Applied Mathematics E-Notes, 20(2020), 528-531 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

The Odd/Even Dichotomy For The Set Of Square-Full Numbers*

Teerapat Srichan'

Received 19 February 2020

Abstract

A positive integer n is called square-full if p*|n for every prime factor p of n. The asymptotical ratio
of odd to even square-full numbers is obtained.

1 Introduction and result

A positive integer n is called square-free if it is a product of different primes. In 2008, Scott [4] conjectured
that the ratio of odd to even square-free numbers is asymptotically 2 : 1. Two years later, Jameson [3]
used some properties of Dirichlet series and convolution to prove that the proportion of square-free numbers
is asymptotically % and showed that Scott’s conjecture is true. It would be interesting to consider the
odd/even dichotomy for the set of other kinds of integers. In this paper we shall consider the asymptotical
ratio of odd to even square-full numbers.

A positive integer n is called square-full if p?|n for every prime factor p of n. Let G be the set of all square-
full numbers. Let G(z), Go(x) and G.(x) be the set of all square-full numbers, odd square-full numbers and
even square-full in the interval [1,x], respectively. We denote by N(z), N,(x) and Ne(z) the number of
members of G(z), Go(z) and G.(z), respectively. Erdos and Szekeres [2] were the first to investigate N (z)

and showed that

¢(3/2) 1/2 1/3
N(z) = /4 0(x™/?), 1
(@) = S0 (o) (1)
where ((s) denotes the Riemann zeta-function. In 1958, Bateman and Grosswald [1] improved (1) and
showed that

oy = $G/2) g C2/3) s o1/
N(z) "6 e +0(z'/°). )
From (1) and (2) one could deduce that

¢(3/2)
N(z) ~ 3 zt/2,

We obtain the asymptotical ratio of odd to even square-full numbers in the following theorem.

3)

Theorem 1 As x — oo, we have

No(x)
Ne()

~2— 2.

Remark 2 The result in Theorem 1 indicates that the ratio of odd to even square-full numbers is asymptot-
ically 1: 1+ ?

Remark 3 The result in Theorem 1 can be found as an example in [5]. The author applied Theorem 2.1
and 2.2 in [5] to deduce that in any interval [1,x] of integer, the number of the odd square-full numbers do
not exceed the number of the even square-full numbers.
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The proof of Theorem 2.1 and 2.2 in [5] is long. Here we give a simple and short proof for Theorem 1.

Notation 4 f(x) ~ g(z) means lim % =1 and we say that f(x) is asymptotic to g(x) as x — oo.
Tr— 00

2 Proof of Theorem 1

Proof. First, we assume that,

No(z) ~ azt/? and Ne(z) ~ ba'/2, for some a,b € RT. (4)
We wish to show that,
% =22 (5)

Since there is no square-full number n such that n = 2 (mod4), we have G.(z) = {n < z, n € G and 4|n}
and Go(z) = {n < z, n € G and n = 1,3 (mod4)}. Next, we spilt G.(z) in to the set Gei(x) and the set
Gea(x), where Ger(z) = {n <z, n € Ge(z) and § € G} and Gea(z) = {n <z, n € Ge(z) and § ¢ G }. It
is obvious that,

Nei(x) = N(z/4). (6)
Now we will show that,

Nea(z) = No(2/8). (7)
For any positive integer n € Gea(x), we have § € Z7F. Then, we write 1 = mr with m is square-full, r is
square-free and ged(m,r) = 1. Since § ¢ G, we have r # 1. Suppose that r > 2. We have a contradiction,
since n = 4mr ¢ G. We thus get only r = 2 and consequently m is an odd square-full. Then we obtain the

one-to-one relation between the sets Gea(z) and Go(z/8) and (7). In view of (6) and (7), we have
Ne(x) = N(x/4) + No(x/8). (8)

Then
Ne(@) = (Ne(z/4) + No(z/4)) + No(z/8).
In view of (4), we have
b a a
bpl/2 o 2tz Q12 @ a2
2 2 2v/2

This shows the asymptotical ratio (5).
To complete the proof of Theorem 1, we have to show the existence of a and b in (4). In view of (8), we
have
Ne(z) = N(x/4) + No(2/8),
N(z) — Ny(x) = N(z/4) + No(z/8), 9)
N(z) — N(z/4) = No(z) + No(z/8).

We write f(z) = N(z) — N(x/4). In view of (3), we know that,
@) ~ ex!/?, (10)
for a certain ¢ > 0. In view of (9), we have
f(@) = f(x/8) = No(x) + No(2/8) = (No(/8) + No(2/8%)) = No(x) — No(x/8%). (11)
Replace z in (11) by /82, we have
F(2/8%) = f(2/8%) = No(x/8%) + No(2/8%) — (No(x/8°) + No(2/8")) = No(2/8%) — No(z/8%).  (12)
In view of (11) and (12), we have

No(x) = No(z/8%) = f(z) — f(x/8) + f(x/8) — f(x/8°).
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Repeating this, we see that

No(x) = No(z/8%%) = > f(z/87) = > fla/8¥H). (13)

0<i<k—1 0<j<k—1

Since the asymptotic value (10), for € > 0, we take x¢ such that (c —e)z'/? < f(x) < (c+€)z!/?, for x > x.
Then we take k such that z/8%% < zg < 2/82%~1. We note that Ny(z/8%) < Ny(z¢) < zo. From this and
(13), we have

D@8 = D f@/8) +

0<i<k—1 0<j<k—1

<Y f(@/8%) = > fla/8YFh) + ag
i=0 j=0
1/2 1/2

((c+6)x8i ) _ io ((c— e)h) + o

: j:
_ V8 g2y VO V8 £1/2
V841 so1"
Sﬂzlﬂ
V8+1

8

+ xo
+ 2ex'/? + Tg.

Thus, for z > (%2)2, we have

No(z) < (\/cg\/fl + 3e)x1/2. (14)

Next, we estimate the lower bound for N,(z). In view of (13), we can write

oo

@) =D f@/8) =3 f(@/87),

J=0

Thus, for x > z¢, and we get

21/2 1/2
81

((c—e) , )—g((0+e)é;W)

_ VB e VB
V841 V8—1
C\/g 1/

X

V841

o

Il
=)

No(z) >

7

> 2 _9exl/2,

Thus, for x > xg, we have

N,(z) > (\/‘%\fl - Qe)xl/Q. (15)

In view of (14) and (15), the value a exists. Similarly for the existence of b. ®
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