ∈ Nd.

Thus −A generates in particular an analytical semigroup (e−tA, t ≥ 0) on H,
see [11].

Under the above assumptions, we have the following theorem, which in par-
ticular describes the smoothness of the solution in terms of the parameters γ
and κ. Its proof is given in the appendix:

Theorem 4 Let Assumptions 1, 2 and 3 hold, u(0) ∈ D(A) and let γ +κ > d
and T > 0. Then equation (1) has a unique mild solution (u(t), t ∈ [0, T ]),
which satisfies

sup
t∈[0,T ]

E‖u(t)‖p
H < ∞ (12)

for all p ≥ 1.
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Moreover, let θ∗ := γ+κ−d
2κ

. Then we have u(t, ω) ∈ D(Aθ), t ∈ [0, T ], for
all θ < min{1, θ∗} and almost all ω ∈ Ω. Finally, for all p ≥ 1 and all
θ < min{1, θ∗} we have

sup
t∈[0,T ]

E‖Aθu(t)‖p
H < ∞ (13)

and there exist constants Kp,T,θ > 0 such that

(
E‖u(t)− u(s)‖p

H

)1/p
≤ Kp,T,θ|t− s|θ (14)

for all s, t ∈ [0, T ] and all θ < min{1/2, θ∗}.

Our main result for the convergence rates in the p-th mean is as follows:

Theorem 5 Let Assumptions 1, 2 and 3 hold and let γ + κ > d and u0 ∈
D(A). Then for all ε > 0, T > 0 and p ≥ 1 there exists a constant Cε,T,p > 0
such that

sup
t∈[0,T ]

(
E‖u(t)− û(t)‖p

H

)1/p
≤ Cε,T,p

(
∆tmin{1,θ∗}−ε + N−κ + N−κθ∗

w

)
.

Proof. This is given in §4.

�

To balance the error contributions of the different parts, we have to consider
two cases: (i) θ∗ ≥ 1: Here it is optimal to choose

Nw = dcw ·N1/θ∗e

with cw > 0, so we can use fewer modes to approximate the noise. Furthermore,
balancing the ∆t-terms gives

∆t = c∆t ·N−κ

with c∆t > 0. So, for û with such a choice of ∆t, N, Nw we have

sup
t∈[0,T ]

(
E‖u(t)− û(t)‖p

H

)1/p
≤ C̃ε,T,p ·N−κ+ε.

(ii) θ∗ < 1: Here we can not save modes for the noise and have to choose

Nw = dcw ·Ne
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with cw > 0. Balancing again the ∆t-terms gives

∆t = c∆t ·N−κθ∗

with c∆t > 0. So, here we obtain

sup
t∈[0,T ]

(
E‖u(t)− û(t)‖p

H

)1/p
≤ C̃ε,T,p ·N−κθ∗+ε.

Summarizing, we have

sup
t∈[0,T ]

(
E‖u(t)− û(t)‖p

H

)1/p
≤ C̃ε,T,p ·N−κ min{1,θ∗}+ε (15)

with

Nw = dcw ·Nmin{1,1/θ∗}e, ∆t = c∆t ·N−κ min{1,θ∗}. (16)

In the case that −A is the one-dimensional Laplacian these error bounds
coincide (up to the arbitrarily small ε > 0 ) with the results of Corollary 3.4
in [9].

2.2 Pathwise convergence rates

For the pathwise convergence rates, we need the following lemma, which is a
straightforward consequence of the Borel-Cantelli-Lemma, see e.g. [7].

Lemma 1 Let α > 0 and Cp ∈ [0,∞) for p ≥ 1. In addition, let Zn, n ∈ N,
be a sequence of real-valued random variables such that

(E|Zn|p)1/p ≤ Cp · n−α

for all p ≥ 1 and all n ∈ N. Then for all ε > 0 there exists a random variable
ηε such that

|Zn| ≤ ηε · n−α+ε P-a.s.

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p ≥ 1.

Applying this lemma we get the following result:

Corollary 1 Let Assumptions 1, 2 and 3 hold and let γ + κ > d and u0 ∈
D(A). Moreover let N, Nw and ∆t satisfy (16). Then for all T > 0 and ε > 0,
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there exists a random variable ηε,T > 0 such that

‖u(T, ω)− û(T, ω)‖H ≤ ηε,T (ω) ·N−κ min{1,θ∗}+ε

for almost all ω ∈ Ω.

Since ‖h‖2
H =

∫
[a,b]d h(x)2 dx another application of the Borel-Cantelli-Lemma

yields:

Corollary 2 Let the same assumptions as in the previous corollary hold and
assume additionally that γ + κ > d + 2 and κ > 1. Then we have

û(T, x, ω)
N→∞−→ u(T, x, ω)

for almost all ω ∈ Ω and almost all x ∈ [a, b]d.

So, in the case of the d-dimensional Laplacian, i.e. κ = 2 and trace class noise,
i.e. γ > d, the exponential integrator scheme converges for almost all ω ∈ Ω
and almost all x ∈ [a, b]d.

3 Numerical illustration

Consider the Allen–Cahn equation in two-dimensions

du(t) = [ν∆u(t) + u(t)− u(t)3] dt + dW (t)

with periodic boundary conditions on [0, 2π)× [0, 2π). Here we have the d = 2
dimensional Laplacian operator, so that κ = 2 in Assumption 3. We take noise
that is white in time and vary the spatial regularity through the parameter
γ in Assumption 2. With these values we see that θ∗ = γ/4 and we have a
critical value of γ = 4. We integrate using (7) to a final time T = 2 with a
time step of ∆t = 0.005. For our numerical calculations, we take the diffusion
coefficient ν = 0.004. To test the numerics, “true” solutions were computed
using 256× 256 modes and two sample “true” solutions at T = 2 are plotted
in Figure 1. These solutions are computed with the same path and it is only
the regularity of the noise that varies, in (a) γ = 4 and (b) γ = 3, and visually
this is reflected in the regularity of the solution. In Figure 2 we show that our
results agree with the theoretical results and for γ = 4 we see convergence like
N−2 (numerically we observe in the figure −2.05) both for a single realization
and for the mean over 10 realizations. For γ = 3 we have convergence like
the predicted N−3/2 (numerically we observe in the figure −1.53) again for a
single realization and for the mean over 10 realizations.
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(a) (b)

Fig. 1. Plot of two sample true solutions with 256 × 256 modes at time T = 2, (a)
γ = 4 and (b) γ = 3. Note the solution in (a) is smoother than the solution in (b)
as the regularity of the noise decreases.
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Fig. 2. Convergence in space for (a) γ = 4 and (b) γ = 3. Plot is a log log plot of
the maximum L2 error on [0, 2], i.e. maxt∈[0,2] ‖u(t) − uN (t)‖2

H , as the system size
N is changed. Results are plotted for a single realization and for the mean over 10
realizations. In (a) we see the predicted rate of N−2 and in (b) N−3/2.

4 Proof of the convergence result

We prove Theorem 5 by estimating

e(τ) = sup
t∈[0,τ ]

[
E‖u(t)− û(t)‖p

H

]1/p

and applying Gronwall’s Lemma.
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4.1 Preliminaries

We first recall some basic facts of stochastic integration with respect to a
Q-Wiener process. Let (Ω,A,F ,P) be a filtered probability space and let
W = (W (t), t ∈ [0, T ]) be a Q-Wiener process on this space with respect
to the filtration F = (Ft, t ∈ [0, T ]). Denote by L0

2 := HS(Q1/2(H), H) the
space of Hilbert-Schmidt operators from Q1/2(H) to H and by ‖ · ‖L0

2
the

corresponding norm given by

‖C‖2
L0

2
= Tr(C∗QC) :=

∑
n∈Nd

〈C∗QCϕn, ϕn〉,

where ϕn, n ∈ Nd, is an arbitrary orthonormal basis of H. Moreover denote
by L2

F := L2
F([0, T ]; L0

2) the space of all predictable stochastic processes X =
(X(t), t ∈ [0, T ]) with values in L0

2 such that

‖X‖L2
F

:=
( ∫ T

0
E‖X(t)‖2

L0
2
dt
)1/2

< ∞.

Then for X ∈ L2
F the stochastic integral

∫ T

0
X(t) dW (t)

is well defined as an element of H and we have the following Itô isometry:

E
∥∥∥∥ ∫ T

0
X(t) dW (t)

∥∥∥∥2

H
=
∫ T

0
E‖X(t)‖2

L0
2
dt. (17)

(A process X with values in L0
2 is called predictable, if X : [0, T ]×Ω → L0

2 is
a PT − B(L0

2) measurable mapping, where PT is the σ-field generated by the
sets ]s, t]× F , with s, t ∈ [0, T ], F ∈ Fs and {0} × F with F ∈ F0.)

The Itô integral satisfies the following stability property, see e.g. Proposition
4.15 in [1]: Let G : D(G) → H be a closed operator, where D(G) is a Borel
subset of H and let moreover X ∈ L2

F such that P(X(t) ∈ D(G) for all t ∈
[0, T ]) = 1 and GX ∈ L2

F . Then, we have

P
( ∫ T

0
X(s) dW (s) ∈ D(G)

)
= 1

and

G
∫ T

0
X(s) dW (s) =

∫ T

0
GX(s) dW (s) P-a.s.

Moreover, one has the following version of the Burkholder-Davis-Gundy in-
equality, see e.g. Lemma 7.2 in [1]: For any r ≥ 1 and any X ∈ L2

F there exist
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constants Cr > 0 such that

E
∥∥∥∥ ∫ T

0
X(s) dW (s)

∥∥∥∥2r

≤ Cr E
( ∫ T

0
‖X(s)‖2

L0
2
ds
)r

. (18)

We need the following version of the stochastic Fubini theorem, see e.g. Theo-
rem 4.18 in [1]: Let Y : Ω×[0, T ] → L0

2 be a PT×B([0, T ])−B(L0
2)−measurable

mapping such that

∫ T

0

(
E
∫ T

0
‖Y (t, s)‖2

L0
2
dt

)1/2

ds < ∞.

Then we have P-a.s.∫ T

0

∫ T

0
Y (t, s) dW (t) ds =

∫ T

0

∫ T

0
Y (t, s) ds dW (t). (19)

We also require the following properties of the operator A and the semigroup
e−tA, see e.g. Theorem 6.13 in Chapter 2 in [11].

Lemma 2 For arbitrary δ1 ≥ 0, 0 ≤ δ2 ≤ 1 there exist constants C5, C6 > 0
such that we have

‖Aδ1e−At‖L(H;H) ≤ C5t
−δ1 (20)

and

‖A−δ2(id−e−At)‖L(H;H) ≤ C6t
δ2 (21)

for any t ∈ (0, T ].

We denote by PN : H → H the orthogonal projection of H to the subspace
generated by {φn : |n| ≤ N}, i.e.

PNu =
∑
|n|≤N

cn · φn

for u =
∑

n∈Nd cn · φn ∈ H. Clearly, we have

‖PNu‖2
H =

∑
|n|≤N

|cn|2

and
‖(id−PN)u‖2

H =
∑
|n|>N

|cn|2,

for u =
∑

n∈Nd cn · φn, which we use several times in the following. We also
have

‖(id−PN)e−At‖L(H;H) ≤ e−min{αn: |n|=N}t (22)
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for t ∈ [0, T ].

Finally, we require the following estimate, which can be obtained by straight-
forward calculations. Let δ > d. Then, there exist constants C7, C8 > 0 which
depend only on d and δ such that

C7 ·N−δ+d ≤
∑
|n|>N

|n|−δ ≤ C8 ·N−δ+d. (23)

After these preparations, we can now start with the error analysis. To estimate
terms, we use a generic constant C which varies between instances but is
independent of ∆t, N , Nw and t ∈ [0, T ]. Moreover, we write ‖ · ‖ instead of
‖ · ‖H , ‖ · ‖L(H;H) respectively ‖ · ‖L0

2
, if no misunderstanding is possible.

4.2 The initial value

For the error of the approximation of the initial value we have

INITIAL = sup
t∈[0,τ ]

‖e−At(u(0)− û(0))‖.

Since

sup
t∈[0,τ ]

‖e−At(u(0)− û(0))‖2 = sup
t∈[0,τ ]

∑
|n|>N

e−2αnt|un(0)|2 =
∑
|n|>N

|un(0)|2

and u(0) ∈ D(A) it follows that

INITIAL =
( ∑
|n|>N

|un(0)|2
)1/2

≤ 1

α∗N

( ∑
|n|>N

|αnun(0)|2
)1/2

≤ 1

α∗N
‖Au(0)‖,

where α∗N = min{αn : |n| = N}. So, we obtain

INITIAL ≤ C ·N−κ (24)

by Assumption 3.

4.3 The noise terms

For estimating the noise terms recall that

W (t) =
∑

n∈Nd

λ1/2
n βn(t) · φn.
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(i) Consider first the noise with modes |n| ≤ Nw.

We have

NOISE1 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤Nw

λ1/2
n

( ∫ t

0

(
e−(t−s)αn − e−(t−bsc∆t)αn

)
dβn(s)

)
· φn

∥∥∥∥p]1/p

.

Since∑
|n|≤Nw

λ1/2
n

( ∫ t

0
e−(t−s)αn − e−(t−bsc∆t)αn dβn(s)

)
· φn =

∫ t

0
ϕ(t, s) dW (s)

with
ϕ(t, s) =

∑
|n|≤Nw

(
e−(t−s)αn − e−(t−bsc∆t)αn

)
· φn,

an application of the Burkholder-Davis-Gundy inequality (18) yields

NOISE1 ≤ C sup
t∈[0,τ ]

[ ∫ t

0
‖ϕ(t, s)‖2

L0
2
ds
]1/2

.

However,

‖ϕ(t, s)‖2
L0

2
=

∑
|n|≤Nw

λn

(
e−(t−s)αn − e−(t−bsc∆t)αn

)2

and thus

NOISE1 ≤ C sup
t∈[0,τ ]

[ ∫ t

0

∑
|n|≤Nw

λn

(
e−(t−s)αn − e−(t−bsc∆t)αn

)2
ds
]1/2

.

Since for every θ ∈ [0, 1] we have

|e−x − e−y| ≤ |x− y|θ, x, y ≥ 0,

we obtain∫ t

0

(
e−(t−s)αn − e−(t−bsc∆t)αn

)2
ds ≤

∫ t

0
e−2(t−s)αn

(
1− e−(s−bsc∆t)αn

)2
ds

≤ ∆t2θα2θ
n

∫ t

0
e−2(t−s)αn ds ≤ C∆t2θα2θ−1

n .

for θ ∈ (0, 1). Hence we have

NOISE1 ≤ C∆tθ
( ∑
|n|≤Nw

λnα
2θ−1
n

)1/2

≤ C∆tθ
( ∑
|n|≤Nw

|n|−γ−κ+2θκ
)1/2

,

since
0 ≤ λnα

2θ−1
n ≤ C · |n|−γ−κ+2θκ

by Assumptions 2 and 3. Now (23) gives

NOISE1 ≤ C ·∆tθ (25)
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for θ < min{1, θ∗} where θ∗ = γ+κ−d
2κ

.

(ii) Now consider the noise with modes |n| > Nw, i.e.

NOISE2 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|>Nw

∫ t

0
λ1/2

n e−(t−s)αndβn(s) · φn

∥∥∥∥p]1/p

= sup
t∈[0,τ ]

[
E
∥∥∥∥(id−PNw)

∫ t

0
e−A(t−s) dW (s)

∥∥∥∥p]1/p

.

Using the stability of the Itô integral and the Burkholder-Davis-Gundy in-
equality, see Subsection 4.1, we have

NOISE2 ≤ sup
t∈[0,τ ]

C
( ∑
|n|>Nw

λn

∫ t

0
e−2(t−s)αnds

)1/2

≤ C
( ∑
|n|>Nw

λn

αn

)1/2

.

Assumptions 2 and 3 and the estimate (23) now give

NOISE2 ≤ C ·N (−γ−κ+d)/2
w . (26)

4.4 Nonlinear terms: modes |n| > N

Consider now the nonlinear terms of F not contributing to û: Using Jensen’s
inequality, estimate (22) and Assumption 1 we have

TAIL = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|>N

∫ t

0
e−(t−s)αnFn(u(s)) ds · φn

∥∥∥∥p]1/p

= sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0
(id−PN)e−(t−s)AF (u(s)) ds

∥∥∥∥p]1/p

≤ sup
t∈[0,τ ]

∫ t

0

[
E
∥∥∥∥(id−PN)e−(t−s)AF (u(s))

∥∥∥∥p]1/p

ds

≤ C sup
t∈[0,τ ]

∫ t

0
e−(t−s)α∗N [E(1 + ‖u(s)‖)p]1/p ds,

where α∗N = min{αn : |n| = N}. Since

sup
s∈[0,T ]

E(1 + ‖u(s)‖)p < ∞

by Theorem 4, we have

sup
t∈[0,τ ]

∫ t

0
e−(t−s)α∗N [E(1 + ‖u(s)‖)p]1/p ds ≤ C

1

α∗N

14



and thus we obtain by Assumption 3 that

TAIL ≤ C ·N−κ. (27)

4.5 Nonlinear Terms: modes |n| ≤ N

We have

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
e−αn(bsc∆t−s)Fn(u(s))− Fn(û(bsc∆t))

)
ds · φn

∥∥∥∥p]1/p

≤ C · (NL1 + NL2 + NL3),

where

NL1 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
Fn(u(s))− Fn(u(bsc∆t))

)
ds · φn

∥∥∥∥p]1/p

,

NL2 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
Fn(u(bsc∆t))− Fn(û(bsc∆t))

)
ds · φn

∥∥∥∥p]1/p

,

NL3 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
e−αn(bsc∆t−s) − 1

)
Fn(u(s)) ds · φn

∥∥∥∥p]1/p

.

(i) The first term. Note that

∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
Fn(u(s))− Fn(u(bsc∆t))

)
ds · φn

= PN

[ ∫ t

0
e−A(t−bsc∆t)

(
F (u(s))− F (u(bsc∆t))

)
ds
]
.

Moreover, we have

u(s)− u(bsc∆t) = δi
s + δd

s + δw
s

with

δi
s = (e−A(s−bsc∆t) − id)u(bsc∆t),

δd
s =

∫ s

bsc∆t

e−A(s−τ)F (u(τ)) dτ,

δw
s =

∫ s

bsc∆t

e−A(s−τ) dW (τ)

and

F (u(s))− F (u(bsc∆t)) = dF (u(bsc∆t))δ
i
s + dF (u(bsc∆t))δ

d
s + dF (u(bsc∆t))δ

w
s + rs,

15



where

‖rs‖ ≤ C‖δs‖2

by Assumption 1. Thus, we have

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
Fn(u(s)) − Fn(u(bsc∆t))

)
ds · φn

∥∥∥∥p]1/p

=
[
E
∥∥∥∥PN

∫ t

0
e−A(t−bsc∆t)

(
F (u(s)) − F (u(bsc∆t))

)
ds

∥∥∥∥p]1/p

≤ C
[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

i
s ds

∥∥∥∥p]1/p

+ C
[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

d
s ds

∥∥∥∥p]1/p

+ C
[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

w
s ds

∥∥∥∥p]1/p

+ C
[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)rs ds

∥∥∥∥p]1/p

.

For the first term note that P
(
u(bsc∆t) ∈ D(Aθ) for all s ∈ [0, T ]

)
= 1 by

Theorem 4 and thus P-a.s.

‖(e−A(s−bsc∆t) − id)u(bsc∆t)‖ ≤ ‖A−θ(e−A(s−bsc∆t) − id)Aθu(bsc∆t)‖,

since Aθ and the semigroup e−tA commute. Now, Lemma 2 gives P-a.s.

‖A−θ(e−A(s−bsc∆t) − id)Aθu(bsc∆t)‖ ≤ C|s− bsc∆t|θ‖Aθu(bsc∆t)‖.

So we obtain by the assumptions on the nonlinearity F and the boundedness
of the semigroup generated by −A that P-a.s.∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

i
s ds

∥∥∥∥ ≤ C∆tθ
∫ t

0
‖e−A(t−bsc∆t)‖‖Aθu(bsc∆t)‖ ds

≤ C∆tθ
∫ t

0
‖Aθu(bsc∆t)‖ ds

for t ∈ [0, T ]. An application of Hölder’s inequality and Theorem 4 yield that

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

i
s ds

∥∥∥∥p]1/p

≤ C ·∆tθ (28)

for all θ < min{1, θ∗}.

Now to the second term. Here we have by the assumptions on the nonlinearity
F and the boundedness of the semigroup generated by −A that

‖δd
s‖ ≤ C

∫ s

bsc∆t

(1 + ‖u(τ)‖) dτ.

16



So we obtain∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

d
s ds

∥∥∥∥ ≤ C
∫ t

0

∫ bsc∆t+∆t

bsc∆t

(1 + ‖u(τ)‖) dτ ds

and it again follows by Theorem 4 and an application of Hölder’s inequality
that

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

d
s ds

∥∥∥∥p]1/p

≤ C ·∆t. (29)

The third term: Since

δw
s =

∫ s

bsc∆t

e−A(s−τ) dW (τ)

we have∫ t

0

[
e−A(t−bsc∆t)dF (u(bsc∆t))

] ∫ s

bsc∆t

e−A(s−τ) dW (τ) ds

=
∫ t

0

∫ s

bsc∆t

e−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ) dW (τ) ds

=
∫ T

0

∫ T

0
1[bsc∆t,s](τ)1[0,t](s)e

−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ) dW (τ) ds

using the stability of the Itô integral, see Subsection 4.1. By the stochastic
Fubini Theorem, see again Subsection 4.1, it follows P-a.s.∫ T

0

∫ T

0
1[bsc∆t,s](τ)1[0,t](s)e

−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ) dW (τ) ds

=
∫ T

0

∫ T

0
1[τ,dτe∆t](s)1[0,t](τ)e−A(t−bsc∆t)dF (u(bsc∆t))e

−A(s−τ) ds W (τ)

=
∫ t

0

[ ∫ dτe∆t

τ
e−A(t−bsc∆t)dF (u(bsc∆t))e

−A(s−τ) ds
]
dW (τ), .

where dτe∆t = mink∈N{tk : tk ≥ τ}. Since

e−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ)φn = e−αn(t−bsc∆t)dFn(u(bsc∆t))e

−αn(s−τ)φn

we have

‖e−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ)‖2

L0
2

=
∑

n∈Nd

λne
−2αn(t−bsc∆t+s−τ)|dFn(u(bsc∆t))|2

≤
∑

n∈Nd

λne
−2αn(t−τ)|dFn(u(bsc∆t))|2

and thus

‖e−A(t−bsc∆t)dF (u(bsc∆t))e
−A(s−τ)‖2

L0
2
≤ C

∑
n∈Nd

λne
−2αn(t−τ)

17



by the assumptions on F . Hence it follows

∥∥∥∥ ∫ dτe∆t

τ
e−A(t−bsc∆t)dF (u(bsc∆t))e

−A(s−τ) ds

∥∥∥∥2

L0
2

≤ C∆t2
∑

n∈Nd

λne
−2αn(t−τ).

Thus, we obtain by the Burkholder-Davis-Gundy inequality (18) that

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0

∫ dτe∆t

τ
e−A(t−bsc∆t)dF (u(bsc∆t))e

−A(s−τ) ds dW (τ)
∥∥∥∥p]1/p

≤ C∆t
( ∑

n∈Nd

λn

αn

)1/2

.

Since γ + κ > d we have
∑

n∈Nd
λn

αn
< ∞ and hence

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)dF (u(bsc∆t))δ

w
s ds

∥∥∥∥p]1/p

≤ C ·∆t. (30)

Finally, for the remainder term we obtain by straightforward estimations and
Theorem 4 that

sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0
e−A(t−bsc∆t)rs ds

∥∥∥∥p]1/p

≤ C ·∆tθ + C ·∆t (31)

for all θ < 1. Thus combining the estimates (28)–(31) yields

NL1 ≤ C ·∆tθ (32)

for all θ < min{1, θ∗}.

(ii) The second term. Here we have

NL2 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∫ t

0

∑
|n|≤N

e−αn(t−bsc∆t)
(
Fn(u(bsc∆t))− Fn(û(bsc∆t))

)
ds · φn

∥∥∥∥p]1/p

.

Again, we can write

NL2 = sup
t∈[0,τ ]

[
E
∥∥∥∥PN

∫ t

0
e−A(t−bsc∆t)

(
F (u(bsc∆t))− F (û(bsc∆t))

)
ds

∥∥∥∥p]1/p

.

So we obtain by Jensen’s inequality, the Lipschitz continuity of F and the
boundedness of e−tA that

NL2 ≤ C
∫ τ

0
sup

t∈[0,s]

[
E‖u(t)− û(t)‖p

]1/p
ds. (33)
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(iii) The third nonlinear term.

NL3 = sup
t∈[0,τ ]

[
E
∥∥∥∥ ∑
|n|≤N

∫ t

0
e−αn(t−bsc∆t)

(
eαn(s−bsc∆t) − 1

)
Fn(u(s)) ds · φn

∥∥∥∥p]1/p

.

Rewriting this expression using the projection operator and applying Jensen’s
inequality we have

NL3 = sup
t∈[0,τ ]

[
E
∥∥∥∥PN

∫ t

0
e−A(t−bsc∆t)

(
eA(s−bsc∆t) − id

)
F (u(s)) ds

∥∥∥∥p]1/p

≤ sup
t∈[0,τ ]

∫ t

0

[
E
∥∥∥∥e−A(t−bsc∆t)

(
id−e−A(s−bsc∆t)

)
F (u(s))

∥∥∥∥p]1/p

ds

≤ sup
t∈[0,τ ]

∫ t

0

[
E
∥∥∥∥Aθe−A(t−bsc∆t)A−θ

(
id−e−A(s−bsc∆t)

)
F (u(s))

∥∥∥∥p]1/p

ds

≤ sup
t∈[0,τ ]

∫ t

0

∥∥∥Aθe−A(t−bsc∆t)
∥∥∥ ∥∥∥A−θ

(
id−e−A(s−bsc∆t)

)∥∥∥ [E∥∥∥F (u(s))
∥∥∥p]1/p

ds.

Now Theorem 4 and Lemma 2 give

NL3 ≤ C∆tθ sup
t∈[0,τ ]

∫ t

0
(t− bsc∆t)

−θ
[
E
∥∥∥F (u(s))

∥∥∥p]1/p
ds

for all θ < 1. So using Assumption 1 and Theorem 4 we have

NL3 ≤ C ·∆tθ (34)

for all θ < 1.

(v) Now, combining (32)–(34), we have

NL ≤ C
∫ τ

0
sup

t∈[0,s]

[
E
∥∥∥u(t)− û(t)

∥∥∥p]1/p
ds + C ·∆tθ. (35)

for all θ < min{1, θ∗}.

4.6 Conclusion

Combining the estimates (24)–(27) and (35) we have achieved the following
inequality

sup
s∈[0,τ ]

[
E
∥∥∥u(s)− û(s)

∥∥∥p]1/p

≤ C
∫ τ

0
sup

t∈[0,s]

[
E
∥∥∥u(t)− û(t)

∥∥∥p]1/p
ds + C ·N−κ + C ·N (−γ−κ+d)/2

w + C ·∆tθ.
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for all θ < min{1, θ∗}. Gronwall’s Lemma provides now the assertion of The-
orem 5.

A Proof of Theorem 4

We first show the following lemma:

Lemma 3 Let κ+γ > d, θ < θ∗ = γ+κ−d
2κ

and ϑ ∈ [0, 1/2] such that ϑ+θ < θ∗.
Then there exist constants C9, C10, C11 > 0, which are independent of s, t ∈
[0, T ], such that

∫ t

0
‖e−Au‖2

L0
2
du ≤ C9, (A.1)∫ t

s
‖Aθe−A(t−u)‖2

L0
2
du ≤ C10 · |t− s|2ϑ (A.2)

and ∫ s

0
‖Aθ

(
e−A(t−u) − e−A(s−u)

)
‖2

L0
2
du ≤ C11 · |t− s|2ϑ. (A.3)

Proof. Throughout this proof, we will denote constants, which are indepen-
dent of s, t ∈ [0, T ], by C regardless of their value.

(i) Recall that here L0
2 denotes the space of Hilbert-Schmidt operators from

Q1/2(H) to H and ‖ · ‖L0
2

is the corresponding norm given by ‖C‖2
L0

2
=

Tr(C∗QC). Since e−Au is self-adjoint with eigenvalues e−αju and eigenvectors
φj and since moreover Q is selfadjoint with eigenvalues λj and eigenvectors φj

and φj, j ∈ Nd, is an orthonormal basis of H, we have

Tr(e−AuQe−Au) =
∑
j∈Nd

〈e−AuQe−Auφj, φj〉 =
∑
j∈Nd

e−2αjuλj.

Thus we obtain∫ T

0
‖e−As‖2

L0
2
ds =

∑
j∈Nd

∫ T

0
e−2αjsλj ds ≤

∑
j∈Nd

λj

αj

.

Since

0 ≤ λj

αj

≤ C · |j|−γ−κ
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by Assumptions 2 and 3, estimate (23) yields that∫ T

0
‖e−As‖2

L0
2
ds ≤ C

∑
j∈Nd

n−γ−κ < ∞

for κ + γ > d.
(ii) We have similar that

‖Aθe−A(t−u)‖2
L0

2
=
∑
j∈Nd

e−2αj(t−u)λjα
2θ
j

and hence ∫ t

s
‖Aθe−A(t−u)‖2

L0
2
du ≤

∑
j∈Nd

λjα
2θ−1
j

(
1− e−2αj(t−s)

)
.

Since for every θ ∈ [0, 1] we have

|e−x − e−y| ≤ |x− y|θ, x, y ≥ 0,

it follows∫ t

s
‖Aθe−A(t−u)‖2

L0
2
du ≤ |t−s|2ϑ

∑
j∈Nd

λjα
2(θ+ϑ)−1
j ≤ C|t−s|2ϑ

∑
j∈Nd

|j|−γ−κ+2κ(θ+ϑ)

for ϑ ∈ [0, 1/2] by Assumptions 2 and 3. Moreover, ϑ + θ < θ∗ yields

2κ(θ + ϑ) < γ + κ− d

and thus (23) gives ∑
j∈Nd

|j|−γ−κ+2κ(θ+ϑ) < ∞.

(iii) Similar to (i) we obtain

‖Aθ
(
e−A(t−u) − e−A(s−u)

)
‖2

L0
2

= ‖Aθe−A(s−u)
(
e−A(t−s) − id

)
‖2

L0
2

=
∑
j∈Nd

α2θ
j λje

−2αj(s−u)
(
e−αj(t−s) − 1

)2

and thus

‖Aθ
(
e−A(t−u) − e−A(s−u)

)
‖2

L0
2
≤ C|t− s|2ϑ

∑
j∈Nd

α
2(θ+ϑ)
j λje

−2αj(s−u),

respectively∫ s

0
‖Aθ

(
e−A(t−u) − e−A(s−u)

)
‖2

L0
2
du ≤ C|t− s|2ϑ

∑
j∈Nd

λjα
2(θ+ϑ)−1
j .

Now we can proceed as in (ii).
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Proof of Theorem 4.

We will again denote constants, which are independent of s, t ∈ [0, T ], by C
regardless of their value.

(i) Note first that the stochastic integrals

WA(t) =
∫ t

0
e−(t−s)A dW (s), t ∈ [0, T ],

are well defined, if ∫ T

0
‖e−sA‖L0

2
ds < ∞,

see Theorem 5.2 in [1]. The latter is true due to Lemma 3 for κ + γ > d. Ex-
istence of a unique mild solution of equation (1) with supt∈[0,T ] E‖u(t)‖p < ∞
for all p ≥ 1 follows now from a straightforward generalization of Theorem 7.6
in [1].

(ii) Now recall that θ∗ = γ+κ−d
2κ

, let θ < θ∗ and consider

WA(t)−WA(s) =
∫ t

s
e−A(t−u) dW (u) +

∫ s

0

(
e−A(t−u) − e−A(s−u)

)
dW (u).

By Lemma 3 and the stability of the Itô integral, see Subsection 4.1, we have
that Aθ(WA(t)−WA(s)) is P-a.s. well defined. Moreover, by the Burkholder-
Davis-Gundy inequality (18) and the above lemma we obtain[
E‖Aθ(WA(t)−WA(s))‖p

]1/p

≤ C
[
E
∥∥∥∥ ∫ t

s
Aθe−A(t−u) dW (u)

∥∥∥∥p]1/p

+ C
[
E
∥∥∥∥ ∫ s

0
Aθ
(
e−A(t−u) − e−A(s−u)

)
dW (u)

∥∥∥∥p]1/p

≤ C
[ ∫ t

s

∥∥∥Aθe−A(t−u)
∥∥∥2

L0
2

du
]1/2

+ C
[ ∫ s

0

∥∥∥Aθ
(
e−A(t−u) − e−A(s−u)

)∥∥∥2

L0
2

du
]1/2

≤ C|t− s|ϑ

for all ϑ ∈ [0, 1/2] such that ϑ + θ < θ∗. The Kolmogorov-Chentsov Theorem
now implies that there exists a modification W̃A of WA such that

W̃A(·, ω) ∈
⋂

θ<θ∗
C
(
[0, T ]; D(Aθ)

)
for almost all ω ∈ Ω. Moreover, we have

sup
t∈[0,T ]

[
E‖AθW̃A(t)‖p

]1/p
< ∞,

[
E‖W̃A(t)−W̃A(s)‖p

]1/p
≤ C|t−s|min{1/2,θ}
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for all s, t ∈ [0, T ] and θ < θ∗.

(iii) Finally consider Aθ(u(t)− u(s)), s, t ∈ [0, T ]. We have P-a.s.

Aθ(u(t)− u(s)) = Aθ(e−Atu(0)− e−Asu(0)) + Aθ
∫ t

s
e−A(t−τ)F (u(τ)) dτ

+ Aθ
∫ s

0

(
e−A(t−τ) − e−A(s−τ)

)
F (u(τ)) dτ + Aθ(W̃A(t)− W̃A(s))

for all s, t ∈ [0, T ]. So it follows

[
E
∥∥∥Aθ(u(t)− u(s))

∥∥∥p]1/p
≤ I1 + I2 + I3 + I4

with

I1 =
∥∥∥Aθe−As(e−A(t−s) − id)u(0)

∥∥∥,
I2 =

[
E
∥∥∥∥Aθ

∫ t

s
e−A(t−τ)F (u(τ)) dτ

∥∥∥∥p]1/p

,

I3 =
[
E
∥∥∥∥Aθ

∫ s

0
e−A(s−τ)

(
e−A(t−s) − id

)
F (u(τ)) dτ

∥∥∥∥p]1/p

,

I4 =
[
E
∥∥∥Aθ(W̃A(t)− W̃A(s))

∥∥∥p]1/p
.

Since u(0) ∈ D(A) we have by Lemma 2 that

I1 = ‖Aθe−As(e−A(t−s) − id)u(0)‖
≤ ‖e−AsAθ−1(e−A(t−s) − id)Au(0)‖
≤ ‖e−As‖‖Aθ−1(e−A(t−s) − id)‖‖Au(0)‖
≤ C|t− s|1−θ

for all θ < 1. Moreover, by step (ii) we have

I4 ≤ C|t− s|ϑ

for all ϑ ∈ [0, 1/2] such that ϑ + θ < θ∗. For the second term we obtain by
Jensen’s inequality and the stability of the integral that

I2 =
[
E
∥∥∥∥ ∫ t

s
Aθe−A(t−τ)F (u(τ)) dτ

∥∥∥∥p]1/p

≤
∫ t

s
‖Aθe−A(t−τ)‖ [E‖F (u(τ))‖p]1/p dτ.

Hence Assumption 1 and Lemma 2 give

I2 ≤ C
∫ t

s
|t− τ |−θ

(
1 + sup

t∈[0,T ]
[E‖u(t)‖p]1/p

)
dτ.
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Since supt∈[0,T ] E‖u(t)‖p < ∞ by part (i) of the proof, it follows

I2 ≤ C|t− s|1−θ.

Finally, consider the third term. Here we have, proceeding as above,

I3 =
[
E
∥∥∥∥ ∫ s

0
Aθe−A(s−τ)

(
e−A(t−s) − id

)
F (u(τ)) dτ

∥∥∥∥p]1/p

≤ C
∫ s

0

∥∥∥Aθ+δe−A(s−τ)
∥∥∥ ∥∥∥A−δ

(
e−A(t−s) − id

)∥∥∥ (1 + sup
t∈[0,T ]

[E‖u(t)‖p]1/p
)

dτ

≤ C|t− s|δ

for δ < 1− θ.

Combining the estimates for I1, I2, I3 and I4 we obtain[
E
∥∥∥Aθ(u(t)− u(s))

∥∥∥p]1/p
≤ C|t− s|ϑ + C|t− s|δ,

for all ϑ ∈ [0, 1/2] such that θ + ϑ < θ∗ and δ ∈ [0, 1] such that δ < 1 − θ.
Hence by the Kolmogorov-Chentsov Theorem it follows that there exists a
modification ũ of u such that

ũ(·, ω) ∈
⋂

θ<min{1,θ∗}
C
(
[0, T ]; D(Aθ)

)

for almost all ω ∈ Ω. Furthermore, the above estimates give

sup
t∈[0,T ]

[
E‖Aθũ(t)‖p

]1/p
< ∞,

[
E‖ũ(t)− ũ(s)‖p

]1/p
≤ C|t− s|min{1/2,θ}

for all s, t ∈ [0, T ] and θ < min{1, θ∗}. �
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