
Computer Science Journal of Moldova, vol.3, no.1(7), 1995

The Roumanian spelling checker ROMSP:

the project overview

A.Colesnicov

Abstract

Aspects of the Roumanian spelling checker ROMSP are pre-
sented: effective vocabulary representation, similar words detec-
tion algorithms, automatic word inflection, the user interface,
supporting tools, further development. Problems of user inter-
face engineering support by object oriented methods are of special
interest.

1 Introduction

The development of the Roumanian spelling checker had posed many
problems. Two main problems were those of the compact representa-
tion of the vocabulary including all word-forms, and of the fast search
in the vocabulary. We discuss them in the sec. 2.

When the user asks to suggest the correct spelling for a misspelled
word we have the problem of generating the list of the words existing
in the dictionary and being in some sense “near” to the given word.
The list is to be of reasonable size. The problem is discussed in the
sec. 3.

It was found impossible to enter all word-forms manually, and we
were to develop the automatized word inflection system. The system
is also used by the end user to add words to his/her private vocabulary
data base. We discuss the problem in the sec. 4.

Except the obvious problems of making the user interface friendly
and comfortable we had met a specific for the object-oriented environ-
ments problem of the event stream synchronization. See sec. 5.

c©1995 by A.Colesnicov

40



The Roumanian spelling checker ROMSP

Engineering aspects of our product are discussed in sec. 6.
ROMSP is a developing system, and the perspectives of its devel-

opment are presented in the final sec. 7.

2 Effective vocabulary representation

We give here only a general overview of the subject referring for details
to [3, 4].

The lexicographical sourses [7]–[16] had supplied us with the base
dictionary of more than 65,000 words and the resulting vocabulary of
more than 660,000 word-forms. The current ROMSP version checks
only separate words, and we are to represent only the word list.

2.1 Vocabulary decomposition

In the section we use a mathematical notion of the word as the arbitrary
sequence of letters. Word sets are denoted by capital letters (V , E, R)
and words by small letters (v, e, r).

Definition 1 Let the vocabulary V be a non-empty word set. The
binary decomposition of the vocabulary V consists of two sets of words,
namely, a root set R and an ending set E, and a map ϕ, R

ϕ→ 2E from
R to the set of all subsets of E, satisfying the following two conditions:

• ∀r ∈ R ∀e ∈ ϕ(r), the concatenation re ∈ V .

• ∀v ∈ V ∃r ∈ R ∃e ∈ ϕ(r) such that v = re (r and e makes the
decomposition of the word v).

We didn’t demand the uniqueness of the decomposition of the given
word with the given map.

Another map ϕ may exist for given V , R and E. Two boundary
cases are:

• R = V and all endings are empty words (we use this for the user’s
private vocabulary);

41



A.Colesnicov

• there is a single root – empty word, but all the elements of V
serve as endings.

Of course, something intermediate is of interest. In our case, about
220,000 roots, 144 endings, and about 2,000 ending sets from 2144 were
sufficient.

See [3, 4] on problems of the minimization of the decomposition, of
the dynamical decomposition when adding new words etc.

For each root we store on the hard disk the number of the cor-
responding ending set. To increase the efficiency, we divide the vo-
cabulary on pages and use the hash table to access the page. Ending
sets represented as bitmaps, the hash table and endings themselves are
stored in RAM. Also in RAM is stored a small vocabulary of about
600 most frequently used Roumanian words. Now we use for MS-DOS
implementaion only one page buffer, and we do not use any additional
compression techniques. The vocabulary data base size is now about
1.2 Mbyte – less than 2 bytes per a word. As it may be compressed
by usual archivers (LHA, ARJ, PKZIP) with the ratio of 0.5, we have
reserves to gain more space.

As the matter of fact, we have two vocabularies: a constant one
and a user’s private one. The user’s vocabulary may be expanded by
the user.

3 Detecting similar words

This problem arises when we are to correct the misspelled word auto-
matically, or when user asks suggestions for the word. For ROMSP we
use two different techniques.

At first the spelling checker tries to correct the following errors:
skipping a letter (or a space), permuting two letters, replacing a letter
by another letter, inserting a letter. E.g., to correct skipping a letter we
try to insert all letters from the alphabet (and a space) in all possible
positions, etc.

We keep in RAM the triades table (about 4,000 bytes) representing
all three-letter combinations existing in the words from the current

42



The Roumanian spelling checker ROMSP

vocabulary. Every generated word is checked against this triades table,
before to be checked against the vocabulary which may lead to the disk
access. This makes the process speed quite satisfactory.

After this first stage, we use another algorithm to generate more
suggestions and to try to correct more than one error. We use for the
purpose a letter similarity matrix. We can use different letter similar-
ity matrices in different cases. E.g., when correcting texts typed on
the computer keyboard, a letter is “near” to another if their keys are
neighboring. A text entered by a scanner represents another case with
different criteria, etc.

Let M be the letter similarity matrix. Consider the following vari-
ation of the well-known algorithm for searching the maximal common
subsequence for the two given words v and w (n and m letters long
correspondingly).

Let us construct n×m matrix L, where by induction

Li,j = max(Li−1,j , Li,j−1, Li−1,j−1 + Mvi,wj ),

and out-of-matrix L0,j , Li,0 are supposed to be zero. Taking Ln,m as a
criterion of the similarity we can get a rather good similarity function
f (e.g., f(w, v) = Ln,m/(n + m)).

This algorithm uses too many calculations. Let us restrict our sug-
gestion to a reasonable bound: the similar word should be found if
there are no more than two mistakes. The possibility to correct three
mistakes remains, but only in the case of “natural” mistakes. This re-
striction gives us a possibility to construct only 5 diagonals from matrix
Li,j , where the difference between i and j is at most 2, and Li,j = 0 in
other cases. Moreover, it is not necessary to calculate all diagonals. If
the values are too small we can be sure that more than two mistakes
were made and stop calculations.

4 Automatic word inflection

Special attention was given to nouns and adjectives declination, and
verbs conjugation because they generate a lot of flexions (12 for nouns,

43



A.Colesnicov

20 for adjectives, 35 for verbs). Pronouns, articles and numerals were
entered in the vocabulary data base manually.

We grouped registered affixes for noun declination in 32 groups and
has based the declination algorithm on this grouping. In some cases
the group for the given noun can not be selected automatically, and
we ask the user to select the group giving him/her examples. Some
irregularities in letter alterations also imply a dialog with the user.

Adjectives were classified in 26 groups.
The generation of verb word-forms is based on the infinitive of the

verb. Generating the inflectional paradigm for the verb is the most
complicated part of our system. Verbs are divided into 5 types having
their characteristic features. Each type is divided into some classes,
characterized by affixes. Each class in its turn is divided into schemes,
depending on specific letter alteration, subvariants of affixes, of word
roots, etc. We have in total 56 schemes for verbs.

You can found detailed discussion and examples in [1, 2].
The word inflection program shows all generated forms on the

screen, and the user can correct them before writing them to the vo-
cabulary data base.

We have two variants of the word inflection program. The variant
for internal use generates the log file registering chronologically all data
base changes. The log function is disabled in the distributed variant.

5 The user interface

5.1 Visual and operational aspects

ROSMP is a commercial software product, so the friendly and comfort-
able user interface is the indispensable condition of its visual represen-
tation. We are strongly orientating to the inexperienced user. We use
the standard CUI supported by Borland’s Turbo Vision. The menu,
dialogs, and the system behavior are as simple as possible. ROMSP is
so simple that it has not the hypertext help. We found quite enough
suggestions in the status line.

In the menu line we have the following items:

44



The Roumanian spelling checker ROMSP

System – a submenu with two items: “About” and “Refresh display”.

File – a dialog to start the file checking.

Directory – a dialog to change the current directory.

Word – a dialog to check the correctness of a single word.

Exit – to exit from the spelling checker.

Colors – a dialog to select the color palette (for color, black and white,
or LCD screen).

As the user starts a file checking, he/she sees on the screen the text
being scrolled. When a misspelled word is found, the scrolling stops,
the word is marked, and a word correction dialog appears. It shows the
message1: “Word . . . was not found in the dictionary” (we had rejected
messages like “Error” or “Wrong word” on psychological backgrounds).
User has the following possibilities:

Add – add this word to a file to expand further his/her private vocab-
ulary.

Good – consider this word to be good during the current session.

Suggestion – get the suggestion list of similar words from the vocab-
ulary.

Edit – correct the word manually.

Mark – mark the word with the asterisk to better found it further.

Skip – skip the word.

Word – check the correctness of another single word (same dialog as
from “Word” menu item).

Stop – stop spelling checking.
1Of course all menus, suggestions and dialogs are in Roumanian.

45



A.Colesnicov

During manual correction, the user has a possibility to edit the
whole visible screen, however not inserting and deleting lines and with-
out block operations. The user can not scroll the edited text. We
suppose that the text is prepared by a separate editor which is to be
used for radical changes, so we had not included a full-scale editor as
a part of the spelling checker.

After the manual correction the scanning restarts from the topmost
change.

If the user stops ROMSP, it is possible to save partial corrections,
or to keep the file untouched. Saving a file, ROMSP always keeps its
backup copy.

5.2 Event stream synchronization

It is the internal problem of the event driven, object oriented imple-
mentation of the system. In our case we have three event streams.

The first event stream flows from user keyboard and mouse activ-
ity. The second stream is produced by the checked text file scrolling,
and the third stream consists of words proposed as user wants a sug-
gestion to correct an error. The streams are to be synchronized with
screen scrolling and user actions (e.g., user does not want additional
suggestions as the search continues). Turbo Vision has not any mean
to maintain such synchronization. We were to program it from the very
beginning.

We had previewed several approaches to the solution of the problem.
The first approach is based on the overwriting of the Turbo Vi-

sion’s GetEvent method initiating other event streams checkup when
no events exist from keyboard and mouse. This approach is the least
abstract, and it was implemented in the distributed ROMSP version.

We are also experimenting with the second approach based on the
event queue concept. We generalize the notion of the event to form
the queue. We define the composition of events, obtaining recursive
compound event structure. The queue is a new independent object
built into the environment.

For detailed discussion see [5].

46



The Roumanian spelling checker ROMSP

6 Supporting tools

We include here implementation support, data base management tools,
coding schemes support, and distribution tools.

6.1 Implementation support

MS-DOS version of ROMSP was implemented on Borland Pascal with
Objects 7.01 using Turbo Vision, with little Turbo Assembler program-
ming. We were to develop a toolkit to support the implementation.
These tools include many extensions for Turbo Pascal and Turbo Vi-
sion, and some changes in run-time library modules.

All extensions for Turbo Pascal are designed as separate compila-
tion units (modules). We classified them as PT (Pascal Tools) and VT
(Vision Tools). E.g., the PTARITHM unit includes arithmetical functions
like Max and Min which lack in the Pascal standard and are usually ab-
sent in Pascal implementations. The PTSTRING unit includes additional
string routines etc. The VTKEYBD unit replaces the Turbo Vision key-
board driver additionally supporting the PC AT extended keyboard,
etc.

All run-time library modules containing visible English texts were
changed to show the corresponding Roumanian texts. For example,
the “OK” button in dialogs was replaced by “Gata” (“Ready”). These
changes had sometimes implied the corresponding changes in the dialog
element layout. In the previous example the string “Gata” is longer
than “OK” so the button is to be wider.

Several errors were corrected in the Turbo Vision run-time library
modules.

6.2 Vocabulary management

We use a separate interactive program to maintain the vocabulary data
base. This program has the following functions:

• initialize the base (create a new empty base);

• check the base integrity;

47



A.Colesnicov

• compress the base;

• add a word;

• add words from a file;

• delete a word;

• search for a word;

• search for similar words;

• make triades;

• show the hash table;

• show information about pages;

• show last words from each page;

• output words page by page;

• output words in the single list;

• add a synonym/translation for a word;

• add synonyms/translations from a file;

• delete a synonym/translation for a word;

• show synonyms/translations for a word;

• exit.

Two functions need the explanation – “compress the base” and
“make triades”.

The compressing means that all words stored into the user vocab-
ulary that is not such effective are moved to the main vocabulary. See
the above discussion on the effective vocabulary representation in the
sec. 2.

48



The Roumanian spelling checker ROMSP

“Triades” is the table of all three-letter combinations existing in
the vocabulary entries. It is organized as the array of bitmaps. We use
it when generating suggestions (see sec. 3 above).

“Pages” are not printing pages but those vocabulary data base
pages described above in sec. 2.

Synonym and translation support is the experimental part of our
project. Now it is not included into the distributed version.

The output list of words can be used later to reconstruct the whole
vocabulary from scratch. We had also used it to collect some statistical
information.

6.3 Coding schemes

Code pages 852 (MS-DOS) and 1250 (Microsoft Windows) support
Roumanian extension of the Latin alphabet. Having the strong inten-
tion to follow these conventions, we had meanwhile met more than 15
other coding schemes and keyboard layout variants. We can mention
the following reasons for the situation:

• Till now there are no national standards on the subject in Rou-
mania and the Republic of Moldova.

• Typical MS-DOS software uses pseudograhpics character of the
code page 437 and then conflicts with the code page 852.

• In the Republic of Moldova we are to use at once Roumanian and
Russian languages, and English to communicate with software.
The corresponding code pages (852, 866, and 437) also conflict.

• English, Roumanian and Russian typewriter and computer key-
board layouts pose most non-alphabetical characters on different
keys. It is very unpleasant to find “?” or “+” on three different
keys depending on the currently used language.

We use some unified internal code and convert user text to it and
vice versa. Every distribution includes screen and keyboard drivers
supporting the user’s coding scheme and keyboard layout.

49



A.Colesnicov

Due to known recommendation of the Roumanian Academy on let-
ters Â and Î we have now two orthographical variants for many words.
We support both variants through different vocabulary data bases.

6.4 Distribution

We use Turbo Pascal conditional compilation directives to generate
the distributive version supporting the particular coding scheme and
keyboard layout. When the user’s coding is new, we extend our driver
library with new modules and add a new condition in the corresponding
Pascal module. A special condition switches to the compilation of the
demonstrative version.

When the version is ready, a special program generates its distribu-
tive diskettes. It copies files on diskettes and calculates their CRC-32
check codes. When all files are placed on diskettes, the file names and
the check codes are included in the Pascal source code of the instal-
lation program, the resulting text SETUP.PAS is compiled, the module
SETUP.EXE is extended by its own CRC-32 and is copied to the diskette.
The first diskette of the distribution set is thereby formed the last.

When installing ROMSP, the setup program performs the self-test
checking its own CRC-32. Then the setup program asks the user about
the disk and the directory to place the system, creates the directory and
copies files to it. After the first diskette with the SETUP.EXE module,
the order of diskettes is free. The setup program marks all installed
files and asks for a new diskette until all files from the list were copied.

After copying files, the setup program tries to tune the MS-DOS
starting scripts CONFIG.SYS and AUTOEXEC.BAT. The successful instal-
lation is concluded by reloading MS-DOS.

7 Further development

Except features mentioned above we had experimented with our system
to test some variants of its possible development. We list here two more
experiments:

50



The Roumanian spelling checker ROMSP

• We had formed the vocabulary for the English language. Our
system worked quite well.

• We tried to introduce the concept of user selected filters to read
and to write the processed text. Filters may solve problems with
coding schemes, and with texts prepared for a word processor
and not being plain ASCII. We had experimented with AMI PRO
texts.

General directions of further development are:

• Keeping more information for a word including style, semantics,
synonyms, translations to other languages, grammatical correla-
tions etc.

• Correcting not separate words but also word combinations using
advanced NLP2 techniques.

• Multilanguage system using several vocabularies.

• ROMSP for Windows; the problem of interacting with a lot of
Windows word processors arises.

• Generalizing the word inflection program to became a tutorial
one.

• Improving implementation, support and distribution tools.

• Using known compression techniques to reduce vocabulary file
size, etc.

We also undertake investigations using the accumulated lexicogra-
phical material. E.g., we intend to create the Roumanian hyphenation
table for TEX.

2Natural language processing.

51



A.Colesnicov

Acknowledgements

ROMSP is the spelling checker for the Roumanian language developed
at the Institute of Mathematics (Chi,sinău, Moldova). This article sum-
marizes efforts of the ROMSP project team. Let us mention here other
project participants (alphabetically): Dr. Elena Boian, Dr. Constantin
Ciubotaru, Dr. Svetlana Cojocaru, Dr. Anna Danilchenco, Valentina
Demidova, Michael Evstunin, Ludmila Malahova, Dr. Natalia Shvets,
Ludmila Topal, Dr. Victor Ufnarovski, Tatiana Verlan.

We thank our Roumanian colleagues: Dr. Dan Tufi,s (Bucure,sti)
and Prof. Dr. Nicolae Curteanu (Ia,si) for the help and fruitful discus-
sions.

We especially thank mr. ,Serban Mihaescu (USA) for the delivered
software.

References

[1] E. Boian, A. Danilchenco, L. Topal
The automation of speech parts inflexion process
Computer Science Journal of Moldova, vol. 1, nr. 2 (2), 1993

[2] E. Boian, A. Danilchenco, L. Topal
Automation of word-forming process in the Roumanian language
Studies in Informatics and Control, vol. 3, nr. 1, March 1994

[3] S. Cojocaru, M. Evstunin, V. Ufnarovski
Detecting and correcting spelling errors for the Roumanian language
Computer Science Journal of Moldova, vol. 1, nr. 1 (1), 1993

[4] S. Cojocaru, M. Evstunin, V. Ufnarovski
Roumanian spelling-checker
Studies in Informatics and Control, vol. 3, nr. 1, March 1994

[5] A. Colesnicov, L. Malahova
Event synchronization in object oriented environment – a case study
9th International Conference on Control Systems and Computer

52



The Roumanian spelling checker ROMSP

Science CSCS9
Bucure,sti, România, 25–28 May 1993. Vol. II

[6] A. Colesnicov, L. Malahova
An environment for a language processing program – the Roumanian
spell checker
First Conference on Applied and Industrial Mathematics. Oradea,
România, 3–5 Sep. 1993

Lexicographical sources

[7] Dic,tionarul explicativ al limbii române
[The Roumanian language explanatory dictionary]
Bucure,sti, 1975 (in Roumanian)

[8] Supliment la dic,tionarul explicativ al limbii române
[Supplement to the Roumanian language explanatory dictionary]
Bucure,sti, 1988 (in Roumanian)

[9] F. Marcu
Mic dic,tionar de neologisme
[The small neologism dictionary]
Bucure,sti, 1985 (in Roumanian)

[10] A. Lombard, C. Gadei
Dictionnaire morphologique de la langue roumaine
[The morphological Roumanian language dictionary]
Bucure,sti, 1981 (in French)

[11] Dic,tionar ortografic cu elemente de ortoepie ,si morfologie
[The orthographical dictionary with elements of orthoepy and mor-
phology]
Chi,sinău, 1991 (in Roumanian)

[12] F. ,Sute,t, E. ,So,sa
Dic,tionar ortografic al limbii române
[The orthographical Roumanian language dictionary]
Bucure,sti, 1994 (in Roumanian)

53



A.Colesnicov

[13] V. Bucur
Scurt dic,tionar de teorie a eviden,tei contabile rus-român ,si român-rus
[The short Russian-Roumanian and Roumanian-Russian dictionary on
bookkeeping]
Chi,sinău, 1992 (in Russian and Roumanian)

[14] Mic dic,tionar rus-român de termini economici
[The small Russian-Roumanian economical terms dictionary]
Chi,sinău, 1991 (in Russian and Roumanian)

[15] C. Tănase
Dic,tionar de terminologie financiară rus-român
[The Russian-Roumanian financial terms dictionary]
Chi,sinău, 1992 (in Russian and Roumanian)

[16] M. Carau,s
Mic dic,tionar de termini de economie
[The small economical terms dictionary]
Chi,sinău, 1990 (in Russian and Roumanian)

A.Colesnicov, Received 3 January, 1995
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str., Kishinev,
277028, Moldova
phone: (373–2) 738058
e–mail: kae@math.moldova.su

54


