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Abstract

A positive integer n is called square-full if p2|n for every prime factor p of n. The asymptotical ratio
of odd to even square-full numbers is obtained.

1 Introduction and result

A positive integer n is called square-free if it is a product of different primes. In 2008, Scott [4] conjectured
that the ratio of odd to even square-free numbers is asymptotically 2 : 1. Two years later, Jameson [3]
used some properties of Dirichlet series and convolution to prove that the proportion of square-free numbers
is asymptotically 4

π2 and showed that Scott’s conjecture is true. It would be interesting to consider the
odd/even dichotomy for the set of other kinds of integers. In this paper we shall consider the asymptotical
ratio of odd to even square-full numbers.
A positive integer n is called square-full if p2|n for every prime factor p of n. Let G be the set of all square-

full numbers. Let G(x), Go(x) and Ge(x) be the set of all square-full numbers, odd square-full numbers and
even square-full in the interval [1, x], respectively. We denote by N(x), No(x) and Ne(x) the number of
members of G(x), Go(x) and Ge(x), respectively. Erdös and Szekeres [2] were the first to investigate N(x)
and showed that

N(x) =
ζ(3/2)

ζ(3)
x1/2 +O(x1/3), (1)

where ζ(s) denotes the Riemann zeta-function. In 1958, Bateman and Grosswald [1] improved (1) and
showed that

N(x) =
ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3 +O(x1/6). (2)

From (1) and (2) one could deduce that

N(x) ∼ ζ(3/2)

ζ(3)
x1/2. (3)

We obtain the asymptotical ratio of odd to even square-full numbers in the following theorem.

Theorem 1 As x→∞, we have

No(x)

Ne(x)
∼ 2−

√
2.

Remark 2 The result in Theorem 1 indicates that the ratio of odd to even square-full numbers is asymptot-
ically 1 : 1 +

√
2
2 .

Remark 3 The result in Theorem 1 can be found as an example in [5]. The author applied Theorem 2.1
and 2.2 in [5] to deduce that in any interval [1, x] of integer, the number of the odd square-full numbers do
not exceed the number of the even square-full numbers.
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The proof of Theorem 2.1 and 2.2 in [5] is long. Here we give a simple and short proof for Theorem 1.

Notation 4 f(x) ∼ g(x) means lim
x→∞

f(x)
g(x) = 1 and we say that f(x) is asymptotic to g(x) as x→∞.

2 Proof of Theorem 1

Proof. First, we assume that,

No(x) ∼ ax1/2 and Ne(x) ∼ bx1/2, for some a, b ∈ R+. (4)

We wish to show that,
a

b
= 2−

√
2. (5)

Since there is no square-full number n such that n ≡ 2 (mod4), we have Ge(x) = {n ≤ x, n ∈ G and 4|n}
and Go(x) = {n ≤ x, n ∈ G and n ≡ 1, 3 (mod4)}. Next, we spilt Ge(x) in to the set Ge1(x) and the set
Ge2(x), where Ge1(x) = {n ≤ x, n ∈ Ge(x) and n

4 ∈ G} and Ge2(x) = {n ≤ x, n ∈ Ge(x) and n
4 /∈ G }. It

is obvious that,
Ne1(x) = N(x/4). (6)

Now we will show that,
Ne2(x) = No(x/8). (7)

For any positive integer n ∈ Ge2(x), we have n
4 ∈ Z

+. Then, we write n
4 = mr with m is square-full, r is

square-free and gcd(m, r) = 1. Since n
4 /∈ G, we have r 6= 1. Suppose that r > 2. We have a contradiction,

since n = 4mr /∈ G. We thus get only r = 2 and consequently m is an odd square-full. Then we obtain the
one-to-one relation between the sets Ge2(x) and Go(x/8) and (7). In view of (6) and (7), we have

Ne(x) = N(x/4) +No(x/8). (8)

Then
Ne(x) = (Ne(x/4) +No(x/4)) +No(x/8).

In view of (4), we have

bx1/2 ∼ b

2
x1/2 +

a

2
x1/2 +

a

2
√
2
x1/2.

This shows the asymptotical ratio (5).
To complete the proof of Theorem 1, we have to show the existence of a and b in (4). In view of (8), we

have  Ne(x) = N(x/4) +No(x/8),
N(x)−No(x) = N(x/4) +No(x/8),
N(x)−N(x/4) = No(x) +No(x/8).

(9)

We write f(x) = N(x)−N(x/4). In view of (3), we know that,

f(x) ∼ cx1/2, (10)

for a certain c > 0. In view of (9), we have

f(x)− f(x/8) = No(x) +No(x/8)− (No(x/8) +No(x/82)) = No(x)−No(x/82). (11)

Replace x in (11) by x/82, we have

f(x/82)− f(x/83) = No(x/8
2) +No(x/8

3)− (No(x/83) +No(x/84)) = No(x/8
2)−No(x/84). (12)

In view of (11) and (12), we have

No(x)−No(x/84) = f(x)− f(x/8) + f(x/82)− f(x/83).
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Repeating this, we see that

No(x)−No(x/82k) =
∑

0≤i≤k−1
f(x/82i)−

∑
0≤j≤k−1

f(x/82j+1). (13)

Since the asymptotic value (10), for ε > 0, we take x0 such that (c− ε)x1/2 ≤ f(x) ≤ (c+ ε)x1/2, for x > x0.
Then we take k such that x/82k < x0 ≤ x/82k−1. We note that N0(x/82k) ≤ N0(x0) < x0. From this and
(13), we have

No(x) ≤
∑

0≤i≤k−1
f(x/82i)−

∑
0≤j≤k−1

f(x/82j+1) + x0

≤
∞∑
i=0

f(x/82i)−
∞∑
j=0

f(x/82j+1) + x0

=

∞∑
i=0

(
(c+ ε)

x1/2

8i

)
−
∞∑
j=0

(
(c− ε) x

1/2

8j+1/2

)
+ x0

=
c
√
8√

8 + 1
x1/2 +

ε
√
8√

8− 1
x1/2 + x0

≤ c
√
8√

8 + 1
x1/2 + 2εx1/2 + x0.

Thus, for x > (x0ε )
2, we have

No(x) ≤
( c
√
8√

8 + 1
+ 3ε

)
x1/2. (14)

Next, we estimate the lower bound for No(x). In view of (13), we can write

No(x) =

∞∑
i=0

f(x/82i)−
∞∑
j=0

f(x/82j+1).

Thus, for x > x0, and we get

No(x) ≥
∞∑
i=0

(
(c− ε)x

1/2

8i

)
−
∞∑
j=0

(
(c+ ε)

x1/2

8j+1/2

)
=

c
√
8√

8 + 1
x1/2 − ε

√
8√

8− 1
x1/2

≥ c
√
8√

8 + 1
x1/2 − 2εx1/2.

Thus, for x > x0, we have

No(x) ≥
( c
√
8√

8 + 1
− 2ε

)
x1/2. (15)

In view of (14) and (15), the value a exists. Similarly for the existence of b.
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