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Let g(n) denote the enumeration function of multiplicative partitions of the
natural number n. In this paper we give a simplified proof of the conjecture
g(n)<n and discuss a sum which is related to g(n).

1. Introduction

Consider the set T(n)={(m,,m,,...,m); n=mm,...m,m>1, 1<i<s}
where n and m;, 1<i<s, all are natural numbers and identify those partitions
which differ only by the order of factors. We define g(n)=|T(n)|, n>1, and g(1)=1.
For example g(12)=4, since 12=62=4-3=3-2-2 are the four multiplicative
partitions.

In 1983 J. F. Hughes and J. O. Shallit [2] have proved that g(n)SZm/2
and made the conjecture g(n)<n. In 1987 Chen Xiao-Xia [1] has proved that
g(n)<n. In this paper we shall prove

Theorem 1. g(n)<n.

The proof, we shall give to Theorem 1, is a simplified proof, which is much
simpler than the proof in [1].

Then we shall prove that

1
Theorem 2. X, |u(n)lg(n)<x'*< ,where u(n) is a Mébius function.
Theorem 2 gives a bound for the number of all multiplicative partitions of
square-free integers =<x.

2. Some lemmas

To prove the theorems, we need the following lemmas.

1 1
Lemma 1. Let S(x)=1+ X == p for x=1,
xkz1 K oo MSE logn, logn,...logm,
DY ny >
where n,,n,,...,n, are ordinary mtegers, then
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3 2
S(x)=Cx +0(x exp { — C,(log x)3 (log log log x)3}),
where _C and C, are constants C>1, C,>0.
Proof. See [3]

Lemma 2. If x>0, then logx§°\/:—c.

X
, we have

Proof. Consider f(x)= s

1

11 1 11
—-xt llogx—x*e~ ;xﬂ"(logx—e)

fx)="2 —

log? x log? x

Let f'(x)=0, we get x=e". Obviously, when 0 <x <e®, f'(x)<0; and when x>¢e°,
f'(x)>0. Hence we get f(x)=f(e)=1, x>0. =
In this paper P(n) is the largest prime factor of n and P,(n) — the smallest.

Lemma 3. If n>1, then g(n) = X g(d).

leGi
Proof. Let

n=1II pjl, py<p;<...<p, a;21, 1Sjsr.
J=1

Consider the sets:

Tjyi,..5m)={@p3t " 1p2 2. =70, my,my,...,m);
n=p,pit ~hp32~l2  p@&~VIm,. . .m, m>1, 2<i<s},
Oéjiéai, léiér_l! oéjréar—ly

where we also identify those partitions which differ only by the order of factors.
We easily see

1T},5,..5, M =g(phrpi2...pd)
and

ay a a,—1
Tw=0 U '",Qo Tiize s, ()

J1=0 Jjp=0
So we have
ay @y a’—l
g=ITMIS Z X ... T [Ty, 0
J1 =0 j3=0 Jpy=0

ay ay a,—1

=X X .. Zgpitph..pl)= I g(d).
jy=0 j;=0  j=0 |
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Lemma 4. If n>1, then

> ds

d p(n) pl(”)_ 1

Proof. Let n= Il p¥, p,<p,<...<p,, ¢;=1, 1Si=r,

i=1
we either have
pit—1 1
d= =1
BT = 7Y

or
pr—1 ot piti -1 _ppr—1"4f piit!—1

Y d= =
"lp_:ni p,—1 =y p—1 Pi—1 =y Pi+1—1
a, r=1 pa;+1__
§p—" IT 4 L s nr=2). =
pi—1 = Pi py(n)—1

3. Proof of theorems

Proof of Theorem 1. We use induction on n.
When n=1, we have g(1)=1.

Suppose g(d)<d, d<n—1, n—1=1. We shall prove that g(n)sn.

By Lemma 3 and Lemma 4 we have

1
gn)= gd)= T L]
o 0DE A G
Proof of Theorem 2. By Lemma 1 and Lemma 2, we have
1
spm@@-x = L = )
n<x \/; nsx k21 k! nyny...n=n < nn,,...,Nn
nyng, .. nk>l
1 1
1 <X I —
( ) nsx k=1 k' nyny...np=n ]ognl lognZ"'IOgnk
L P DY n>1
1 ' 1
=3 — z < S(x)«<x.

xz1 K niny.. iy 5% logn, logn,...logn,
LD IRERD n>1

Let S ()= Z |u(n)| \/_ by Abel’'s summation formula, we get

nst

@) = g = = ) 20 /n=5,00x= IS«:)«/ iYdt=S,—S,.

nsx nsx \/—
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By (1) we get
(€) S, «x'*

@) S, <<}t(\°/;)'dt§xi(\‘/;)’dt<<x”':'.
1 1
By (2), (3) and (4), we get

T |pum)g(n)«<x'*
nsx

6
Remark. By X |p(n)]——x+0(f) and g(n)<n, we only can obtain

nsx

Z |u(n)gn)< = Ip(n)ln— 5 X +0(xf)«x

nsSx nsSx
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