SOME ASYMPTOTIC FORMULAE INVOLVING POWERS OF ARITHMETIC FUNCTIONS
V. Sitaramaiah and M.V. Subbarao

§1. Introduction. S. Ramanujan was probably the first mathematician to consider
asymptotic formulae for sums of powers of certain arithmetic functions. For
example, in 1916 in his paper [10] he generalized the classical Dirichlet divisor

problem and gave estimates, without proof, for z rs(n), where +t(n) denotes the
n<x
number of divisors of n. He also gave estimates for ) oa(n) and
nx
X oa(n)ob(n), again without proof, where ca(n) denotes the sum of the a-th
n{x

pgﬁers of the divisors of n, with cl(n) = g{n). Another remarkable sum that he

2
considered was Z r“(n) where r(n) denotes the number of representations of n
nlx
as sum of two integral squares.

Ramanujan's results were proved, and in many cases, improved by B.M. Wilson
{24] among others. However, Ramanujan did not give asymptotic formula for

2 ws(n) or for such related sums. Here o¢(n) is the Euler totient.
nKx
Evidently inspired by the work of Ramanujan, S. Chowla in 1930 [3] obtained an
asymptotic formula for (Eﬁgl)k, where k is a fixed integer, with error term
m<x
0(log x)k « Among other Ehings, in this paper we improve this O-term to
O(A(x)(log x)kul), where A(x) = (log x)2/3(log log x)a/3 if x> 3, and =1 for
0 < x <3 {see (2.7)). We also establish an asymptotic formula for Xm<x (yégl}k s

where ¢ 1is Dedekind's y-function given by ¢(n) = n (l + %ﬂ, p rime, with an

z pln
error term 0((log x) 3k l)/3). In fact, we establish asymptotic formulae for the
(m)\k (m) vk
sums stx (1;~—) and stx (Qa—la , where r 1is a positive integer with
rlm rin

uniform ()-estimates of the error term (see Theorems 3.1 and 3.3). 1In Section 4,
we consider the above sums with the restriction that (m,n) = l. We also estimate
the sum zm<x (%%E%)k, (see Theorem 3.4). The special case k = 1 of this sum was
considered earlier by D. Suryanarayana ([18], Theorem 5) in 1982 who improved
earlier estimates of S. Wigert ([22],[23]). Our estimate of the error term for
this sum is superior to that of Suryanarayana.

We also consider (see Theorems 3.5 and 3.6 and Corollaries 3.4 and 3.3)
asymptotic estimates for Emﬁx (Eéfgﬂt and stx
values of t. The case when 0 < t < 1 was considered in 1969 by I.1. Iljasov [6].

In section 5, we estimate the sums [ (ﬂf&ggjk and . (gfﬁgl)k’ where

m
¢* and o* are the unitary versions of ¢ and o, k being any positive

(Yéﬂl)t for positive non-integral

*Supported in part by a NSERC Grant.
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integer. The case k = 1 was considered earlier in 1973 by Suryanarayana and
Sitaramachandrarao [19].

In Section 2, we develope the necessary background by establishing several
lemmas. Among other results, we need to utilize the deep result of Walfisz [19]
that

T o(my/m = ¢ @)x +0 (10>

m<x

X)

where throughout the paper [(s) denotes, as usual, the Riemann zeta function.

We may mention here that Ramanujan [10) gave without proof the result:

I of(m) = (5/6)0(3)C +E(x),
mﬁx

where E(x) =0(leogzx), E(x) # o(leog Xx).

R.A. Smith [16] improved the error term to éj(leog5/3

x). 1In [15], these
results of Walfisz and Smith have been extended by Sitaramaiah and Suryanarayana to
the general sum im<x or(m) in a remarkable manner.
tix
Regarding the asymptotic estimate for the summatory function for ¢{(n), the

well known elementary result

) 2%31 = ég-x +é?(log %)
n<x b

was vastly improved by A. Walfisz ([21], Chapter 4) who used some deep estimates of
exponential sums to establish the result:

/

Y e(n) = gi-xz + () (x(log x)2 3(log log x)4/3) .
m

n<x

It is not generally noticed that this result was further improved by A.I. Saltykov
in 1960 {11] who showed that

2
] e - 2 40 (x(10g 027 (10g 10g 0'7F)
nLx "

for every ¢ > 0.

In obtalning our asymptotic results with error term for Em<x ¢k(m) and
related sums, we need to establish several preliminary estimates. In doing so, to
simplify our arguments, we utilize certain estimates of Walfisz. Thus our estimate
of the error term for zm(x @k(m) is a direct generalization of that of Walfisz for
k = 1. By similar arguments, we could improve our estimates by using the result of

Saltykov. However, we shall not go into that here.
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§2. Preliminaries. Throughout this paper the letter p stands for a prime
number. The Dedekind y~function is known (cf. [5], page 123) to possess the
following arithmetic form:

2
¥(m) = m % pd .y ey, 2.1)
dim P

where u 1s the Mobius function. It is clear that ¢(m) > m and
ﬁégl.s 8(m)  t1(m) , where 8(m) = zm(m)’ the number of square—free divisors of m,
and w(m) 1s the number of distinct prime factors of m. Also, ¢(mn) =

(m£(§$)§§sn) , where (m,n) 1is the greatest common divisor of m and n, so that
s

Y(m,n) £ y(m)y(n). We frequently make use of the estimates

¥ % = é%log x) , for x2 2, (2.2)
m<x

and for s > 1l and x > O
1 ap 1
= U 2.3)

We may have an occasion to use (2.2) for x > 0 also. In that case, without
further mention we mean that zm(x % = o(f(x)), where f{x) =1 if 0 < x < 2 and
f(x) = log x if x > 2. A similar remark applies to all the asymptotic formulae
in this paper and they are all valid for x > 0.

We prove
LEMMA 2.1l. For any positive integer Kk,

(2.4)

’

R G AR /6%

m<x

where thel ~constant depends only on k.

PROOF: By (2.1), we have

g g iy gy L) - 0.

mx ® a9 s<x|d dx d

Hence (2.4) is true for k= 1. We now assume (2.4) for some k > 1. We have by

(2.1) and the induction hypothesis,
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2
poayk g gk g ()

m<x m<x dé=m

N
|~
[a 9
'
—
L~
E
~—
=

k
- {d)) ™y _
_qxgx &H '&@)

where we used the result that

k k
adx & Ty &

since +t(d) = dee) ; for every ¢ > 0. Hence the induction is complete and Lemma
2.1 follows.

LEMMA 2.2. For t > 0, we have

o* (m)
f - Oeg %),

m<x
where G:(m) is the sum of the s-th powers of the square-free divisors of m.
PROOF. By (2.2), we have

o* ()

m

1wl

]
|

m<x

1
I =t oF
dex a5 xra

1
=0 ((log x)- déx d—t.q] = Q10g x).

LEMMA 2.3. For t >0 and k2> 1

ox (my" " (w)

k
m<x o

= 6>(log x). (2.5)

PROOF. For k=1, (2.5) is true by Lemma 2.2. We assume (2.5) for some integer
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k > 1. We have by (2.1),

eI RO o
m<x mk+l m<x mk dé=m d

0% (0% (638" (v T (6)

T as<x a<lgk

k+1

d<x d 6<x|d s*

ox (¥ (a)

= 0((10g x)+ ] ) ,
d

d<x

where we used the result that oﬁt(dé) S_Gtt(d)cft(s) and the induction
hypothesis.

We have
o (m) < 8(m) < t(m),
so that
ox (09" (a) k
i AN L) _pa
prs) L) 2 @)
d<x d déx  d
Hence
k
0% (m)y (m)
R 0(10g Xx) .
m<x m

The induction is complete.
LEMMA 2.4. For any integer t 21,

I (B () =0,
m<x o
where

2

Al(m) = % 2lg) .
qim q

PROOF: We have Al(m) 5 2

1
E , S0 that

1(EelE ) <

N
E
~
E
~——
rn

[}
~1
[29
—
E
s
[a3

ox (¥ 7 (@) or (0¥ (@)

(2.6)
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where we used Lemma 2.1 and the fact

(0 :t (4) t
dE< d€+2 Sdz ng) oo
X X

LEMMA 2.5. We have

¥ Um _g (logzx).

wx ¥ (m)

2 _ .5 B;Z_(._fll
o (m) d|m ¢(d)

) (m) < 1{d) 5 1(8)
{m) ~ dx de{d) sx)d 8

PROOF. Since , we have

m{x

/ 2
; aq{—é% =0(log X) ,
d<x

=0 ((Log -

t(m)

=0 2
zmﬁx - (log"x) and the fact that

where we used the result that

2

] oy Gl Loq,,
a<x *° iz d

since ﬁj £0(d) £ t(d). Hence Lemma 2.5 follows.

LEMMA 2.6. (cf. [14], Lemma 2.2). For any positive integer n and x > 0, we

have

! a2 20 ox, @),
max
(m,n)=1

for every € > 0, where p(x) = x ~ {x] - 1/2 and, as stated earlier,

/3, if x> 3

(log x)z'fs(log log x)4
A(x) = (2.7)

1, if 0<x<3.

Also, the 0—const:ant depends only on €.

REMARK 2.1: It is clear that A(x) is increasing for x > 3. Using this it can
be shown that Xx(x) < X%)‘ A(y) whenever 0 < x {y. In particular,
A =00y, for 0 < x <y,



LEMMA 2.7. (cf. [4], page 10). We have

ulmy _
m_2<_x 22 =0,
(m,n)=1

where the(j—estimate is uniform in x and n.

LEMMA 2.8. (A. Walfisz [21]). For x 2> 2, we have

] ER w0y + Qg w.

We now prove

LEMMA 2.9. Let o'(mjn) denote the sum of the reciprocals of the divisors of m

which are prime to n, that is, o'(mjn) = J abem %. Then we have
(a,n)=1
{(2X, (n)x
1 o'(mn) = g +0(‘¥'(n) . 1023 <),
n
nlx a
where
3w = et (1 5 (2.8)
2 plat” 72

the 0—estimate being uniform in x and =n.

PROOF. Since zd[m u{d) = 1 or O according as m =1 or m > 1, we have by

Lemma 2.8,

1 (4 1
S o'(mn) = ) -~ = % Be) g -
m<x ab<x & dla d bs <x/d 6
(a,n)=L
- u(d) 3 g(m)
d%n d m__x|d .

afn D (28 40 (105" P00}

2
@) 5 8L 40 (208?00 }{ uld)y
din d d|n

X£(2),(n)

2
n

OB L 1052y,
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Hence Lemma 2.9 follows.

LEMMA 2.,10. We have for any positive integer r,

xg (234, (1)
p Em . L s’
m{x
rim
where
SR 20 (2.9)
4 qjr q
an
2
d)8(d 2 v(r)
S(r) = = (l+ -:fa = (2.10)
d%r p(d) Plf p-i p(x)

the 0 ~estimate being uniform in x and «r.

PROOF: We have by Lemma 2.9,

e L T

m{x do<x ds<x r(é,r)—lbdﬁx
t|m r|dé r la
6,1)
- ) L L 13
q%f q tos<asr 6 q%r 4 abix/r
(8,r)=q (a,x/q)=1
1 1 1
= 1 ~ = =} o' (mr/q)
q%r 4 mix/r  ab=m 2 q%r 4 mix/r
(a:r/q)=l
2 )
) L{x;()%(ﬁq)+6(um2”x*i§%qb}
qlr ¢ r(r/q) /g
_ X l_Jz(er) . 0(1og2/3x~ 1, Q(r/g)) .
@) e 4 (gt q%r q  (r/9)

It is not difficult to show that

Jp(x/a)

1
q%r 9 (e/q)

and

As observed in [15], p. 1194, we have
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8(q) < 8(r)
qfr ¢

from which we obtain Lemma 2.10.
COROLLARY 2.1. We have for x > 2and r > 1,

wzsz (r)
2/3
mzx o{m) = ———IE%———»+ O(S(r)x log / x),
t|m

the U-estimate being uniform in x and r.
PROOF. Follows from Lemma 2.10 and partial summation.

REMARK 2.1: Corollary 2.1 {s due to V. Sitaramaiah and D. Suryanarayana (cf. [15],
Lemma 2.3).

LEMMA 2.11. For any positive integer n, we have

2 o(m) . 24 (Z)W(ZNZ(H) + @[a(n);), 1032/31() ,
mx n n oln
{m,n)=1

uniformly in x and =n.

PROOF. We have by Lemma 2.10,

xg (2)A, (d)
] L. )‘[ w1 o) =d§ w(@ |+ O(s(a)+ 10g> 1)}
m<x din m<x n
(m,n)=1 dlm
u(d)A, (d)
= xz(2) % ——— + 01050 % w2 (arsca))
din din
x5 (2)e{n N ,(n) 28 (n) 2/3
= n3 +0(q)(n) olog x} s
gince by (2.9) and (2.10),
d)A, (d) (o)X, (n)
u(d)a, _eln 32 n ’ % u2(d)s(d) - egﬁgn .
din d n d|n ®

Hence Lemma 2.11 follows.
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LEMMA 2.12. For any positive integer r, we have
E () _ xq)(r)Bl
msx o rzBl(r)
r|m

for every ¢ > 0, where

B, =11 B,(p), B,(x) = I B(p),
P plr
1
and Bl(p) =1 - = .
P
PROOF: Since iéEl = 2d6=m E%Ql.’ we have
g o(m) _ p(d) _ 5 u(d)
m<x dé<x d dr(d,r)—lng d
rIm r]dd
- n(d) _ ) ) plaq)
q%r (d|q)b<x/r d qlr  ab<x/r aq
(d,r)=q (a,r/q)=1
= u(q) ula) , since w(aq) = 0 if
q|r 9 ab<x/r a
(a,r/q)=1
(a,q)=1
n(g) pla) _ ofr) ) p(a)
q%r 4 ab<x/r 2 t alx/r a
(a,r)=l (a,r)=1l
= Q(r) z uga) [E;]
alx/r
(a,r)=l
_o(r) w(a) ( x__ (xy _ 1
Tr a { ar p(ar) 2}
asx/r
(a,r)=1
- Xo(r) u(a) _ o(r) p(a) (x .y _
2 z 2 r z a p(ar)
r ax/r a a<x/r
(a,r)=1 (a,r)=l

+0(r), (De(r A0,

(a,q) > 1

b<x/ar

1
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= X9(D) 7 2&31+0(>59£l,£)
2 2 2 b3
T a=1 a r
(a,r)=1

p(x) glr)
+ et THL ) + (B, (2.11)
where we used the result that

1 8oy B0,
a’x a a>’x a

(a,r)=1

and the Lemmas 2.6 and 2.7. Also it is clear that

SO W U
a=l a2 Bl(r)

(a,r)=1

On combining the € -terms in (2.11) we obtain Lemma 2.12.

COROLLARY 2.2. We have

2

x o(r)B _
L e(m) = T Lo (otus(r)q»(r)r 1xA(X>), (2.12)
mix 2r Bl(r)

rTa

for every ¢ > 0, where the 0 -constant depends only on €.
PROOF: Follows from Lemma 2.12 and partial summation.
LEMMA 2.13. We have

Y(m) = 5, ] u(a)o(b).

a b=m

We omit the proof which is easy.
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LEMMA 2.14. For square-~free r, we have

xyp(r)c ,
3 (m) —1+ 0(3(1‘) . log2/3x),
néx O re,(r)
i

S(r) is as given in (2.10), thel —estimate being uniform in x and r.

PROOF: By Lemma 2.13 we have

poMm .y w@e Loy uw@ g ob)

m
m<x aZbe ab a

t|a?b (%) v
a ,r

ad/x b<xla

rim

2
For square-free r,(a ,r) = (a,r). Hence by Lemma 2.10, we have

5 y(m) _ ) ula) 5 a{b)
2 b

m

mlx aw'x 2 b<x/a
rlm ¢
(a,r) tb
%t (2)(a,r)A (r/(a,r)) 2/3
-] uey ; +0(s(255) 108”9}
aS_/; a ar
2 u(a)(a,r)AI(r/(a,f)) 1 2/3
= XC§ ) 5 B - +0( 73 _'—E»S((afr)) log / x)
a/x a8 a</x
=’£§éﬁ2' +0():' . log2/3x), say (2.13)
1 2
We have

it = % A, (x/q) ] uza)
1 q|r aﬁ/;- a
(a,r)=q
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u(q)A, (r/q)

= {(bg) _ b
- Jowtro 1 M e
i b</x/q © 9 air 4 b<Y x/q
Iy_ (b,r)=1
(b,3)=1
Now
b > b 1
id oy EL,Z4.0( I 2
b$x b b=l b b>x b
(b,r)=1 (b,r)=1
1 1
=0 (- +0(=5 .
plr p x
so that
u(q@la (r/q)
I'= 1 (-5 4057 - 1 A G/).
1 pir P oqlr g x qir
By (2.9), we have
u(q)Al(r/q) 1 T
R IR R N B
qir q plr 13 plr p-p
1 1 1
= 0 (+30-3) J_EQ I (1-%) .
pir P plr P
Hence, we have
(- Lzﬂ u(qda, (x/q) ) 5(r) .
plr ot qlr q3 5 (#)rey (1)
Al so
LA s ] a@ = e < T 3 - Hn
qir pir pir plr
Therefore,
t = v(r) 18] y(r),
} tGre, (0 © [rx3/21 .

For d|r , S(r/d) < S(r) . Hence if 2}. is as given in (2.13), we have

I'=0(s(me § ) =060,
2 ad'x

W

Using (2.14) and (2.15) in (2.13), we obtain,

X) .

?im) - xc(zéw(r) + (¢(§) ] '%ﬂ +0(s(r)e10° ">
o<x z(4)r cl(r) r 2
r|m

On noting that ¢ = %%%%‘, we obtain Lemma 2.14.

(2.14)

(2.15)
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LEMMA 2.15. For any positive integer r, we have
xg@W ()
] e L+ Os(n)10g 0,
méx m r
T|m
where
2 2
= u(a)r (r/(a”,r))(a,1)
D (r) = ) 7 .
a=1 a
Also,
D (x) = CKAl(r)) .
PROOF:

By Lemma 2.13 and 2.10, we have

AL NP S 1€V R o(b)
néx " 2 b

a/x 2 bix/az

(5)1v

a,r

r|m

X2 (2) ) u(a)A1<r/(az,r))(a2,r)
= r

aS/; a

Since Al(r/(az,r)) S_Al(r) and (a2,r) < r , we have

w(a)a) (x/(a”, 1)) (")

1
7 =0 (rAl(r) Y _._ZJ
32{; é asv'x a

= o(rAl(r) ;%75) .

Hence we have

A (r) .
E Q§21_= 55521 Dl(r) +£/( L ) + Lks(r)log2/3x) .
m<x X
r|m

By noting that

% + O(S(r)-log2/3x) .

(2.16)

(2.17)



1 1
s I (1"';4’;—-2-‘.-)

i 2
= H (1+.1)_—T)-<—P?r(l+p—_l) =S(r),

we obtain Lemma 2.15. (2.16) follows by using (az,r) S_az and Al(r/(az,r))
< Al(r).

Lemma 2.16. For any positive integer r, we have

x5 (2)9( )0, (x)
po(Eey? . 2 Os(ne10g” ),

m<x rz
rlm
where
o (a0, (ar)
Dy(r) = | (2.18)
a=1 a
(a,r)=1
Also,
D, (r) = Uta (x)) @.19)

PROOF. By (2.1), we have

P2 _ o wi(d) V(m)
DGO L R ORI ST
mlx d<x m<x

¢ |m - {d,r} |m

where {d,r} denotes the least common multiple of d and r. Now, by Lemma 2.5,

since {d,r} = rd/(r,d), we obtain

2 x5 (2D, {rd/(r,d))
glmh2 u {d 1 0o 23
méx( =) d%x d Ty L A/, a)) 1087 x)
rTa =
2
2 u (d)Dl(rd/(r,d))(r)d) 2/3 a 1
B xi"( ) ) + (108”7 ] S(tray) 9
d<x d d<x ’
- x%(Zz g. + (logz/Sx' zr) , (2.20)

say. We have
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-1 E S(E5): § s }j 2D 0 (s(r)e108 w0,

since by (2.10},

wlx dé<x d8e(d)
z T(d} 2 _];
T« de(d) §
S s¢ X
]
d
_0(1og X'déx ;;(;)) O(log %)
Hence -
g' =0 (s(r)+log x). (2.21)
Also,
2 ?(ay, (ar)
1=y KD alhiilee bkl
3 q%r 4 alx/q a2
(a,r)=1

By (2.17) for (a,r) = 1, we have D, (ar) =0(Al(ar)) =0(Al(a)-Al(r)). Also

since

Aj(m) < % Sl ame ] 50 ] ) =0,
qim

m<x as<x d<x d
Hence
2
u (a)d, (ar) 1 .
] ——=0 I ) =0(a (0 Y,
(a)x/)’q1 az 1 av>x/q a2 L *
a,n)=
so that
2
2 ® u (a),(ar)
t o= (d) 1 /3
g = % ud { El 5 +0(A1(r)- %)}
gir a= a
(a,r)=1
A, (r)e(r)
= @Dz(ﬂ +0(~1--;---—) . (2.22)

Substituting (2.22) and (2.21) into (2.20), we obtain

xZ (2)9(r)b, (r) A (x)8(r)
) ”ﬁm)2= > 2 +0(l . ) +0 (s(r) 10g

m<x r

5/3

X) .
r|m

Hence Lemma 2.16 follows



217

§3. Main Results. Throughout the following k stands for a fixed positive
integer and 0 < & < 1. All the error terms in the asymptotic formulae given in

this section depend at most on k and €. First we prove

THEOREM 3.1. We have

k
x(9(r))"B - _
) (q’;m))k ol k +O(c’_‘HE(r)(—‘k—v«—(l‘i))k L () (1og 05Dy, (3.1)
m{x r Bk(r)
r}m
where
B, = B(p), B(x) = B . (p),
P pir
k arky 1 1 1k
B(p) =1+ az:-‘l D) ;ﬁ’ L+ ((1- 3) A1) . (3.2)

REMARK 3.1. Clearly p Bk(p) is absclutely convergent. Since 0 < Bk(p) <1, for

all p, Bk(p) > P Bk(p) , so that = 0(1) , where the U~constant

i
plx 8, (1)

depends only on k.

PROOF OF THEOREM 3.1: By Lemma 2.12, Theorem 3.1 is true for k=1 and for all
r. We assume (3.1) for some k > 1 and all r. We have, since

-1 _ -1
¢ (m)m —Zd|m u(d)d

1 P
Z (Q;m))k'l‘ = z uéd) 2 ( ;m)}k i
mixX

<x mlx
rlm {r,d}|m

Hence by the induction hypothesis, we have

j (el e ) B ()e" (xd/(x,d))(x, )"
mn

ulx M adx B (ra/r,an
r|m
- -1
-l 1 uf(@ox,_(ra/(r, 0 (ra/ (2, @) (r, 0
+ U0 (x)(log %) = 1 -
r a<x d
xB
= k:fl I+ O (x)(10g 0F ! i_l i (3.3)
r 5 r 6

say. We have
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k k
g o= e (x) ulq) N P_gé%‘}__(ﬁ . (3.4)
5 Bk(r) q%r q alx/q ak+ B, (a)
— k
(a,r)=l
1 : o k
Since g(a) { a and == = 6kl), the series 2 _ p(a)e (a) is absolutely
- B (a) a=l 25 oy
(a,r)=1 k
convergent. Also, the general term of the series is multiplicative in a. Hence
expanding the series as an infinite product of Euler-type, we obtain
(D"
(1~ 2
K k.-+2B ()
p(a)e (a) _ P P kP (3.5)
a=} ak+zB (a) ¢ “1)k
" (1- _.a_____g
(a,r)=1 k+2
plr » TB(p)
From (3.2) it is easily seen that
@)t
Bk+1(P) = Bk(P) - R R
so that
k
B .. =8 (1~
k+1 k k+2
14 B (p)
and
k
_ RS )
B (1) = B (1) (1 ) ) (3.6)
plr P B.(p)
Also,
k
u(a {a) _ 1 _h el
o AR A I (3.7)
a>x a Bk(a) a>x a
(a,r)=l
From (3.5), (3.6), (3.7) and (3.4), we obtain
xB K(r)B K
k - *o k+1 ESQZ +O(2 gr! 2( ))
KL kL % a KL % [
r k+l(r) qjr r glr
k+l
X (r)B
- k+1 17 8({xr)
o +0 (259 (3.8)

£ By (0
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From (3.3),

2 k-1
Bl g @@
q k

e~
]

o* (W) ]
qjr asx/q a
(a,r)=1

o*) (@ ()
k

A

2
0%, (D9 (D) I ula)

asx/q a

. k
Uor,, (® -w%l log x), (3.9)

by Lemma 2.3.
From (3.8), (3.9) and (3.3) we get

(T D oo ok .
mzx( w ) T TG, o +0ox,,_(m(EE A0 (10g 0.
- k+1

r|m

Hence the induction is complete and Theorem 3.1 follows.

THEOREM 3.2 For any square-free r, we have

k
x¢ (r)e _

gy ('J)lflm))k - k +0(S(r)(1og x)(3k 1)/3) ) (3.10)

m<x r ck(r)

t|m
where

e =Me (@ e () =1 c(p),
d p plr
an
Kok 1 Lo 1k
e (p) =1+ a2=1(a) pa” =1+ 5((1+ - 1) . (3.11)

PROOF. By Lemma 2.14, (3.10) is true for k = 1 and all square-free r. We

assume (3.10) for all square-free r. By (2.1) we have

2
p eyt g ould oy ek
n<x d<x m<x

r|m {r,d}|m

We can assume that d 1s square—free. Since r 1is also square—-free {r,d} 1is

square—free. Therefore by the induction hypothesis, we obtain
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E (}k!ﬂl?)k‘f‘l - X(‘,k Z uz(d)\pk(rd/(r7d))(r’d)k+1
m<: m rk+l d<x dk+2ck(rd/(r,d))
rim
3k~1
3
PO 03 (i)

3k-1
Zk 51 +0(s(x)e(log x) > -+ log x)
kL4 8 x 8 XJ»

say. We have

1

RO ) w2 (a)*(a)
c, (1) q k+2
k q%r asx/q a ¢ (a)
(a,r)=l

By Lemma 2.1, zm<x(ﬂéﬂlak =0(x).

Hence by partial summation,

Keaya® oL
p e Loy

a>x a
so that
vant@ . § i@ g
k+2 k+2 X
a<x/q a ck(a) a=1 a’ e (a)

(a,r)=1 (a,r)=1

k
(ptL
e R4t
plr P (P

on expanding the infinite series as an Infinite product of Euler type.

and (3.13), we obtain

I =ﬁ3ﬂ moe ey ot
7 rc (r) 'r k Ck(p x
Substituting this into (3.12), we obtain
k41 e +1
R - g U*—L***( )+
m<x r e () plr e, (p)

rla

(3.12)

(3.13)

(3.14)

From (3.14)
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. 32
+0(ﬂ%§ﬁ] +0(S(r)(log x) 3 )
r

3k+2
XCyy —

= ~k+—-1-—-—+0(s(r)(log x) 3 )

2
T ()

The induction is complete and hence Theorem 3.2 follows.

THEOREM 3.3. For any positive integers r and k > 2, we have

k-1 = =
= %5 (2)(r))
p ey L @OEDp ) +0s)(log 0 0 ) (3.15)
mlx n r
r lm
where
e @) @
D, () = ” , k= 2,3,... (3.16)
a=1 a
(a,r)=1
and
D (r) =04 (1), (3.17)

where Al(r) is given by (2.9).

PROOF: For k = 2, Theorem 3.3 follows from Lemma 2.16. We assume Theorem 3.3 for

some k > 2 and all r. By (2.1) and by our induction hypothesis, we have

2
p(eykt Ly Dy kmyk
m_<_x d_(_x m<x

rlm {r,d} |m

W@ ra/ (e, D, (rd/(x, )

- X {(2)
rk d<x dk+l
3k+2
+0(s(r)(log %) ° )
k42

- §5é§l ' +0(S()(log ® ° ), say,
r 8
We have
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Co o w2 I, (ar)

-1
I = (e % (3.19)
8 qlr q asx/q ak+1
(a,r)=1
For (a,r) = 1, by (3.17),
D, (ar) =0(A,(a)A (1)).
Therefore by Lemma 2.1 and partial summation,
2 k-1
L@@ TDED
k+1 17 %
a>x/q a
(a,r)=1
so that
2 k-1
u(a)(¥(a))” "D, (ar)
251 =Dy (1) +0 (A0 )
asx/q a
(a,r)=1
Hence from (3.19) we get that
k 8 (v () 1A ()
v oo () 9] 1
A
Substituting this into (3.18), we get
k-1 3k+2
Y(m) ktl k 8(r)(¥(r))” "A (r) -5
- X @)(W(r)) " O 1 Orq 3
105 = rk+1 +Y( 3 ) +Y(8(r)+(log %) )
r|m

Clearly
Dy 4 (D) =0(Al(t)).

Thus the induction is complete and hence Theorem 3.3 follows.
COROLLARY 3.1. We have for k > 1,

k-+1 k
(e s
I (e(a)® = k

T R 40 (e, (0 (R () (log 05T (3.20)
mlx Ge)r B (1) et r

r|m

where Bk and Bk(r) are as given in Theorem 3.1.
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PROOF: Follows from Theorem 3.1 and partial summation.

COROLLARY 3.2. We have

(i) For square-free r and k > 1,

ke k-1
) (ti?(m))k = Py k + 0(s(r)xk(1og %) 3 ), (3<1Cf<x)
m<x (k+l)r ck(r)
r|m
(3.203)
where €y and ck(r) are as given in Theorem 3.2.
(i1) For any positive integer r and k > 2,
e Sh@eE T o . 3ol
I Wmw)” = - + O(s(o)x“(10g x) ° ), (3.20b)
m<x (k+l)r
rim

where Dk(r) is as given in Theorem 3.3,

PROOF: Follows from Theorems 3.2, 3.3 and partial summation.

REMARK 3.1: Theorem 3.1 in case r = 1 was originally established by S8.D. Chowla
[3] with a weaker {/~estimate of the error term: 0 ((log x)k). Taking r =1 and
k= 21n (3.20) and (3.20a) we obtaln results due to D. Suryanarayana ([17]),
Theorems 3.6 and 3.7) who established them using the identitites

WP = T uMd)e(de(s)s and v (a) = T A'(Dur(DRAW(E)S
dS=m dé=m

2(d)

where A'(d) = (-1) s 2(m) being the total number of prime factors of u.

Remark 3.2. Formula (3.20) (k=1) was established by O. Holder [6[ and S.8. Pillai
[9) with error term 0 (x log x) which does not appear to be uniform in r. In
1961, E. Cohen ([2], lemma 3.2, s=1) obtained the formula (3.20) (k=l) with error
term ¢ (e(r)r_lx log x). In 1977, Suryanarayana and Subrahmanyam (cf. [20], lemma
3.1) established (3.20) (k=1) with error term 0 {(xA(x)) which they stated to be
uniform in r. We may mention here that in view of Remark 2.1, in [20] they would
get (3.20) (k=l) with error term 0 (xx(x)am(r)) where a = ()\(3)).1 (For example,
see the proof of lemma 2.1 in [14]) and the error term in (3.20) (k=1) is clearly
better than this since a > 2.

THEOREM 3.4. For each fixed integer k 2 1,

LB -+ O (0g 0]V
mlx
(3.21)

where
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(k72)(k—l) + 1 , if k 1is even
N =N = (3.22)
((k+§/2))(k—1) +1 , 1f k 1is odd ,
and
A =TI {1+ (p;iik<<p+;>k~pk> . (3.23)
P p(pH) B (p)

where Bk and Bk(P) are as gilven in Theorem 3.1.
. k k .
PROOF: Let g{(m) = m /(y(m)) for any m. We write

g(m) = % £(d) , (3.24)
d|m

for any m, so that by the Mobius inversion formula, we get f£{(m) = % w(dglm|d).
dim

Therefore, if p is a prime and a 1is a positive integer, we have

~1
£ = g(p® - g™ )
7’ g(p)-1 , if a=1
= (3.25)
L0 , 1f a> 2,

since g(pa) = g(p) for any prime p and a > 1. We have

k k_ k
[£(p)| = la(p)-1] = 1 - —B— - (XL P
(ptl) (pHl)

k 2 k k-1
1+ (N + (g)p e+ (Db

(¥

L+ el N et )t
< <

(1" = (1)*

s

where Mk is the maximum of the binomial coefficients (T) s (g),...,(kﬁl) for

k> 2, with Ml = 1, so that

(k§2) , 1if k 1is even

k
((k+l)/2) , 1f k is odd.

From the definition of N given in (3.22), we get
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k-1
[£E(p)] = fgp)-1| SEP——T . (3.26)
(ptl)

From (3.25) and (3.26), we obtain

2 k-1 w(m) w(m) k-1
|f(m)| < p (m)m kNm < N m

< = (3.27)
((m)) (y(m))

for any m. Now, by (3.24) and Theorem 3.1, we get

g(mk _ ¢ cg(m)ik
méx(‘l’(m)) L ) %m £(a)

mx

I f@ | ey

d<x m<x
d|m
xB, (p(d))"

k

* k-1
k - [£¢d)|o_;, (d)(¥(d))
= xB EDG@EN® | () (x)(10g 05 ] 1+e )

Kacx dk+1Bk(d) alx a7
(3.28)
Since ¥(m) > m, from (3.27) we obtain,
w(m)
N N
Uolem] <7 =0((log x)), (3.29)
m<x m<x
and
* k-1 w(d) *
[£()]o ), (D (w(a) AN )
k-1 S d
d<x d d<x
N
=0((10g ) , (3.30)
which follows from lemma 2.2 and induction on N. From (3.29) and partial
summation, we get that
lEm| _ o (Log x)"
) - =Y( ” ) . (3.31)

mx

© k
Also, the series 2 fﬁii( (4)) converges absolutely. Expanding this as an
d=1 d Bk(d)
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infinite product of Euler-type, we obtain from (3.23) that

A= ] £(d) (p(a)*

koogy gt B, (d)

From this, (3.31), (3.30) and (3.28), we obtain Theorem 3.4.
Taking k = 1 in Theorem 3.4, we obtain

Corollary 3.3

E % = x8 +0(A(x)log %), (3.32)
méx

where

- I
B =105y -

Remark 3.2. Formula (3.32) has been established by D. Suryanarayana ([19], Theorem

3.5) with a weaker O-estimaCe of the error term:t (log x). This formula was

originally established by S. Wigert ([22],[23]) with much weaker U-estimate of the
0 1/2. 3/2

error term, namely U (x '“log”'"x).

On lines similar to that of Theorem 3.4, we can prove the following:

Theorem 3.5. Let g be a multiplicative function satisfying
(i) g(pm) = g(p), for all prime powers pm , m2> 1
-1
(11) lg(p)~1] ink /(p+1)k, for some positive integers k and N, for all primes
p.

Then
E e (o H)* = xass, +0(G0(l0g 0VETL)
max
where -
o= (1 D )7L
k ( W1 )
p P B.(p)

where Bk(p) is as given in Theorem 3.1.

Corollary 3.4. Let t be an non-integral real number > 1. Let T be the
integral part and s ©be the fractional part of t. Then we have

z (iégl)t = XAfBT +C7(A(x)(log x)N+T—l) R
m{x

T+1
3

where N 1is any positive integer with N 2»5(%) and
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1 G-l ")
RN

ap =1 (1
P
Proof. We take k =T and g(m) = (2&2))5 in Theorem 3.5. Then

hs . _s T Sy, arlya .
g(p) = (1- )7 = 1 p+82=2(3}<1> ()

For a > 2,
1(8)1 s(l-8)(2-s) +.. ({(a-l)-s) < s+{l+2 ...(a"1)) _ s

a al EY a’

so that
1 1 +1
ig(p)-13<~§+s 2 -~<§ S5 ‘P‘f §+S—2=S 5
. a=2 ap P P P
urther
T-1
s(p;l)—SN p = >N > s(1+ l)’rﬂ )

; P (p+1) P
ince

1,74 T4 3, T4
(D7 <iv g " =3

+
N 2_3(%JT t implies that

T-1
la(p)=1| <N B

(p+l)

Now, Corollary 3.4 follows from Theorem 3.5.

successively in Corollary 3.4, we

v

As special cases, taking t = %- and t =
obtain the following:

XA
(ER)P2 . L p(iies ©7),

méx "
and
6xB)
Z (gim!)S/a - 1 4.@(l(x)(log X)}!
m<x w
where
At :ui](l— Up - J—:T))
and
1/64 1/4
Bj = (1‘Pi—/ZLPL)
p (pt+l)

-1
Remark 3.3. Let 0 < s <1l. Taking k=1 and g(m) = (Eigljs in Theorem 3.3

we get
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| 48, 1-s_, . l-s
z (Eéﬂ)_)s - .6_)2(_ t{1+ (p 1‘) (P (P 1) ) } + O(A(x)(log X)N)

i
ax p (p*-1)

=

for any integer N > 3(l-s). However I.I. Iljasov [6] proved a better result that
for 0 <s<1

}é (#2)° = o + O (0.
nix

where ¢ 1is a positive constant.

Lemma 3.1+ Let N and k be fixed positive integers. Then we have

w(m)

@ 1 5 . (10 ")
mx
w{m) k-1
(b) E_S@n o g0 ™)

wx  (e(a)*

(c) 2 (ﬂiﬁl}k = ékx).

m<x o(m)

(@ I el (M'L))k = O(x(10g 0" Yy,
mlx o(m)

where S(m) 1is as given in (2.10).

Proof. The result in part (a) can be proved by induction on N, using the results

Y S(m)m'l =0 (log x) and (N+1)“’(“’) = % uz(d)N“’(d) :
m<x d|m

Result (b) follows using induction on k and the result in (a).

Result (¢) can be obtained from the identity $%§%~= % uz(d)ﬁ(d)/¢(d) and
dim

induction on k.
Result (d) follows by induction on N and the result in (c).
Hence Lemma 3.1 follows.
Theorem 3.6. Suppose h 1is a multiplicative function satisfying

(1) w(p™ =nh(p) , for all primes p and m > l.
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-1
(i1)  |n(p) - 1] S_Npk /(p—l)k , for some fixed positive integers N and for all

primes p.
Then we have

3§—1 -
e, + U(log %) )

I () @ma HE =
m<x

K
where
D (h(p)-1)
oo =
At = T+ Sy )

k:
P poc, ()
C and ck(p) being as given in Theorem 3.2.

Proof. The proof is similar to that of Theorem 3.5 if we make use of Lemma 3.1 and

Theorem 3.2.

Corollary 3.5. Let t be a real number > 1 and t be not an integer. Let T
be the integer part and s be the fractional part of t. Then for any positive
integer N Z‘%E-, we have

3r-1 .

; (y;m))t = x A)'C, +0((log %) 3 |
m<x
where -

T sS__ 8
' +1 +1) "~
AT =1 (1 + (PH—])~ ptl)y -p7) )
p P Cp(p)

Proof. This follows from Theorem 3.6, by taking k =T and h(m) = (Qﬁ%l)s. The

condition N 2_%3 ensures that h satisfies condition (ii) of Theorem 3.6.

Remark 3.5. Taking h{(m) = (mfw(m))k in Theorem 3.6, we obtaln an asymptotic

3k-1
formula for 2 (EﬁEQQk with error term 0((log x) 3 k) where Nk is as give
n<x o(m) 5/3
in Theorem 3.4. For k = 1, this formula becomes Z %%%% = ax +~0((log x) / ),
m<x

a being an absolute constant.

Remark 3.6. Taking h(m) = (Eéﬂlas‘l , where 0 <s <1 and k =1 in Theorem
3.6, we obtaln the following asymptotic formula: For 0 <s <1
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s l1-s_ 1-s
j(mys o %}EH (1- Soil) ((g‘*'l) 2 )y 4 0108 0%,
mlx ® T P p +1

§4. Some Remarks. Using Theorems 3.1, 3.2 and % u(d) =1 or O according as
din
n=1 or n>1, it is not difficult to prove the following:

For any positive
integers k and n, we have
I (B - B(n) +O(l0g 05 Is, (@) (4.1)
mx >
(m,n)=1
and
3k-1
I (B 2 se Chta) +0C(log 0 0 S'(m) (4.2)
m<x
(m,n)=1
where
k
d d Bk(d)
k
C*(n) = !Sﬂl%_iél_ ,
k d% e, (o
-1 *
w@n el
s ( - 1+e
k,e n) k-1
d|n d
and

s = v = Hon
dir ®
The =-estimates in (4.1) and (4.2) are uniform in x and n.

In fact, by somewhat more complicated arguments, we can also establish
asymptotic formulae for sums such as

;o (Emhk 4

$(m)k
m<x n méx ( n )
{m,n)=1 (m,n)=L
rim rim
m=a{mod b) m=a({mod b)

with (a,b) = 1 for any positive integers r and n satisfying (r,n) = 1, with
uniform 0 ~-estimates.

This would be done later in a separate paper.
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§5. Asymptotic Formula Involving the Unitary Analogues of ¢ and o Functions.

* *
We recall that these unitary analogues ¢ and o have the evaluation [1]:

o) = T (R, o) = T (PR,

paﬂn paﬂn

+
where p°lin denotes pa|n but p? 11

n. Using Lemma 2.11, formula (4.1) (k=1)
of this paper and induction on k, we can establish the following results: (using

lemmas 2.3 and 2.4 of [19]):

THEOREM 5.1. For any positive integer k we have

6k -1

* xz(2)8, (n) -
k 3

S G w07 )
max

(m,:)=1

where the =~constant depends only on k and

e(n),(n)
By(n) = —3—3—(‘5— »
and for k 2> 2,
* k-l
= o (8))" "B,_,(nd)
K+

g8 (n)y = =5y,
k =1 5

(6,n)=1

THEOREM 5.2 For integers k 2> 1 we have

*
I (5 = saeag () + 000 (log 07 s ().

méx
(m,n)=1
where
1
a =11 p(ptl) ).
P
* -1 *
*( © (9 (m))k u*(m)ak_l(mn) s,
a,{n) = » for k2> 2,
k o=l mk+1
(m,n)=1

* 2_1
with cl(n) = I ~§———— .
pln pT-p-1
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Remark. Similar results can be obtained for functions associated with biunitary

divisors [16]; however we shall not go into details.

§6. Concluding Remarks. An estimate for 2 ¢2(m) also appeared earlier in 1964
m<x
in a paper of S.L. Segal {12], who gave the weaker error term @(leogzx) which is

the same as Chowlas' result for k = 2. A probabilistic proof of the formula for

2 mz(m) without error term has been given by M. Kac [8] who ascribed it to
mlx
Schur.

The first author thanks 8. Rame Gowda, Principal, Pondicherry Engineering
College, for his constant encouragement. The second author thanks the Natural

Sciences and Engineering Research Council of Canada, for a research grant.
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