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1 Introduction and preliminaries

For a given sequence a = {an}n∈I , the zeta regularized product of a is defined by∐∏
n∈I

an := exp (−ζ ′
a
(0)) ,(1.1)

when the zeta function ζa(s) :=
∑

n∈I a
−s
n attached to the sequence a is analytically continued

to some region containing the origin s = 0 and holomorphic at the origin (see e.g., [18], [2]).

This notion allows us to carry out various renormalization calculations of “divergent products”.

For example, we have

∞∐∏
n=1

n = “1× 2× 3× 4× · · · ” = exp (−ζ ′(0)) =
√
2π(1.2)

from Riemann’s calculation ζ ′(0) = −1
2
log(2π), where ζ(s) =

∑∞
n=1 n

−s denotes the Riemann

zeta function. The zeta regularized products are very important for the study of the various

zeta functions, for instance, the determinant expressions of the Selberg zeta functions via the

hyperbolic Laplacian (see for e.g., the references in [18]), and the cohomological study of the

motivic L-functions [2].

We first remark that the following elementary operations of regularized products follow

easily from the definition: ∐∏
n∈I

`
J

an =
∐∏
n∈I

an

∐∏
n∈J

an,(1.3)

∐∏
n∈I

ak
n =

(∐∏
n∈I

an

)k

,(1.4)

∐∏
n∈I

τan = τ ζa(0)
∐∏
n∈I

an.(1.5)
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There are many reasons why we are interested in the zeta regularization. Among them, we

now focus our attention on the particular feature that the expression of a function by the zeta

regularized product respects a structural aspect of the function. For example, Lerch’s formula

[3]

1

Γ(x)
=

1√
2π

∞∐∏
n=0

(n+ x),(1.6)

which is the generalization of Riemann’s result (1.2), gives a “factorization” of the gamma

function Γ(x), and hence it exhibits the information of the location and the multiplicity of

zeros in an apparent manner. This is comparable with a role of the Weierstrass canonical form

of the entire function 1/Γ(x):

1

Γ(x)
= eγxx

∞∏
n=1

(
1 +

x

n

)
e−

x
n .(1.7)

Actually, in [18], a relation between the regularized product and the canonical form is clarified

in general. Further, the property (1.3) yields the basic functional equation Γ(x + 1) = xΓ(x).

Beside these facts, it is remarkable also that the duplication formula

Γ(2x) =
22x

2
√

π
Γ(x)Γ

(
x+

1

2

)
(1.8)

can be immediately derived from Lerch’s formula by using (1.3) and (1.5) (see Example 3.9).

Another typical example is seen in the ring sine functions introduced in [9]. Let τ be

an imaginary quadratic integer. In [9], the ring sine function of Z[τ ] is realized by the zeta

regularized product, and calculated as follows:

S(x; τ) :=
∐∏

m,n∈Z
(m + nτ − x)

= (1− e2πix)
∞∏

n=1

(1− e2πi(nτ+x))(1− e2πi(nτ−x)) (0 < Im(x) < Im(τ)) .

(1.9)

This product gives essentially the elliptic theta function ϑ1(x; τ). The translation invariance

S(x+ 1; τ) = S(x; τ) is obvious in this expression. Moreover, if we denote by ϕ(s) = ϕ(s; τ, x)

the attached zeta function for S(x; τ), we see from (1.5) that

S(x; τ) = τϕ(0)
∐∏

m,n∈Z

(m
τ
+ n− x

τ

)
= τϕ(0)S(x/τ ; 1/τ),(1.10)

which asserts substantially the transformation formula for ϑ1(x; τ). Note that we have ϕ(0) =

− (τ−1)2

τ
from the calculation in [9]. Thus a zeta regularized product expression is expected to

indicate various invariance and/or periodicity of a function in a considerably obvious way.
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In contrast to the advanced feature as we explained above, the definition of a zeta regularized

product does not work even in a simple case, for instance, the case a = {qn}n≥0 (q > 1), because

the attached zeta function ζa(s) =
∑∞

n=0 q
−ns = (1 − q−s)−1 has a simple pole at s = 0. In

order to deal with such cases, we have extended the notion of the regularized product in [13] as

follows: If ζa(s) is analytically continued to some region containing the origin s = 0 and has a

pole at the origin, then we say a is regularizable, and the (generalized) zeta reguralized product

of a is defined to be

∐∏
n∈I

an := exp

(
−Res

s=0

ζa(s)

s2

)
.(1.11)

We use this dotted product symbol if ζa(s) has a pole at s = 0 in order to distinguish this

notion from the standard holomorphic regularization. When ζa(s) is holomorphic at s = 0, it

is elementary to check that ζ ′
a
(0) = Ress=0 ζa(s)/s

2, or

∐∏
n∈I

an =
∐∏
n∈I

an.(1.12)

The purpose of the present note is to provide explicit calculations of various examples

which need the generalized notion above of the zeta regularized product and to observe certain

transformation properties which are possessed by the functions defined by the zeta regularized

products.

Remark 1.1. In [5], they deal with a wider class of regularization methods called “δ-regularized

products” which includes our generalized zeta regularization as a special case. In particular,

they give a similar description of the relation between the (generalized) regularized product

and the canonical form, which is in deed a generalization of the result in [18].

It is clear that (1.3) and (1.4) are still true in the case of this new regularization, but the

formula (1.5) needs a slight modification as follows.

Lemma 1.1. The reguralized product of τa = {τan}n∈I is given by

∐∏
n∈I

τan = exp

(
N+1∑
l=1

(−1)l−1

l!
(log τ)l Res

s=0
ζa(s)s

l−2

)
×
∐∏
n∈I

an,(1.13)

where N is the order of the pole of ζa(s) at s = 0.

Proof. In fact, if the Laurent expansion of ζa(s) around s = 0 is given by ζa(s) =
∑∞

k=−N cks
k,

then we have

ζτa(s) =
∑

n

(τan)
−s = τ−sζa(s) =

∞∑
l=0

(−1)l

l!
(log τ)lsl

∞∑
k=−N

cks
k,
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whence

Res
s=0

ζτa(s)

s2
=

N+1∑
l=0

(−1)l

l!
(log τ)lc1−l =

N+1∑
l=1

(−1)l

l!
(log τ)l Res

s=0
ζa(s)s

l−2 +Res
s=0

ζa(s)

s2
.

In Section 2 we observe several arithmetic examples concerning the (generalized) regularized

products of positive integers. In Section 3 we give several examples of functions defined by the

regularized products.

2 Some arithmetic examples

As we can see typically in Riemann’s calculation (1.2), the zeta regularized product of positive

integers is one of the most interesting situation from the arithmetic point of view. Since we

deal with the sequence of positive integers, it is convenient to use the convention

∐∏
n∈I

an =
∞∐∏

n=1

(n;m(n)),(2.1)

where m(n) denotes the multiplicity of n appearing in the sequence a = {an}n∈I , that is, the

attached zeta function of a is

ζa(s) =
∑
n∈I

a−s
n =

∞∑
n=1

m(n)

ns
.(2.2)

By this notation we have for instance

∞∐∏
n=1

(n; 1) = exp (−ζ ′(0)) =
√
2π,(2.3)

∞∐∏
n=1

(n;n) = exp (−ζ ′(−1)) ,(2.4)

∞∐∏
n=1

(n;n2) = exp (−ζ ′(−2)) , etc.(2.5)

Now let us consider the case of square-free integers. Then we have remarkable identities∐∏
n:square-free

n = 2π =
∐∏

n:square

n.(2.6)

In fact, the first equality is valid since we see that

∑
n:square-free

n−s =
∏

p:prime

(1 + p−s) =
∏

p:prime

1− p−2s

1− p−s
=

ζ(s)

ζ(2s)
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and

d

ds

( ∑
n:square-free

n−s

)∣∣∣∣∣
s=0

=
d

ds

(
ζ(s)

ζ(2s)

) ∣∣∣∣∣
s=0

=
ζ ′(0)ζ(0)− 2ζ(0)ζ ′(0)

ζ(0)2
= − log(2π).

The second equality follows immediately from (1.2) and (1.4).

Next we look at the case of the regularized product of the square-free positive integers n

with having n as its multiplicity, that is (if any)∐∏
n:square-free

(n;n).

Then we must study the behavior of the attached zeta function

ϕ(s) =
∑

n:square-free

n

ns
=

ζ(s− 1)

ζ(2s− 2)
(2.7)

at s = 0. Note here that ϕ(s) is not holomorphic at the origin, and actually it has a simple

pole there. Hence the regularized product does not exist in the original sense.

Thus we face with the situation requiring the extended notion of the zeta regularized prod-

uct. In fact, by using the generalized zeta regularization, we have the following formulas.

Theorem 2.1. We use a convention similar to (2.1) for generalized zeta regularized products.

(i) The regularized product over the square-free positive integers n with multiplicity n is given

by ∐∏
n:square-free

(n;n)

=“1× 2× 2× 3× 3× 3× 5× 5× 5× 5× 5× 6× 6× 6× 6× 6× 6× · · · ”
= exp

(
−1

4

ζ ′′(−1)

ζ ′(−2)
+

1

2

ζ ′(−1)ζ ′′(−2)

ζ ′(−2)2
− 1

36

ζ ′′′(−2)

ζ ′(−2)2
+

1

24

ζ ′′(−2)2

ζ ′(−2)3

)
.

(2.8)

(ii) We denote by µ(n) the usual Möbius function. Then we have

∐∏
µ(n)=+1

(n;n2) = exp

(
1

12

ζ ′′′(−2)

ζ ′(−2)2
− 1

8

ζ ′′(−2)2

ζ ′(−2)3
+

1

4

ζ ′(−2)ζ ′′(−4)

ζ ′(−4)2
− 1

8

ζ ′′(−2)

ζ ′(−4)

)
,(2.9)

∐∏
µ(n)=−1

(n;n2) = exp

(
− 1

12

ζ ′′′(−2)

ζ ′(−2)2
+

1

8

ζ ′′(−2)2

ζ ′(−2)3
+

1

4

ζ ′(−2)ζ ′′(−4)

ζ ′(−4)2
− 1

8

ζ ′′(−2)

ζ ′(−4)

)
.(2.10)

Proof. (i) By (2.7) the attached zeta function is ζ(s−1)
ζ(2s−2)

. Remarking that ζ(−1) = − 1
12

and

ζ(−2) = 0 with ζ ′(−2) �= 0, we have the Laurent expansion around s = 0 as

ζ(s− 1) = − 1

12
+ sζ ′(−1) +

s2

2
ζ ′′(−1) +O(s3),

1

ζ(2s− 2)
=

1

s

1

2ζ ′(−2)
− 1

2

ζ ′′(−2)

ζ ′(−2)2
+ 2s

(
−1

6

ζ ′′′(−2)

ζ ′(−2)2
+

1

4

ζ ′′(−2)

ζ ′(−2)3

)
+O(s2),
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and hence

ζ(s− 1)

ζ(2s− 2)
=

1

s

(
− 1

24ζ ′(−2)

)
+

(
1

2

ζ ′(−1)

ζ ′(−2)
+

1

24

ζ ′′(−2)

ζ ′(−2)2

)

+ s

(
−1

4

ζ ′′(−1)

ζ ′(−2)
+

1

2

ζ ′(−1)ζ ′′(−2)

ζ ′(−2)2
− 1

36

ζ ′′′(−2)

ζ ′(−2)2
+

1

24

ζ ′′(−2)2

ζ ′(−2)3

)
+O(s2).

Thus we have (2.8).

(ii) Since we have

∑
n:square-free

n−s =
ζ(s)

ζ(2s)
,

∑
n:square-free

µ(n)n−s =
1

ζ(s)
,

we obtain

∑
µ(n)=+1

n−s =
1

2

(
1

ζ(s)
+

ζ(s)

ζ(2s)

)
,

∑
µ(n)=−1

n−s =
1

2

(
− 1

ζ(s)
+

ζ(s)

ζ(2s)

)
.

Thus the attached zeta functions are given by 1
2

(
1

ζ(s−2)
+ ζ(s−2)

ζ(2s−4)

)
and 1

2

(
− 1

ζ(s−2)
+ ζ(s−2)

ζ(2s−4)

)
respectively. Now the statements (2.9) and (2.10) follow from the Laurent expansions

1

ζ(s− 2)
=

1

s

1

ζ ′(−2)
− 1

2

ζ ′′(−2)

ζ ′(−2)2
+ s

(
−1

6

ζ ′′′(−2)

ζ ′(−2)2
+

1

4

ζ(−2)2

ζ ′(−2)3

)
+O(s2),

ζ(s− 2)

ζ(2s− 4)
=

ζ ′(−2)

2ζ ′(−4)
+ s

(
−1

2

ζ ′(−2)ζ ′′(−4)

ζ ′(−4)2
+

1

4

ζ ′′(−2)

ζ ′(−4)

)
+O(s2).

This ends the proof of the theorem.

Corollary 2.2. We have

∞∐∏
n=1

(n;n2(1 + µ(n)) = exp

(
−ζ ′(−2) +

1

6

ζ ′′′(−2)

ζ ′(−2)2
− 1

4

ζ ′′(−2)2

ζ ′(−2)3

)
.(2.11)

Proof. Since the left hand side is given by the product of

∐∏
µ(n)=0

(n;n2) =

∞∐∏
n=1

(n;n2)

∐∏
n:square-free

(n;n2)
=

∞∐∏
n=1

(n;n2)

∐∏
µ(n)=+1

(n;n2)
∐∏

µ(n)=−1

(n;n2)
(2.12)
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and

∐∏
µ(n)=+1

(n; 2n2) =


 ∐∏

µ(n)=+1

(n;n2)




2

,(2.13)

the result follows from (2.5) and (2.9), (2.10).

Remark 2.1. A divergent product “1× 2× 2× 3× 3× 3× 4× 4× 4× 4× · · · ” allows us naively

two kinds of interpretation as

∞∐∏
n=1

(n;n),

∞∐∏
n=1

nn.

Though the former regularized product exists in the sense of holomorphic zeta regularization,

the latter does not exists even in the sense of generalized zeta regularization.

3 Functions defined via zeta regularization

We give here several examples of functions defined by generalized zeta regularized products.

First we see the simplest example we does need the generalized zeta regularization.

Example 3.1. For any q > 1, we have

∞∐∏
n=0

qn+x = q−B2(x)/2,(3.1)

where B2(x) is the Bernoulli polynomial of degree 2. This follows from the Laurent expansion

of the zeta function for a = {qn+x}n≥0;

ζa(s, x) =

∞∑
n=0

q−s(n+x) =
q−sx

1− q−s
=

1

s log q
+B1(x) +

s

2
B2(x) log q +O(s2).(3.2)

This is interpreted as an exponential version of the special value formula

ζ(−1, x) = −B2(x)

2
(3.3)

of the Hurwitz zeta function ζ(s, x) =
∑∞

n=0(n + x)−s.

The following example is an analogus (or generalized) situation of the example above.

Example 3.2. Let a > 1. For 0 < x < 1, we have∐∏
n≥0

(an − x) = a−1/12
∏
n≥0

(
1− x

an

)
.(3.4)
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In fact, the attached zeta function is calculated as follows:

ζa(s, x) =

∞∑
n=0

(an − x)−s =

∞∑
n=0

a−ns

∞∑
l=0

(
s+ l − 1

l

)( x

an

)l

=
1

s log a
+

1

2
+

s log a

12
− s log

∞∏
n=0

(
1− x

an

)
+O(s2).

(3.5)

3.1 Analogues of Lerch’s formula

The next example is a q-analogue of Lerch’s formula (1.6), which allows us to calculate in the

sense of generalized reguralized product.

Example 3.3 (q-Lerch’s formula [13]). We employ the following convention for the q-analogue

of numbers:

[a]q :=
qa/2 − q−a/2

q1/2 − q−1/2
(a ∈ C) .(3.6)

A q-analogue version of Lerch’s formula (1.6) is

∞∐∏
n=0

[n+ x]q =
[∞]q!

Γq(x)
.(3.7)

Here we denote by Γq(x) the (modified) Jackson q-gamma function

Γq(x) :=

∏∞
n=1(1− q−n)∏∞

n=0(1− q−(n+x))
(q1/2 − q−1/2)1−xqx(x−1)/4.(3.8)

The constant [∞]q! is given explicitly by

[∞]q! :=
∞∐∏

n=1

[n]q = q−1/24(q1/2 − q−1/2)− log(1−q−1)/ log q
∞∏

n=1

(
1− q−n

)
.(3.9)

Remark 3.1. The present convention of q-numbers [a]q is different from the one used in [13].

Example 3.4. We have∐∏
m,n≥1

(mn− x) =
1√
2π

e−(γ2+2γ1)x
∏

m,n≥1

(
1− x

mn

)
ex/mn,(3.10)

where γ is the Euler constant and γ1 is the higher Euler constant (see, e.g. [4]), that is, the

coefficient of the linear term in the Laurent expansion of ζ(s) around s = 1:

ζ(s) =
1

s− 1
+ γ + γ1(s− 1) +O(s2).
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In fact, the attached zeta function is calculated as follows:

ζa(s, x) =
∑

m,n≥1

(mn− x)−s = ζ(s)2 + sζ(s+ 1)2x+ s

∞∑
l=2

1

l
ζ(s+ l)2xl +O(s2)

=
x

s
+
(
ζ(0)2 − 2γx

)
+

(
2ζ(0)ζ ′(0) + (γ2 + 2γ1)x+

∞∑
l=2

1

l
ζ(l)2xl

)
s+O(s2).

(3.11)

Therefore the formula above follows from the special values of the Riemann zeta function

ζ(0) = −1
2
, ζ ′(0) = −1

2
log 2π.

Example 3.5. Let a be a positive number and m a positive integer. Then we have

∐∏
n≥1

(
(n+ x)a+ 1

m − (n + x)a
)

=exp


(a+

1

m

)−1 ∑
0<i<j<m

1

ij
+
∑
l>0
l �=m

1

l
ζ

(
l

m
, x

)
− 1

m

Γ′(x)
Γ(x)



(√

2π

Γ(x)

)a+1/m

.

(3.12)

In fact, the attached zeta function is calculated as follows:

ζa(s, x) =

∞∑
n=0

(
(n+ x)a+1/m − (n+ x)a

)−s
=

∞∑
l=0

(
s+ l − 1

l

)
ζ

(
sa+

s+ l

a

)
.(3.13)

Remark that (3.12) is also true for a = 0, and it gives the Lerch formula (1.6) when m = 1.

3.2 Multiplicative anomaly

In general we can not expect the multiplication law of the regularized product

∐∏
n∈I

an

∐∏
n∈I

bn
?
=
∐∏
n∈I

anbn,(3.14)

even if all these three products exist. In fact,

Res
s=0

ζa(s)

s2
+Res

s=0

ζb(s)

s2
−Res

s=0

ζab(s)

s2

is not identically zero in general, hence yields the multiplicative anomaly even in the holomor-

phic regularized products case. Here ζab(s) is the zeta function associated with the pointwise

product sequence ab = {anbn}n∈I of a = {an}n∈I and b = {bn}n∈I . See e.g., [8], [17].

From this point of view, here we give two examples of regularized products. The first

example is a regularized product expression of the Beta function, which has no multiplicative

anomaly.
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Example 3.6 (Beta function). The following equalities hold.

∞∐∏
n=0

(x+ n)(y + n)

x+ y + n
=

√
2π

Γ(x+ y)

Γ(x)Γ(y)
=

∞∐∏
n=0

(x+ n)

∞∐∏
n=0

(y + n)

∞∐∏
n=0

(x+ y + n)

.(3.15)

Notice that arg (x+n)(y+n)
x+y+n

= arg(x+ n) + arg(y+ n)− arg(x+ y+ n) for every n ≥ 0. Here, for

simplicity, we assume 0 < Re x < 1, 0 < Re y < 1, 0 < Re(x+ y) < 1, which assure us to apply

the binomial theorem for all n = 1, 2, ... in the following calculation. The corresponding zeta

function is calculated as follows.

β(s, x, y) :=
∞∑

n=0

{
(x+ n)(y + n)

x+ y + n

}−s

=

(
xy

x+ y

)−s

+

∞∑
n=1

n−s
(
1 +

x

n

)−s (
1 +

y

n

)−s
(
1 +

x+ y

n

)s

=

(
xy

x+ y

)−s

+

∞∑
k,�,m=0

(−s

k

)(−s

$

)(
s

m

)
xky�(x+ y)mζ(k + $+m+ s)

=
1

2
−
{
log

(
xy

x+ y

)
+

1

2
(log 2π)

}
s+

∞∑
k=1

(−s

k

)
xkζ(k + s)

+
∞∑

�=1

(−s

$

)
y�ζ($+ s) +

∞∑
m=1

(
s

m

)
(x+ y)mζ(m+ s) +O(s2)

=
1

2
− s log

1√
2π

Γ(x)Γ(y)

Γ(x+ y)
+O(s2).

The latter equality follows from the Lerch formula (1.6).

The next example is a q-analogue of the example above, which possesses a slight anomaly.

Example 3.7 (q-Beta function). The following equalities hold.

∞∐∏
n=0

[x+ n]q[y + n]q
[x+ y + n]q

=
[∞]q!

q
1
2
xy

Γq(x+ y)

Γq(x)Γq(y)
= q−

1
2
xy

∞∐∏
n=0

[x+ n]q

∞∐∏
n=0

[y + n]q

∞∐∏
n=0

[x+ y + n]q

.(3.16)
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In fact, the corresponding zeta function is given by

βq(s, x, y) :=

∞∑
n=0

{
[x+ n]q[y + n]q
[x+ y + n]q

}−s

= (q1/2 − q−1/2)s
∞∑

n=0

q−
1
2
ns(1− q−x−n)−s(1− q−y−n)−s(1− q−x−y−n)s

= (q1/2 − q−1/2)s

{
2

log q

1

s
+

1

2
+

(
1

24
log q +

∞∑
k=1

qk(1−x)

k(qk − 1)

+

∞∑
�=1

q�(1−y)

$(q� − 1)
−

∞∑
m=1

qm(1−x−y)

m(qm − 1)

)
s+O(s2)

}

=
2

log q

1

s
+

1

2
+ log(q1/2 − q−1/2) + s log

(
q

1
2
xy

[∞]q!

Γq(x)Γq(y)

Γq(x+ y)

)
+O(s2).

In the calculation procedure above we have assumed that 0 < Rex < 1, 0 < Re y < 1, 0 <

Re(x+ y) < 1 for the same reason as in Example 3.6. We note that the cross term q−
1
2
xy comes

from the quadratic factor qx(x−1)/4 in the definition of Γq(x). Moreover, the latter equality

follows immediately from Lerch’s formula (3.7) and hence the anomaly is given by q−
1
2
xy.

Remark 3.2. The above type formulas hold also for the so-called Selberg (resp. q-Selberg) type

integrals if we use their expressions by means of the products and quotients of gamma (resp.

q-gamma) functions.

Remark 3.3. In contrast with the case of the Kronecker limit formula (see [9]), the product of

the abosolute values of the factor
∣∣∣ (x+n)(y+n)

x+y+n

∣∣∣ (resp. ∣∣∣ [x+n]q[y+n]q
[x+y+n]q

∣∣∣) is equal to the absolute value

of the product. For instance, we have

∞∐∏
n=0

∣∣∣∣ [x+ n]q[y + n]q
[x+ y + n]q

∣∣∣∣ =
∣∣∣∣∣
∞∐∏

n=0

[x+ n]q[y + n]q
[x+ y + n]q

∣∣∣∣∣ .
This is just because the products in these cases are taken over the semi-lattice of non-negative

integers which are not the all integers in the cases of the Kronecker limit formula and its

q-analogue (see also [7]).

If we look at the difference of the zeta functions ζab(s) and ζa(s)ζb(s), we have for instance

the following.

Example 3.8. We have

∐∏
m�=n≥1

(m− x)(n+ x) =
1

2π
{Γ(x)Γ(−x)} 1

2

{
Γ(x)

Γ(−x)

}x

.(3.17)

It is not hard to see that this product defines a meromorphic (single valued) function in the

whole C.
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3.3 Transformation properties

In a last position of the present note, we show the multiplication formula of Γ(x) by using (1.3)

(not (3.14)) and (1.5).

Example 3.9 (Multiplication formula of Gauss-Legendre). The gamma function Γ(x)

satisfies the multiplication formula

Γ(Nx) =
NNx

(2π)(N−1)/2
√

N
Γ(x)Γ

(
x+

1

N

)
Γ

(
x+

2

N

)
. . .Γ

(
x+

N − 1

N

)
.(3.18)

In fact, it is immediate from Lerch’s formula that

√
2π

Γ(Nx)
=

∞∐∏
m=0

(m+Nx) =
N−1∏
k=0

∞∐∏
m=0

((mN + k) +Nx) =
N−1∏
k=0

∞∐∏
m=0

N

(
m+

(
x+

k

N

))

=
N−1∏
k=0

N ζ(0,x+k/N)
∞∐∏

m=0

(
m+

(
x+

k

N

))
=

N−1∏
k=0

N1/2−(x+k/N)

√
2π

Γ(x+ k/N)

=
√
2π

N
N1/2−Nx

N−1∏
k=0

1

Γ(x+ k/N)
,

which is the desired formula.

The next example seems also significant in view of the transformation property (1.13).

Example 3.10. Let q > 1 be a fixed parameter. Then we have

∐∏
n∈Z

(qnx+ q−n) = q−1/6(
√

x+
√

x
−1
) exp

(
−1

2

(log x)2

log q

) ∞∏
n=1

(1 + xq−2n)(1 + x−1q−2n).(3.19)

In fact, the attached zeta function is calculated as follows (here we assume that q−2 < |x| < q2

for a technical reason):

ζa(s, x) = (x+ 1)−s + ϕ(s, x) + x−sϕ(s, x−1),(3.20)

where

ϕ(s, x) =

∞∑
n=1

q−ns(1 + xq−2n)−s

=
1

s log q
− 1

2
+

s log q

12
+

∞∑
l=1

(−1)l

l

xl

q2l − 1
s+O(s2).

(3.21)

The statement follows from the following identity

∞∑
l=1

(−1)l

l

xl

ql − 1
= − log

∞∏
n=1

(1 + xq−n).(3.22)
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It is worth noting that since

∐∏
n∈Z

(qnx−1 + q−n) =
∐∏
n∈Z

(qnx+ q−n)

x
,(3.23)

once we know the existence of the regularized product, we can find that this function is invariant

under the map x ↔ 1/x by (1.13) in Lemma 1.1. Moreover, the expression (3.19) shows that

the regularized product possesses the information of location of zeros.

Remark 3.4. In [7], the generalized regularized product

∞∐∏
n=1

sinh(n+ x)

sinh(x)
(3.24)

is essentially calculated and one knows then it gives the double sine function S2(x) (which is

the elliptic theta function up to the elementary factor). From this point of view, it is a natural

and an important problem to calculate the regularized product

“
∞∐∏

n=1

Γ(n+ x)

Γ(x)

”
(3.25)

if it exists, and this is expected to give essentially the double gamma function Γ2(x) (see [1],

also [10], [11]). Notice that in view of the reflection formula S2(x) = Γ2(x)
−1Γ2(2 − x), the

product (3.25) is actually regarded as the “half” of (3.24). We remark also that these kinds of

products (3.24), (3.25) are quite useful for the study of zeta extensions [14].

It is also interesting to study

“
∞∐∏

n=0

q(n+x)k ”
(3.26)

for k ≥ 2. This is a natural generalization of (3.1), and hence we expect to have a proper

situation that (3.26) may give q−B1+k(x)/(1+k).

Unfortunately, the generalized regularization method does not work in these cases since the

attached zeta functions are not meromorphic at the origin s = 0. Thus we hope to formulate

the further generalization of zeta regularization which makes us possible to deal with wider

class of divergent products including (3.25), (3.26) and the q-analogue of the results developed

in [12].
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