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Abstract

In the given paper a general analytical model for a queuing
system with limited capacity buffer intended to control packets’
traffic in Internet of Things applications is proposed. This model
is based on the following assumptions. There is a fixed number of
packets’ classes. For each pair of these classes either preemptive
or non-preemptive priority is set. Packets of each class arrive
according to the Poisson process with the given arrival rate, and
are transmitted without errors with the given transmission rate.
The criterion on the structure of the set of priorities between
the classes of packets avoiding unnecessary push-out of packets
being in the transmission is proved. Continuous-Time Markov
Chain associated with the proposed model has been defined and
analyzed. Basic characteristics including blocking probability,
push-out probability, delay, and utilization have been estimated
for each class of packets. Basic measures for the proposed model,
such as Grade of Service, cost function of operation, and perfor-
mance are established.

Keywords: IoT, queuing system, limited capacity buffer,
Continuous-Time Markov Chain, performance analysis.

1 Introduction

The rapid growth of the Internet of things (IoT) technologies caused
the necessity of developing the means for effective processing of mas-
sive heterogeneous traffics at limited capabilities [1, 2, 3]. The word
combination limited capabilities means that for storage of the accepted
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packets before their transmission sufficiently small buffers are used. To
process the packets with the quality of service (QoS) requirements, dif-
ferent models based on priorities assigned to packets entering the net-
works and algorithms for selection and transmission of the next packet
have been proposed [4, 5, 6].

A probabilistic approach for analysis of traffic models in IoT has
been developed in [7, 8]. A number of Markov chain based queuing
models and measures that characterize QoS requirements of IoT have
been proposed and analyzed in [9, 10, 11].

It should be noted the paper [11], where for the proposed Markovian
model the basic performance measures for different traffic classes have
been studied extensively. These measures include blocking probabil-
ity, push out probability, delay, channel utilization, and overall system
performance.

In the present paper some generalization of the analytical model
proposed in [11] is defined and analyzed.

2 Proposed model

For investigation the performance of a single server queueing system
with a finite capacity buffer the following modelM (Fig. 1) is proposed.

The model operates with k (k ∈ N, k > 2) priority classes of packets
C1, . . . , Ck with different traffic types. The packets p ∈ Ci (i = 1, . . . , k)
arrive according to the Poisson process with the arrival rate λi, and
these Poisson processes are independent. The transmission time for
the packets p ∈ Ci (i = 1, . . . , k) is exponentially distributed with the
transmission rate µi. The transmission of the packets is error-free.

The Buffer consists of k queues, namely Queue1, ... , Queuek,
where Queuei (i = 1, . . . , k) consists of the packets p ∈ Ci being in
The Buffer. The Buffer is not time slotted. The number of packets in
the Queuei (i = 1, . . . , k) is denoted |Queuei|. The total number of
packets in the queues, including the packet in the transmission, does

not exceed the given integer n (n > k). Thus, 0 ≤
k∑

i=1
|Queuei| ≤ n−1.
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Figure 1. The model M

The Decision Block implements the queues management, i.e. push-
out buffer mechanism, selection of the next packet for the transmission,
and, if necessary, returning the packet, being in the transmission, to
the beginning of the appropriate queue. In the latter case, the packet
will be re-transmitted completely, i.e. from the very beginning.

The classes C1, . . . , Ck are enumerated in the ascending order of
priority. Preemptive and non-preemptive priorities are distinguished
in the following way. The fixed set Ui ⊆ {C1, . . . , Ci−1} (i = 1, . . . , k)
consists of the classes over which class Ci has preemptive priority. The
set Vi = {C1, . . . , Ci−1} \ Ui (i = 1, . . . , k) consists of the classes over
which Ci has non-preemptive priority. Since Ui ∪ Vi = {C1, . . . , Ci−1}
and Ui ∩ Vi = ∅, the set Vi is uniquely defined by the set Ui. In
particular, U1 = V1 = ∅.

Remark 1. Preemptive and non-preemptive priorities can be
characterized as follows. The transmission of a packet p ∈ Ck con-
tinues until its completion. A packet p1 ∈ Ci (i = 1, . . . , k − 1)
can be in the transmission if and only if any element of the set
{Queuej|j > i&Ci ∈ Uj} is the empty queue. Let a packet p1 ∈ Ci

(i = 1, . . . , k − 1) be in the transmission, and a packet p2 ∈ Cl enters
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the model M. The following two situations are possible.

Let Ci 6∈ Ul. If
k∑

j=1
|Queuej| < n − 1, then the packet p2 enters

the Queuel. If
k∑

j=1
|Queuej| = n − 1 and

l−1∑

j=1
|Queuej| > 0, then the

packet p2 enters the Queuel, and from the model M is pushed-out the
last packet in the Queuej0, where j0 = min{j|j < l&|Queuej| 6= 0}.
Otherwise, the packet p2 is pushed-out from the model M.

Let Ci ∈ Ul. The packet p1 is pushed-out from the transmission and
the transmission of the packet p2 starts. For the packet p1, the following

two situations are possible. If
k∑

j=1
|Queuej| < n− 1, then the packet p1

is placed at the beginning of the Queuei. If
k∑

j=1
|Queuej| = n − 1 and

i∑

j=1
|Queuej| > 0, then the packet p1 is placed at the beginning of the

Queuei, and from the model M the last packet in the Queuej0, where
j0 = min{j|1 ≤ j ≤ i&|Queuej| 6= 0}, is pushed-out. Otherwise, the
packet p2 is pushed-out from the model M.

If the structure of the sets Ui (i = 2, . . . , k) is not constrained, then
some unnecessary push-out of packets being in the transmission can
arise. The next criterion excludes these situations.

Theorem 1. In the model M there are no unnecessary push-outs of

packets being in the transmission if and only if the following formula

is true:

(∀i1 = 2, . . . , k − 1)(∀i2 = i1 + 1, . . . , k)(Ui1 ⊆ Ui2 ∨ Ci1 ∈ Vi2). (1)

Proof. 1. Suppose that formula (1) is true, and some packet p1 ∈ Ci

(i = 1, . . . , k) is in the transmission. Then any element of the set
{Queuej|j > i&Ci ∈ Uj} is the empty queue.

If i = k, then the transmission of the packet p1 ∈ Ci is continued
until its completion.

Let i < k and a packet p2 ∈ Cl enters the Queue l.
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If l ≤ i, or l > i and Ci ∈ Vl, then the transmission of the packet
p1 ∈ Ci is continued.

If l > i and Ci 6∈ Vl (i.e. Ci ∈ Ul), then the packet p2 is the single
element of the Queue l. The packet p1 ∈ Ci is pushed-out from the
transmission, and the transmission of the packet p2 ∈ Cl starts.

Formula (1) can be rewritten in the following equivalent form:

(∀i1 = 2, . . . , k − 1)(∀i2 = i1 + 1, . . . , k)(Ci1 ∈ Ui2 ⇒ Ui1 ⊆ Ui2).

Thus, for all j = l + 1, . . . , k, if Cl ∈ Uj , then Ul ⊆ Uj . Since Ci ∈ Ul,
then Ci ∈ Uj for all j = l+1, . . . , k such that Ul ⊆ Uj . But |Queuej| =
0 for all j = l+1, . . . , k such that Ul ⊆ Uj . Therefore, the transmission
of the packet p2 ∈ Cl is continued either until its complition or till some
packet p3 ∈ Cj such that Cl ∈ Uj (j = l+ 1, . . . , k) enters the Queuej.

Thus, if formula (1) is true, then there are no unnecessary push-outs
of packets being in the transmission.

2. Suppose that formula (1) is false. Then formula

(∃i1 = 2, . . . , k − 1)(∃i2 = i1 + 1, . . . , k)(Ui1 6⊆ Ui2&Ci1 ∈ Ui2)

is true.
Let i1 ∈ {2, . . . , k−1} and i2 ∈ {i1+1, . . . , k} be some integers such

that Ui1 6⊆ Ui2 . Then there exists some class Cj ∈ Ui1 (1 ≤ j ≤ i1 − 1)
such that Cj 6∈ Ui2 .

Let a packet p1 ∈ Cj be in the transmission. Then any element of
the set {Queuel|l > j&Cj ∈ Ul} is the empty queue. Suppose also that
a packet p2 ∈ Ci2 be in the Queuei2. This situation is admissible since
Cj 6∈ Ui2 , i.e. Cj ∈ Vi2 .

Let a packet p3 ∈ Ci1 enters the Queue i1. Since Cj ∈ Ui1 , then the
packet p1 ∈ Cj is pushed-out from the transmission and the transmis-
sion of the packet p3 ∈ Ci1 starts. But since Ci1 6∈ Vi2 (i.e. Ci1 ∈ Ui2),
then the packet p3 ∈ Ci1 is pushed-out from the transmission and the
transmission of the packet p2 ∈ Ci2 starts.

Thus, if formula (1) is false, then there can be unnecessary push-out
of packets being in the transmission.

In what follows it is supposed that for the analyzed model M for-
mula (1) is true.
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3 A brief analysis of the model M

Due to the assumptions made in Section 2, the model M can be treated
(in Kendall notation) as some M/M/1/n queueing system with pre-
emptive and non-preemptive priorities between the classes of packets.

Some rough estimations for the model M can be established under
the assumption that we are dealing with an ordinaryM/M/1/n queue-
ing system, such that the total input stream of packets is the Poisson
process with the arrival rate

λ =

k∑

i=1

λi,

and the transmission time for packets is exponentially distributed with
the transmission rate µ.

Remark 2. Under this assumption, we are sweeping priorities
between the classes of packets under the rug, partly taking into account
their influence in the value of µ.

It is not simple to compute the transmission rate µ. Possibly, to
do this some expert methods or results of computer simulation of the
model M functioning will be required. Nevertheless, the following in-
equalities are true

min{µi|i = 1, . . . , k} ≤ µ ≤ max{µi|i = 1, . . . , k}. (2)

It is well known that the utilization factor ̺i (i = 1, . . . , k) for the
input stream of packets p ∈ Ci is defined as ̺i = λiµ

−1
i . Similarly, the

utilization factor ̺ for the total input stream of packets into the model
M can be defined as

̺ = λµ−1. (3)

Due to (2) and (3), the following inequalities are true

λ

max{µi|i = 1, . . . , k}
≤ ̺ ≤

λ

min{µi|i = 1, . . . , k}
. (4)
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According to the results presented in [12], we can get the following
estimations for the model M.

The stationary probability Pm (m = 0, 1, . . . , n) form packets being
in the model M is estimated as

Pm = ̺mP0, (5)

where

P0 =

{
(1− ̺)(1− ̺n+1)−1, if ̺ 6= 1
(n+ 1)−1, if ̺ = 1

. (6)

Due to (5) and (6), the saturation probability for the model M is
estimated as

Pn =

{
̺n(1− ̺)(1− ̺n+1)−1, if ̺ 6= 1
(n+ 1)−1, if ̺ = 1

. (7)

The blocking probability Pblck that packets are blocked and rejected
by the model M since its capacity is full (i.e. there are n packets in
the model M) is estimated as

Pblck = (P0 + ̺− 1)̺−1. (8)

Substituting (6) in (8), we get

Pblck =

{
̺n(1− ̺)(1− ̺n+1)−1, if ̺ 6= 1
(n+ 1)−1, if ̺ = 1

. (9)

Therefore, the blocking probability Pblck equals to the saturation prob-
ability Pn.

The average numberN of packets being in the modelM is estimated
as

N =

n∑

m=0

mPm. (10)

Substituting (5) and (6) in (10), we get

N =

{
̺(1− ̺)−1(1− (n+ 1)Pn), if ̺ 6= 1
0.5n, if ̺ = 1

. (11)
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The average number of packets Ntrns being in the transmission in
the model M is estimated as

Ntrns = ̺(1− Pn). (12)

Substituting (7) in (12), we get

Ntrns =

{
̺(1− ̺n)(1− ̺n+1)−1, if ̺ 6= 1
n(n+ 1)−1, if ̺ = 1

. (13)

The average number of packets Nques that are waiting in the queues
in the model M is estimated as

Nques = N −Ntrns. (14)

Substituting (11) and (13) in (14), we get

Nques =

{
̺(1− ̺)−1(̺− (n+ ̺)Pn), if ̺ 6= 1
0.5n(n − 1)(n + 1)−1, if ̺ = 1

. (15)

Due to the Little’s law, the average time T spent by a packet in the
model M is estimated as

T = Nλ−1(1− Pn)
−1. (16)

Substituting (7) and (11) in (16), we get

T =

{
̺(1− ̺)−1λ−1(1− n̺n(1− ̺)(1 − ̺n)−1), if ̺ 6= 1
0.5(n + 1)λ−1, if ̺ = 1

. (17)

Similarly, due to the Little’s law, the average time W spent by a
packet being waiting in the queue in the model M is estimated as

W = Nquesλ
−1(1− Pn)

−1. (18)

Substituting (7) and (15) in (18), we get

W =

{
̺(1− ̺)−1λ−1(̺− n̺n(1− ̺)(1 − ̺n)−1), if ̺ 6= 1
0.5(n − 1)λ−1, if ̺ = 1

. (19)

Using formulas (3), (5)-(7), (9), (11), (13), (15), (17) and (19), it
is possible to estimate the basic values of the parameters of the model
M for different values of λi (i = 1, . . . , k), µi (i = 1, . . . , k), and n.
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4 Associated Continuous-Time Markov Chain

Due to the assumptions made in Section 2, the following Continuous-
Time Markov Chain C can be associated with the model M.

A state of the Chain C is any vector (n1, . . . , nk, a) ∈ Z+, such that

0 ≤
k∑

i=1
ni ≤ n and 0 ≤ a ≤ k, where:

1. The integer ni (i = 1, . . . , k) is the number of packets p ∈ Ci in
the Queuei including the packet of the class Ci in the transmission, if
it is there.

2. The integer a equals to 0, if the system is empty, and a is the
number of the class of the packet in the transmission, otherwise, i.e.

a = 0 ⇔ (∀i = 1, . . . , k)(ni = 0),

and
(∀i = 1, . . . , k)(a = i⇒ ni > 0&

&(∀j = i+ 1, . . . , k)(Ci ∈ Uj ⇒ nj = 0)).

Due to Remark 1, the state transitions of the Continuous Time
Markov Chain C can be defined as follows.

1. Let s = (0, . . . , 0
︸ ︷︷ ︸

k times

, 0).

For any l = 1, . . . , k there are the transitions:

s
λl
−→

(0, . . . , 0
︸ ︷︷ ︸

l−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−l times

, l)

and
(0, . . . , 0
︸ ︷︷ ︸

l−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−l times

, l)
µl
−→

s.

2. Let s = (n1, . . . , nk, a)

(

0 <
k∑

i=1
ni < n, 1 ≤ a ≤ k

)

.

For any l ∈ {1, . . . , k} such that Ca 6∈ Ul there is the transition

s
λl
−→

(n1, . . . , nl−1, nl + 1, nl+1, . . . , nk, a).
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For any l ∈ {1, . . . , k} such that Ca ∈ Ul there is the transition

s
λl
−→

(n1, . . . , nl−1, nl + 1, nl+1, . . . , nk, l).

3. Let s = (n1, . . . , nk, a)

(
k∑

i=1
ni = n, 1 ≤ a ≤ k

)

.

For any l ∈ {2, . . . , k} such that Ca 6∈ Ul and either a 6∈ {1, . . . , l−1}

and
l−1∑

i=1
ni > 0, or a ∈ {1, . . . , l−1} and

l−1∑

i=1
ni > 1 there is the transition

s
λl
−→

(n1, . . . , nj0−1, nj0 − 1, nj0+1, . . . , nl−1, nl + 1, nl+1, . . . , nk, a),

where the integer j0 is defined as follows:
1) j0 = min{j ∈ {1, . . . , l − 1}|nj > 0}, if either a 6∈ {1, . . . , l − 1}

and
l−1∑

i=1
ni > 0, or a ∈ {1, . . . , l − 1},

l−1∑

i=1
ni > 1 and na ≥ 2;

2) j0 = min{j ∈ {1, . . . , l − 1} \ {a}|nj > 0} , if a ∈ {1, . . . , l − 1},
l−1∑

i=1
ni > 1 and na = 1.

For any l ∈ {2, . . . , k} such that Ca ∈ Ul there is the transition

s
λl
−→

(n1, . . . , nj0−1, nj0 − 1, nj0+1, . . . , nl−1, nl + 1, nl+1, . . . , nk, l),

where j0 = min{j ∈ {1, . . . , l − 1}|nj > 0}.

4. Let s = (n1, . . . , nk, a)

(

2 ≤
k∑

i=1
ni ≤ n, 1 ≤ a ≤ k

)

.

There is the transition

s
µa
−→

(n1, . . . , na−1, na − 1, na+1, . . . , nk, j1),

where j1 = max{j|1 ≤ j ≤ k&nj > 0}.

The state transitions defined above directly imply that the structure
of the Continuous-Time Markov Chain C is substantially dependent
on the structure of the sets Ui (i = 2, . . . , k). Nevertheless, for each
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Continuous-Time Markov Chain C the infinitesimal generator matrix
QC and the embedded chain transition matrix PC can be constructed.

Let C be the given Continuous-Time Markov Chain with the set
of the states S, −→π be the probability stationary distribution (i.e. the

limiting distribution) of the chain C, and
−→
ψ be the probability station-

ary distribution of the embedded chain. We denote the component of
the vector −→π that corresponds to the state s by πs (s ∈ S), and the

component of the vector
−→
ψ that corresponds to the state s – by ψs

(s ∈ S).

Remark 3. The difference between the vectors −→π and
−→
ψ is as

follows. For any state s ∈ S the component πs of the vector −→π is the
long-term proportion of time that the chain C spends in the state s

(i.e. the stationary probability for the chain C to be in the state s). At
the same time, for any state s ∈ S the component ψs is the long-term
proportion of transitions that the chain C makes into the state s (i.e.
the stationary probability for the chain C to transit to the state s).

The vector −→π can be computed as the solution of the equation

−→π QC = 0,

that satisfies the conditions πs ≥ 0 (s ∈ S) and
∑

s∈S

πs = 1, and the

vector
−→
ψ can be computed as the solution of the equation

−→
ψ PC =

−→
ψ ,

that satisfies the conditions ψs ≥ 0 (s ∈ S) and
∑

s∈S

ψs = 1.

5 Analysis of the model M on the basis of the

Continuous-Time Markov Chain C

For any state s ∈ S of the Continuous-Time Markov Chain C we use
ns,i (i = 1, . . . , k) to denote the number of packets p ∈ Ci in the Queuei
including the packet of the class Ci in the transmission, if it is there.
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The average number Ni (i = 1, . . . , k) of packets of the class Ci in
the model M is estimated as

Ni =
∑

s∈S

πsns,i. (20)

Therefore, the average number N of packets being in the model M
is estimated as

N =
k∑

i=1

Ni. (21)

Substituting (20) in (21), we get

N =

k∑

i=1

∑

s∈S

πsns,i. (22)

We define the subsets Sm (m = 0, 1, . . . , n) of the states of the
Continuous-Time Markov Chain C via identity

Sm =

{

s ∈ S |
k∑

i=1

ns,i = m

}

.

The stationary probability Pm (m = 0, 1, . . . , n) form packets being
in the model M, including the packet in the transmission, if it is there,
is estimated as

Pm =
∑

s∈Sm

πs. (23)

In particular, the saturation probability for the model M is esti-
mated as

Pn =
∑

s∈Sn

πs. (24)

The average number of packets Ntrns being in the transmission in
the model M is estimated as

Ntrns = 1− P0. (25)

14



Queuing system for IoT applications

Due to (14), (22) and (25), the average number of packets Nques

that are waiting in the queues in the model M is estimated as

Nques = P0 − 1 +
k∑

i=1

∑

s∈S

πsns,i. (26)

The stationary probability βm for the model M to transit into
the subset Sm (m = 0, 1, . . . , n) of the states of the Continuous-Time
Markov Chain C is estimated as

βm =
∑

s∈Sm

ψs. (27)

In particular, the stationary probability βn for the model M to
transit into the subset Sn of the states of the Continuous-Time Markov
Chain C is estimated as

βn =
∑

s∈Sn

ψs. (28)

The subset Sn of the states of the Continuous-Time Markov Chain
C can be characterized as follows: s ∈ Sn if and only if when the next
packet arrives, then either this packet, or some packet being in the
model M will be lost. Therefore, the subset Sn consists of all critical
states for the model M. Hence, for the model M, the value of βn is the
probability of transition to a critical state, while the value of Pn is the
probability for being in a critical state.

We define the subsets Sn(a, i) (a, i ∈ {1, . . . , k}, Ca 6∈ Ui) of the
states of the Continuous-Time Markov Chain C via identity

Sn(a, i) =







s = (ns,1, . . . , ns,k, a) ∈ Sn |
i−1∑

j=1
j 6=a

ns,j = 0







.

The blocking probability γi (i = 1, . . . , k) that the next arrived
packet p ∈ Ci is blocked and rejected by the modelM (since its capacity
is full) is estimated as

γi =

k∑

a=1
Ca 6∈Ui

∑

s∈Sn(a,i)

πs. (29)
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Applying the Little’s law, we get that the average delay for packets
p ∈ Ci (i = 1, . . . , k) being in the model M is estimated as

δi = λ−1
i (1− γi)

−1Ni. (30)

Substituting (20) in (30), we get

δi = λ−1
i (1− γi)

−1
∑

s∈S

πsns,i. (31)

We define the subsets S
(1)
n (a, i) (i ∈ {1, . . . , k−1}, a ∈ {i+1, . . . , k})

of the states of the Continuous-Time Markov Chain C via identity

S(1)
n (a, i) =






s = (ns,1, . . . , ns,k, a) ∈ Sn |

i−1∑

j=1

ns,j = 0&ns,i > 0






,

and also we define the sets J(i) (i ∈ {1, . . . , k − 1}) via identity

J(i) = {j ∈ {i+ 1, . . . , k}|Ci ∈ Uj}.

The push-out probability αi (i ∈ {1, . . . , k−1}) that a packet p ∈ Ci

that is waiting in the buffer or being in the transmission is pushed out
from the model M and is lost upon the arrival of some packet when
the buffer is full is estimated as

αi = α
(1)
i + α

(2)
i , (32)

where

α
(1)
i =

∑

s∈Sn(i,i)

πs




∑

j∈J(i)

λj








∑

j∈J(i)

λj + µi





−1

and

α
(2)
i =

k∑

a=i+1

∑

s∈S
(1)
n (a,i)

πs





k∑

j=i+1

λj









k∑

j=i+1

λj + µa





−1

.
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The total push-out probability α for the model M is estimated as

α =
k−1∑

i=1

αi. (33)

Due to [11], a Grade of Service mGoS for the model M can be
estimated as

mGoS =

k∑

i=1

γi + wα, (34)

where w is a penalty weight for the push-out probability over the block-
ing probability for packets. Substituting (29), (33) and (32) in (34),
we get

mGoS =

k∑

i=1

k∑

a=1
Ca 6∈Ui

∑

s∈Sn(a,i)

πs + w

k−1∑

i=1

(α
(1)
i + α

(2)
i ). (35)

Due to [11, 13], the performance mprfrm of the model M is esti-
mated as

m
prfrm

= m
−1
GoS. (36)

Substituting (35) in (36), we get

m
prfrm

=






k∑

i=1

k∑

a=1
Ca 6∈Ui

∑

s∈Sn(a,i)

πs +w

k−1∑

i=1

(α
(1)
i + α

(2)
i )






−1

. (37)

We define the subsets S(i) (i ∈ {1, . . . , k}) of the states of the
Continuous-Time Markov Chain C via identity

S(i) = {s = (ns,1, . . . , ns,k, a) ∈ S |a = i}.

The utilization mutlz(i) (i = 1, . . . , k) of packets p ∈ Ci in the model
M is estimated as

mutlz(i) =
∑

s∈S(i)

πs. (38)

17



Volodymyr G. Skobelev, Volodymyr V. Skobelev

Due to [11, 13], a cost mcst of operation for the model M can be
estimated as

mcst =

(
k∑

i=1

mutlz(i)

)−1

. (39)

Substituting (38) in (39), we get

mcst =





k∑

i=1

∑

s∈S(i)

πs(i)





−1

. (40)

Due to [11, 13], the total performance mTP for the model M can
be estimated as

mTP = m
prfrm

m
−1
cst. (41)

Substituting (37) and (40) in (41), we get

mTP =

k∑

i=1

∑

s∈S(i)

πs(i)

k∑

i=1

k∑

a=1
Ca 6∈Ui

∑

s∈Sn(a,i)

πs + w
k−1∑

i=1
(α

(1)
i + α

(2)
i )

. (42)

Maximization of the value mTP is the main way for improving the
quality of service (QoS) of packets by the model M.

6 Conclusions

In the given paper a general analytical model of the queueing system
for IoT-applications has been proposed and analyzed.

The estimations established in the paper make it possible to im-
prove the QoS of the real system by selecting the permissible values of
parameters λi (i = 1, . . . , k), µi (i = 1, . . . , k), and the size k of the
Buffer. This improvement, as a rule, can be achieved via computer
simulation. For a special case, when there are 4 classes of packets, the
results of computer simulation are presented in [11].
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