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Abstract:

Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n

entities into k clusters in order to minimize the sum of squared distances from the entities

to the centroid of their cluster. Among many criteria used for cluster analysis, the mini-

mum sum-of-squares is one of the most popular since it expresses both homogeneity and

separation. A mathematical programming formulation of MSSC is as follows:

min
w,z

n∑

i=1

k∑

j=1

wij‖Xi − zj‖2

subject to
k∑

j=1

wij = 1, ∀i = 1, . . . , n

wij ∈ [0, 1], i = 1, . . . , n; j = 1, . . . , k.

The n entities {o1, o2, . . . , on} to be clustered are at given points Xi = (Xi
r, r = 1, . . . , s)

of Rs for i = 1, . . . , n; k cluster centers must be located at unknown points zj ∈ Rs

for j = 1, . . . , k; the norm ‖ · ‖ denotes the Euclidean distance between the two points in

its argument, in the s-dimensional space under consideration. The decision variables wij

express the assignment of the entity oi to the cluster j.

Regarding computational complexity, minimum sum-of-squares clustering in the Eu-

clidean metric for general values of k and s has recently been shown to be NP-hard [1]. We

present a survey, with some new results, of the state-of-art and quite diverse exact methods

for solving this problem.

The problem was formulated mathematically by Vinod [12] and Rao [9], but little was

done towards its exact resolution in the general case until Koontz et al. [6] proposed a

branch-and-bound algorithm which was posteriorly refined by Diehr [3]. However, these

methods are confined to small data sets. It is important to remark that the hardness of a



MSSC instance is not directly measured by the number of entities, number of dimensions,

number of clusters, etc. It also depends on the distribution of points. Consider an example

of MSSC with n entities divided into k clusters which are each within a unit ball in Rs.

Assume these balls are pairwise at least n units apart. Then any reasonable branch-and-

bound algorithm will confirm its optimality without branching as any misclassification more

than doubles the objective function value. Note that n, k and s can be arbitrarily large.

Recently, Brusco [2] proposed a repetitive branch-and-bound algorithm (RBBA) suited for

instances where the entities must be partitioned into a small number of clusters. The method

solves efficiently some benchmarks instances in the literature. By embedding the method

into Variable Neighborhood Search [5], we were able to assess the potential gains in overall

performance if better heuristic choices are made by the method.

The hardest task while devising branch-and-bound algorithms for the MSSC is to com-

pute good lower bounds in a reasonable amount of time. Sherali and Desai [11] proposed

to obtain such bounds by linearizing the model via the reformulation-linearization technique

(RLT) [10]. We show that the RLT-model can be enforced by adding inequalities that

actually break symmetry in the problem [8].

Peng and Xia [7] formulate the MSSC as a so-called 0-1 semi-definite programming

(SDP). Then, the model is relaxed and used to calculate lower bounds for the problem in

polynomial time. We aim to provide efficient tools for a new family of exact methods for

the MSSC based on lower bounds originated from this 0-1 SDP formulation.

Regarding exact methods, we can still select from the literature, a column generation

method proposed by du Merle et al. [4] which transfers the complexity of the MSSC to the

resolution of the subproblem: an unconstrained hyperbolic problem in 0-1 variables with

a quadratic numerator and linear denominator. This algorithm solved exactly, for the first

time, fairly large data sets, including the Fisher’s 150 iris. Yet, Xia and Peng [13] casted the

MSSC as a concave minimization problem and adapted the Tuy’s cut method to solve it.

In the paper, good approximated results are reported for a version where the cutting plane

algorithm is halted before global convergence. Regarding exact solutions only fairly small

instances can be solved.
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