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§i. Introduction. S. Ramanujan was probably the first mathematician to consider 

asymptotic formulae for sums of powers of certain arithmetic functions. For 

example, in 1916 in his paper [I0] he generalized the classical Dirichlet divisor 

problem and gave estimates, without proof, for ~ TS(n), where r(n) denotes the 
n<x 

number of divisors of n. He also gave estimates--for ~ ~a(n) and 
n<x 

~a(n)ab(n), again without proof, where g (n) denote--s the sum of the a-th 
n<x a 
powers of the divisors of n, with ol(n) = ~(n). Another remarkable sum that he 

considered was ~ r2(n) where r(n) denotes the number of representations of n 
n<x 

as sum of two integral squares. 

Ramanujan's results were proved, and in many cases, improved by B.M. Wilson 

[24] among others. However, Ramanujan did not give asymptotic formula for 

~S(n) or for such related sums. Here ~(n) is the Euler totient. 
n<x 

Evidently inspired by the work of Ramanujan, S. Chowla in 1930 [3] obtained an 

asymptotic formula for I (m~) k, where k is a fixed integer, with error term 
m<x 

0(log x) k . Among other ~hings, in this paper we improve this 0-term to 

~(k(x)(log x)k-l), where %(x) = (log x)2/3(log log x) 4/3 if x >_ 3, and = i for 

0 < x < 3 (see (2.7)). We also establish an asymptotic formula for ~m<x ( ~m~)k.t_~ , 

where ~ is Dedekind's ~-function given by ~(n) = n pln(lj + ~) , p rime, with an 

error term 0((log x)(3k-l)/3). In fact, we establish asymptotic formulae for the 

sums ~m<x (~)k and ~m<x ( m(~ )k ' where r is a positive integer with 

rlm rim 
uniform ~-estimates of the error term (see Theorems 3.1 and 3.3). In Section 4, 

we consider the above sums with the restriction that (m,n) = I. We also estimate 

(~(m)lk (see Theorem 3.4). The special case k = i of this sum was the sum 
~m<x <~(m) j ' 

considered e--arlier by D. Suryanarayana ([18], Theorem 5) in 1982 who improved 

earlier estimates of S. Wigert ([221,[23]). Our estimate of the error term for 

this sum is superior to that of Suryanarayana. 

We also consider (see Theorems 3.5 and 3.6 and Corollaries 3.4 and 3.5) 

asymptotic estimates for [m<x (~)t and ~m<x ( m~ )t for positive non-intesral 

values of t. The case when O < t < i was considered in 1969 by I.I. Iljasov [6]. 

In section 5, we estimate the sums ~m<x "(~*(m)]km " and ~m<x (~)k, where 

9" and ~* are the unitary versions of ~ and o, k being any positive 
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integer. The case k = i was considered earlier in 1973 by Suryanarayana and 

Sitaramachandrarao [19]. 

In Section 2, we develope the necessary background by establishing several 

lemmas. Among other results, we need to utilize the deep result of Walfisz [19] 

that 

o(m)/m = ~(2)x +#(log2/3x) , 
m<x 

where throughout the paper ~(s) denotes, as usual, the Riemann zeta function. 

We may mention here that Ramanujan [i0] gave without proof the result: 

[ o2(m) = (5/6)~(3)x 3 + E(x), 
m<x 

where E(x) =~(x21og2x), E(x) # o(x21og x). 

R.A. Smith [16] improved the error term to 0(x21og 5/3 x). In [15], these 

results of Walfisz and Smith have been extended by Sitaramaiah and Suryanarayana to 

the general sum [m<x °r(m) in a remarkable manner. 

tjx 
Regarding the asymptotic estimate for the summatory function for ~(n), the 

well known elementary result 

[ ~ (n) 6 
n<x n = ~-T x +O(log x) 

was vastly improved by A. Walfisz ([21], Chapter 4) who used some deep estimates of 

exponential sums to establish the result: 

~(n) 3 x 2 +0(x(log x)2/3(log log x) 4/3) = --~ 

n<x 

it is not generally noticed that this result was further improved by A.I. Saltykov 

in 1960 [ii] who showed that 

2 
3x +0(x(log x) 2/3 ~(n) = T (log log x) l+s) 

n<x 

for every e > O. 

In obtaining our asymptotic results with error term for ~m<x ~k(m) and 

related sums, we need to establish several preliminary estimates. In doing so, to 

simplify our arguments, we utilize certain estimates of Walfisz. Thus our estimate 

of the error term for ~m<x ~k(m) is a direct generalization of that of Walf isz for 

k = I. By similar arguments, we could improve our estimates by using the result of 

Saltykov. However, we shall not go into that here. 
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§2. Preliminaries. Throughout this paper the letter p stands for a prime 

number. The Dedekind V-function is known (cf. [5], page 123) to possess the 

following arithmetic form: 

~(m) = m d~m ~2('d') = m d  Pl m (I+ pl__) , (2.1) 

where ~ is the Moblus function. It is clear that ~(m) > m and 

~(m) < e(m) < ~(m) , where e(m) = 2 m(m), the number of square-free divisors of m, 

and m(m) is the number of distinct prime factors of m. Also, ~(mn) = 

~(m)~(n)(m'n) where (m,n) is the greatest common divisor of m and n, so that 
~((m,n)) ' 

~(m,n) J ~(m)~(n). We frequently make use of the estimates 

and for s > I and x > O 

I_ = O(log x) , for x > 2 , 
m 

m<x 
(2.2) 

l m  . ¢2.3) 
m>x 

We may have an occasion to use (2.2) for x > 0 also. In that case, without 

i 0(f(x)), where f(x) = i if 0 < x < 2 and further mention we mean that ~m<x m = 

f(x) = log x if x > 2. A similar remark applies to all the asymptotic formulae 

in this paper and they are all valid for x > 0. 

We prove 

LEMMA 2.1. For any positive integer k, 

(m(~) k = O(x) , (2.4) 
m<x 

where theO-constant depends only on k. 

PROOF: By (2.1), we have 

2 

m<x[ @(m)= [ m  P <d) <_~ x d  I = ~x [ --id2 ) = O(x). 
_ d<_x ~ I d d<_x 

Hence (2.4) is true for k = I. We now assume (2.4) for some 

(2.1) and the induction hypothesis, 

k > I. We have by 
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m<x m<x d~=m 

< I (~(d))k ( (~_)._)k 
-- d~ =m d k + l  

(~(d))k 
d_<x d k~l' 6~._xld ( . ~ ) k  

( ~ ( d ) ) k ~  

where we used the result that 

(~(d))k < ~ (T(d))k = ~(i) 

d<x d k+2 -- d<x d 2 ' 

since T(d) = ~(d e) , for every ~ > O. Hence the induction is complete and Lemma 

2. i follows. 

LEMMA 2.2. For t > O, we have 

I 
m<x 

°*t(m) ~(log x) , 
m 

where o*(m) is the sum of the s-th powers of the square-free divisors of m. 
s 

PROOF. By (2.2), we have 

~*-t (m) ~ i ~ 2(d)d-t 
m m 

m<x m<x d~ =m 

1 i 

<__ ~ dt+l 6<~x/d d<_x 

=0 ((log x). I i d<x ) = 0(log x) 

LEMMA 2.3. For t > 0 and k > i 

°~t(m)@k-l(m) O(log x). (2.5) 
I k 

m<x m 

PROOF. For k = i, (2.5) is true by Lemma 2.2. We assume (2.5) for some integer 
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k ~ I. We have by (2.1), 

q~t(m)@k(m) 

k+l m<x m 

o~t(m)~k-l(m) 
[ k [ ~2(d) 

d m<x m d6=m 

o*t(d)oEt(~)~k-l(d)~k-l(6) 

dk+l~k d6<x 

[ °*-t (d)~k-l(d) o_t(d)~k-l(d)* 

d<__x d k+l ~xJd ~k 

a~t(d)~k-l(d) 

= O((log x). d<xl dk+l 0 

where we used the result that 

hypothesis. 

We have 

so that 

Hence 
d<x 

o*-t(d6) _< o*t(d)o*t(~) and the induction 

The induction is complete. 

o* (m) < O(m) < ~(m), 

q~t(d)*k-l(d) (%(d)) k 
< [ : 0(1) 

d k+l -- d<x d 2 

a~t(m)~k(m) 0(log x). 
k+l m<x m 

LEMMA 2.4. For any integer t > I, 

where 

(m(~) t Al(m) = 0(x) 
m<x 

Al(m) = q~m ~(q)q2 

I PROOF: We have Al(m ) ! [ql m , so that 

( m~)t  Al(m ) < [ (~(d)) t (.~_)t 
m<x -- d6 <x d t+l 

d!~ d t+l ~I_<~I d 

(2.6) 
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d<x d t+2 * 

where we used Lena 2.1 and the fact 

[ <~<d))t < 

d<x d t + 2  - -  

=0 (x) , 

I ,( ! ,~ d ,) ) t 

d < x  d 2 
=0 (i). 

LEMMA 2.5. We have 

PROOF. Since 

~(m) =O(log2x). 
~(m) 

m<x 

m u2(d) 
~(m) = ~dlm ~(d) ' we have 

~(6) T(H) [ ,, 

[ ~ < d~(d) ~!x[ d m<x ~ (m) -- d x 

=0((log x) 2. [ ~(d)) =0(log2x) 
d<x d~(d)~ 

where we used the result that [m<x T(_m)m =0 (iog2x) and the fact that 

(x(d))2 =0(1) , 
d~(d) -- d 2 d<x d<x 

d 
since ~ < 0(d) _< ~(d). Hence Lemma 2.5 follows. 

LEMMA 2.6. (ef. [14], Lemma 2.2). For any positive integer n and 

have 

m<x 
(m,~)=l 

P<m m) p(mX--) =0(C*l+ e(m)X(x)), 

for every e > O, where O(x) = x - Ix] - I/2 and, as stated earlier, 

X(x) = {(log x)2/3(log log x) 4/3 , if x > 3 

i , if 0 < X < 3 • 

Also, the 0-constant depends only on e. 

x > O, we 

(2.7) 

REMARK 2.1: It is clear that %(x) is increasing for 
i 

be shown that X(x) j l-~ X(y) whenever 0 < x J y. 

X(x) = 0(X(y)), for 0 < x J y. 

x > 3. Using this it can 

In particular, 
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LEMMA 2.7. (cf. [4], page i0). We have 

[ v(m) =0 (t), 
m<x m 

(m,~)=l 

where the0-estimate is uniform in x and n. 

LEMMA 2.8. (A. Walfisz [21]). For 

[ o(m)= 
m<x m 

We now prove 

X ~ 2, we have 

xg(2) + 0(log 2/3 x). 

LEMMA 2 . 9 .  Let o'(m;n) denote the sum of the reciprocals of the divisors of 

i Then we have which are prime to n, that is, o'(m;n) = ~ ab=m ~ • 

(a,n)=l 

where 

%(2)J2(n)x2 +~ (9(n n) log 2/3 x), [ o'(m;n) = • 
m<x n 

2 pln(l - .1 .) J 2 ( n )  = n 
P 

(2.8) 

the O-estimate being uniform in x and n. 

PROOF. Since [dim v(d) = i or 0 according as m = i or m > i, we have by 
i 

Lenm~a 2.8, 

I O' (re;n) = [ ~= d I 
m<x ab<x d~ n b6 <x/d 
-- (a ,~)=i -- 

= d~n ~(d__~){X~d(2,> +0 (log2/3x>} 

x~ ( 2 ) J 2 ( n )  

2 
n 

+0(~<n n) . log2/3x). 
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Hence Lemma 2.9 follows. 

LEMMA 2.10. We have for any positive integer r, 

where 

and 

o (m) 
m<X m 

rlm 

S(r) = d~r 

x~ (2)A I ( r ) 
+ 0(S(r)log2/3x) , 

= I ~(q) 
Al(r) q r q2 

~2(d)O(d) = (1+ p2_-~ -) 
~(d) p[r 

= ~(r) 
~(r) 

the ~ -estimate being uniform in x and r. 

(2,9)  

(2. lo)  

PROOF: We have by Lemma 2.9, 

o(m) = I 1 
m<x m - do <x 

r1~ rld~ 

l 1 

dS<x r(8 , r)-ib8 <_x 
r 

(8.r) Id 

l i i 

q r q b6<x/r q r ab<x/r a 
(~, r'y=q (a,  r /q  )=t 

q r ~ I I ~ = ~ I o'(m; r/q) 
_ re<x/r m<x/r ab=m q r 

(a,r/q)=l 

x¢ ( 2 ) J 2 ( r / q )  ~( @(r/q)~l 
+ log2/3x° (r/q); j 

= q~r ql_ { r(r/q) 2 

x i J2 (r/q) + 0(log2/3X.q~ i (r~_~.q~ 
= r~(2) q~r q (r/q) 2 r $ " (r/q)J " 

It is not difficult to show that 

and 

I J2(r/q) ~ $(q) Al(r ) 
q r q (r/q) 2 q r q2 

l~(r/~) = 1 8(q) 
q r q (r/q) q r q 

As observed in [15], p. 1194, we have 
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from which we obtain Len~a 2.10. 

o(q) < S(r) 
q r q -- 

COROLLARY 2.1. We have for x > 2 and r > 1 , 

~(m) 
m<x 

rlm 

the O-estimate being uniform in 

2 2 
x Al(r) 

12r 
+ 0(S(r)x log2/3x), 

x and r. 

PROOF. Follows from Lemma 2.10 and partial summation. 

REMARK 2.1: Corollary 2.1 is due to V. Sitaramaiah and D. Suryanarayana (cf. [15], 

Lemma 2.3). 

LEMMA 2.11. 

uniformly in x 

For any positive integer n, we have 

o(m) = x ~ ' ( 2 ) ~ ( n ) J 2 ( n )  

m<x m n 3 
(m,n)=l 
and n. 

+ ~(O(n)n log2/3x) 
~(n) 

PROOF. We have by Lemma 2.10, 

m<_x m d n 
(m,n)=l 

u(d) [ o(m) = ~ v(d){X~(2)Al (d) 
m<__x m d n d + 0(S(d)'l°g2/3x)} 

dlm 

u(d)Al(d) + 0((l°g2/3x)" d~n ~2(d)S(d)) 
= x~(2) dl n d 

x~ (2)~(n)Jz(n) 

3 
n 

+ 0(nS(n) .log2/3x)" 
k~(n) 

since by (2.9) and (2.10), 

d~n 

~(d)Al(d) ~(n)J2(n) e(n) n 
= n3 ' d~n ~2(d)S(d) = ~(n) 

Hence Lema 2.11 follows. 
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LEMMA 2.12. For any positive integer 

for every 

?(m) x~(r)Bl 

m<__x m r2Bl(r) 

rlm 
e > 0, where 

r, we have 

- -  + O(~*l+~(r)~(r)r-ll(x)), 

B I = ~ BI(P), Bl(r) = ~ BI(P), 
P Plr 

i 
and Bl(P) = I 2 " 

P 

PROOF: Since ~(m) = [ u(d) we have 
m dS=m d ' 

[ ~(m) = [ ~(d) = ~)_ibj x u(d) 
m<__x m d~<_x d dr(d, d 

rim rid6 

= I [ p(d) = [ [ p(aq) 
qlr (dlq)b<x/r d qlr abJx/r aq 

(d,r)=q (a,r/q)=l 

= [ p(q) [ ~(a) 

q] r q ab<x/r a 
(a,rTq)=l 
(a,q)=l 

-- , since p(aq) = 0 if (a,q) > 1 

= [ ~(q) [ u(a~ = ~(r) [ p(a) 

q ] r q ab<x/r a r a~x/r a 
(a,?)=l (a,r)=l 

b<x/ar 

r a<xlr 
(a, r)=l 

= ~(r) [ 

r a<_x/r 
(a,r)=l 

B(a) x x i 

z { - -2} 

= x~(r) [ ~(a) ~(r) 
2 2 r 

r a<__x/r a aJx/r 
(a,r)=l (a,r)=l 

p(a) x ~(r) 
a 2r 

ab<x/r 
(a,r)=l 

~(a) 
a 
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= x , ( r )  
2 
r a=l 

(a,r)=l 
a r 

where we used the result that 

a>x a a>x a 
(a,r)=l 

and the Lemmas 2.6 and 2.7. Also it is clear that 

[ ~¢a> = B1 

a=l a 2 Bl(r) " 

(a,r)=l 

On combining the 0 -terms in (2.11) we obtain Lena 2.12. 

(2.11) 

COROLLARY 2.2. We have 

for every 

x2~(r)Bl 
I ~(m) = - -  

m<x 2r2Bl(r) 
rim 

* -I 
+ ~ (O_l+e(r)~(r)r xl(x)), 

> 0, where the ~-constant depends only on E. 

(2.12) 

PROOF: Follows from Lemma 2.12 and partial su~ation. 

LEMMA 2.13. We have 

~(m) = a2b~ m B(a)o(b). 

We omit the proof which is easy. 
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LEMMA 2.14. For square-free r, we have 

~(m) x~(r)cl 
2 m<x m r cl(r) 

- -  + 0 (S(r) • log2/3x), 

S(r) is as given in (2.10), the~-estimate being uniform in x and r, 

PROOF: By Lemma 2.13 we have 

-- a2b<x a2b a<J~ a b<__xla 2 

rlm rla2b (-~---)[b 

a ,r 

For square-free r,(a2,r) = (a,r). Hence by Lemma 2.10, we have 

~(m) = ~ B(a) ~ o(b~ 
m 2 b 

m<_x a<¢~ a b<.x/a 2 
rllR 

r ib (a~r) 

We have 

XE (2) (a, r)Al(r/(a, r) ) 

a < J x  a a r 

~(a)(a, r)Al(r/(a,r)) 
x~(2) ~ 4 

r 
a<¢x a 

+~)(S((a--~) log2/3x)} 

I r +~( ~ --~S((a~r ~) log 2/3x) 

a<¢x a 

= x~<2) [, +0(l' " l°g213x), say • 
r 1 2 

~, = ~ qAl(r/q) [ ~(a) 
i q r a</~ a4 

(a,r)ffiq 

( 2 . 1 3 )  
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Now 

"q r qAl(r/q) 
[ p(bq) 

b4q4 = ql r 
b<yx/q 

(b,q) =i 

u(q)Al(r/q) 
3 q 

I 
b<_/~/q 

(b,r)=l 

[ ~(b) ~ ~(b) +0( [ 1 
b<x b 4 = b 4 ~) b=l b>x 

(b,~)=l (b,r)=l 

p~r p x 

~(b) 
b 4 

so that 

I u(q)Al(r/q) +0( i .q~ 
[' = ~ (i- i) 3 ~ rAl (r/q>)" 
i p~r p q r q 

By (2.9), we have 

Hence, we have 

A1 so 

Therefore, 

tl(q)Al(r/q)q3 Pl rlq {Al(P) - 3)p = P~I r (i+ p-lp2 l)p 

p}r P r pl r P 

i] (i i) ~ "(q)Al(r/q) ~(r) 
p~r p q r q3 ~(4)rcl(r ) " 

Al(r/q ) = Al(q) = (l+Al(P)) < I] (i+ I)= r " 
q r p r plr --plr 

[, = $(r) + 0 c_Zli!~ 
I ~(4)rcl (r) <rx 3/2; " 

' is as given in (2.13)) we have For d]r , S(r/d) < S(r) • Hence if [2 

~, =0(s(r). [ ~) =0(S(r)), 
2 a</x a 

Using (2.14) and (2.15) in (2.13), we obtain, 

m<x m ~ (4)r2cl(r) 

rim 

+ • -b • 
r /x 

On noting that c I = ~(2) we obtain Lemma 2.14. 
~(4) ' 

(2.14) 

(2.15) 
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LEMMA 2.15. For any positive integer r, we have 

where 

A1 so, 

m 
m<x 

rim 

~(m) x~ (2)Dl(r) 
= + ~(S(r) log2/3x), 

r 

Dl(r) = [ 4 
a=l a 

p(a)Al(r/(a2,r))(a2,r) 

Dl(r ) = ~(Al(r)) • 

PROOF: By Lemma 2.13 and 2.10, we have 

= 0(b) I ~(m) I ~(a) I m 2 b 
mix a<J~ a bjx/a 2 
rl m 

Ib 
a ,r 

p(a)Al(r/(a2,r))(a 2 
= x~(2) 

r 4 
a</~ a 

Since Al(r/(a2,r)) ~Al(r) and (a2,r) J r , we have 

,r) 
+ #(S(r).log2/3x) . 

~(a)Al (r/(a2'r))(a2'r) =~ (rAl(r) ~ i-S) 
4 

a>#7 a a</~ a 

i 
= °(rAl(r) -~/2) " 

x 

Hence we have 

m<x 

rlm 

@(m) = x~(2) Dl(r ) +/:(Al(r)) + ~(S(r)log2/3x) . 
m r ~ #x 

By noting that 

i i i 
Al(r) <_ ~ ~ = rl (i +- + ... + ~ ) p  

q r p~ 11 r P 

(2.16) 

(2.17) 
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< n (l+!+!~...) 
- -  pl r P p 

we obtain Lemma 2.15. 

! Al(r)" 

(2.16) follows by using (a2)r) < a 2 and Al(r/(a2,r)) 

Lemma 2.16. For any positive integer r, we have 

where 

Also, 

x~ (2)~(r)D2(r) 
( ~ ) 2 =  2 

m<x r 
rTm 

+ 0(S(r). log5/3x), 

D2(r ) = I a=l 
(a, r)=l 

2( 
a)Dl(ar) 

2 
a 

D2(r ) = 0(Al(r)) • 

(2.18) 

(2.19) 

PROOF. By (2. i), we have 

( (m~_~)2 = [ v2(d) [ @(m) 
d m m<x d<x m<x 

rTm - (d,~} Im 

where {d,r} denotes the least common multiple of d and r. Now, by Lemma 2.5, 

since {d)r} = rd/(r,d), we obtain 

[ ( (m ~)2 = ~ u2(d)d 

m<x d<x 
rT m 

r d<x 

r 3 

x~ (2)Dl(rd/(r, d ) ) 
{ (rd/(r,d)) } + 0(S (rd/(r ' d))" iog2/3x) 

u2(d)Dl(rd/(r,d))(r,d) 

d 2 

(iog2/3x. [') , 
4 

( rd ] i~ + (l°g 2/3x" I S ~-~j • ~) 
d<x 

(2.20) 

say. We have 
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rd i S(d) =0 (S(r).log x), I' = [ s(~)° ~_< S(r) [ d 
4 d<x d<x 

since by (2.10), 

[ s(~) . 
m m<x [ d~(d)  d6 <x 

~(d) 1 
d<x X 

- ~i 7 

Hence 

Also, 

T(d) ] =0 (log x). =0(log xo I ~ ,  
d<x 

[' =0 (S(r).log x). 
4 

v2(a)Dl(ar) 2 ) 

[,° ~ u(n [ 2 3 q r q a<_x/q a 
(a,r)=l 

By (2.17) for (a,r) = i, we have Dl(ar) =0 (Al(ar)) =0 (Al(a).Al(r)). 

since 

Hence 

so that 

Al(m) < ~ , Al(m) <_ [ ~ [ -- =0(x ). 
q m _x d6 <_x d<_x 

B2(a)DI (at) 0(Al(r ) [ AI(~ )) 0(Al(r). ~ 
[ 2 = a>x/q a a>x/q a 

(a,n)=l 

2( 
~ a)Dl(ar) 

3~' = ~ q r ~--~[~ {d a= 1 ~ a2 +0(Al(r)* x ~)} 

(a,r)=l 

+ 0 (AI( r_)x0 (r)  = ~(r) D2(r ) .) 
r ' ° 

Substituting (2.22) and (2.21) into (2.20), we obtain 

x~ (2)~(r)D2(r) 
I (m~) 2 = 

m<x r 2 

rlm 

0(AI (r)0(r) 
+ I +0 (S(r) l°g 5/3x) " 

r 

(2.2t)  

Also 

(2.22) 

Hence Lemma 2.16 follows 
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§3. Main Results. Throughout the following k stands for a fixed positive 

integer and O < ¢ < I. All the error terms in the asymptotic formulae given in 

this section depend at most on k and ¢. First we prove 

THEOREM 3.1. We have 

where 

m~x(m(9~_) k x(~(r))kBk = k+l + 0(o,l+e(r)(k-lx(x)(log(~r)) x)k-1) ~ 

_ r Bk(r) 

rlm 

B k = Bk(P) , Bk(r) = Bk(P), 
P Plr 

(3.1) 

k 
Bk(P) = i + [ (-l)a( k i I l]k_l a:l a) ~ = i + -- ((i- ) . (3.2) 

p P p"  

RE_MARK 3.1. Clearly 

all p, pl r Bk(P) > 

depends only on k. 

P Bk(p) is absolutely convergent. Since 0 < Bk(P) < i, for 

Bk(P) so that i ........ 0(i) where the O-constant 
p ' Bk(r ) ' 

PROOF OF THEOREM 3.1: By Lemma 2.12, Theorem 3.1 is true for k = 1 

r. We assume (3.1) for some k > i and all r. We have, since 

~(m)m -I = ~dl m ~(d)d -I , 

d<x d I ( " m m<x 

rlm {r,d} Im 

and for all 

Hence by the induction hypothesis, we have 

v(d)~k(rd/(r,d)~(r~d) k+l I (~(m))k+l = XBk 

m<_x m r --~I d~x k+2 
- -  d Bk(rd/(r,d)) 

rlm 

+ O(X(x)(log x)k-i i 
k-l 

r d<x 

2 [ U (d)O*l+~ (rd/(r, d))@k-i (rd/( r, d) ) (r, d) k-I 

d k 

~k 
: r-~l I'5 + 0(X(x)(l°g x)k-I rk-l~l 6') ' (3.3) 

say. We have 
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k 
= ~ e ,(r) I P(q)q [ [' ~(a)~k(a)k+2 (3.4) 
Bk~rJ qlr a<_x/q a Bk(a) 5 

(a,r)=l 

v(a)~k(a) is absolutely Since ~(a) < a and __i = 0(i), the series ~ a=l k+2 
-- Bk(a) (a,r)= 1 a Bk(a) 

convergent. Also, the general term of the series is multiplicative in a. Hence 

expanding the series as an infinite product of Euler-type, we obtain 

[ ~(a)~k(a) = 

k+2 
a=l a B k (a) 

(a,r)=l 

(1- (p_l)k) 
k+2 

P P Bk(P) 

(i- (P-l)k 

p[r pk+2Bk(P)# 

From (3.2) it is easily seen that 

so that 

and 

Also~ 

Bk+l(p ) = Bk(P ) _ (P,!)kk+2 
P 

Bk+ I = B k (I - (P-l)k 
p pk+2Bk(P)J 

(i - (P-l)k 
k+2 ] Bk+l(r) = Bk(r)pl r p Bk(P) 

[ B(a)~k(a) =0 ( [ ~) =0 (i) 
k+2 

a>x a Bk(a) a>x a 
(a, r)=l 

From (3.5), (3.6), (3.7) and (3.4), we obtain 

XBk x~k(r)Bk+l P(q) +0(~k(r) 
k+l ~ q~r q "r k+l q~r r r Bk+l(r ) 

2(q)) 

k+l 
x~ (r)Bk+ I 

(3.5) 

(3.6) 

(3.7) 

(3.8) k+l +0 (0_~i) 
r Bk+l(r) 
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From (3.3), 

2 
6 [' = °*l+~(r)~k-l(r)q~r ~ q (q) 

B2(a)o*l+g(a)~k-l(a ) 

[ k aJx/q a 
(a,r)=l 

--< °*l+e(r)~k-l(r) q~r q a<x/q 

= O(o*_l+e(r ) @k(rr) log x), 

O*l+~(a)~k-l(a) 

k 
a 

by Lena 2 . 3 .  

From ( 3 . 8 ) ,  ( 3 . 9 )  and ( 3 . 3 )  we g e t  

[ ( (~)k+l = x(~(r))k+IBk+l 

m<x m k+l 
r Bk+l(r) 

rlm 

+ 0(O*l+e(r)( r(~)kl(x)(log x)k). 

Hence the induction is complete and Theorem 3.1 follows. 

(3.9) 

THEOREM 3.2 For any square-free r, we have 

where 

and 

m~x(m(~) k x* k(r)c k 
_ rk+lek(r) 

rlm 

+ 0(S(r)(log x) (3k-I)/3) , 

c k = [I ck(P) ~ ek(r) = I-[ Ck(P) , 
P Plr 

k k 1 1 ik 
ok(P) = i + • (a) ~ = i + ~(i+ p) - i) • 

a=l p 

(3.10) 

(3.11) 

PROOF. By Lemma 2.14, (3.10) is true for k = i and all square-free r. We 

assume (3.10) for all square-free r. By (2.1) we have 

[ [m~e)k+1o [ ~2<d> [ <~)k 
m<x d<x d m<x " 

rlm {r,d} Is 

We can assume that d is square-free. Since r is also square-free {r,d} is 

square-free. Therefore by the induction hypothesis, we obtain 
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I [k~i)k+l = 
m<x 

rtm 

x% k+l [ P 2(d)~k(rd/(r' d)) (r' d)k+l 
k+2 

r d<_x d ck(rd/(r,d)) 

3k-i 

+O((log x) 3 i rd • ~ ~- s ( ~ ) )  
d<x 

3k-i 
XCk 

= rk+l ~ +O(S(r).(log x) 3 . log x), 

say. We have 

7 ok(r) qlr q 

By Lemma 2.1, ~m<x(m(~) k = 0(x). 

Hence by partial Summation, 

V2 (a)~k(a) 
X k+2 ' 

a<x/q a ok(a) 
(a,r)=l 

so that 

~k(a)a? k =0(I) , 
I 2 
a>x a 

~' B2(a)~k(a)k+2 = ~ ~2(a)~k(a)k+2 + 0(q) 

a_<x/q a ck(a) a=l a ck(a) 
(a,r)=l (a,r)=l 

rl (i+ (~+i)k k+2 ) + 0(~) 
p~r p Ck(p) 

on expanding the infinite series as an infinite product of Euler type. 

and (3.13), we obtain 

k+l ( ...... , = ~ ......... r) (p+l) k 0(@(r)~k(r)) 
k+2 x rck(r) p~r (I+ ) + . 
P ck(P) 

Substituting this into (3.12), we obtain 

( p+l )k 
i (m(~) k+l XCk I~ (i+ k+2 ..... ) + 

k+2 
m<__x r ck(r) p~r p ck(P) 
rlm 

(3.12) 

(3.13) 

(3.14) 

From (3.14) 
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3k+2 
+0 (0(r)~k(r)~ 3 

k+l ~ +0(S(r)(log x) ) 
r 

3k+2 

Xek+l +0(S(r)(log x) 3 ) 
k+2 
r Ck+ I (r) 

The induction is complete and hence Theorem 3.2 follows. 

THEOREM 3.3. For any positive integers r and k ~ 2, we have 

where 

and 

x~ (2)(t~(r)) k-I [ (z~)k°"-' = 
m<x r k 

rlm 

3k-i 

Dk(r) +~(S(r)(log x) 3 ) , (3.15) 

~2(a)(~(a))k-2Dk_l(ar) 
Dk(r) = [ k , k = 2,3,... (3.16) 

a=l a 
(a,r)=l 

Dk(r) =0(Al(r)) , (3.17) 

where Al(r ) is given by (2.9). 

PROOF: For k = 2, Theorem 3.3 follows from Lemma 2.16. We assume Theorem 3.3 for 

some k > 2 and all r. By (2.1) and by our induction hypothesis, we have 

I (~l)k+l ° 
m<x m 

rlm 

d<x ~ v2(d)d m<x(m ~'~-)k 

{r,d} [m 

~2(d)(~(rd/(r,d))k-lDk(rd/(r,d)) 
x~(2) 

k dk+l r d<x 

3k+2 

+#(S(r)(log x) 3 ) 

3k+2 

= x~(2) I' +~(S(r)(log x) 3 ) say, 
k r 8 

We h ave 
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[' = (~(r))k_lq ~ 2<q) 

8 r q 
I 

a ~ x / q  
(a,r)=l 

p2(a)(~(a))k-iDk(ar) 

k+l 
a 

For (a,r) = i, by (3.17), 

Dk(ar ) = ~(Al(a)Al(r)). 

Therefore by Lemma 2.1 and partial summation, 

so that 

a>x/q 
(a,r)=l 

~2(a)(~(a))k-iDk(ar) =0 (Al(r) ~) 
k+l a 

k+l a~x/q a 
(a,r)=l 

B2(a)(~(a))k-iDk(ar) 
= Dk+l(r) +0 (Al(r) ~) • 

Hence from (3.19) we get that 

[' = (~(r)~k r) +0(e(r)~(r))k-IAl(r) 
8 r Dk+l( x ~ " 

Substituting this into (3.18), we get 

~(m) k+1 
[ (v-) 
m<x 

rlm 
Clearly 

0 8(r)(~(r))k-iAl(r)" 3k+2 
= x~(2)(*(r))k + ( J +0(S(rl.(log x) 3 ) 

k+l k r r 

Dk+l(r) =0(Al(r)). 

Thus the induction is complete and hence Theorem 3.3 follows. 

(3.19) 

COROLLARY 3.1. We have for k > i, 

[ (~(m)) k = 

m<x 

rlm 

xk+l(~(r))kBk +0(a*l+~(r)( r~)k-lxkl(x)(log x) k-l) 

(k+l)rk+iBk(r) 

where B k and Bk(r) are as given in Theorem 3.1- 

( 3 . 2 0 )  
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PROOF: Follows from Theorem 3.1 and partial summation. 

COROLLARY 3.2. We have 

(i) For square-free r and k [ l, 

3k-I xk+l(~(r))kck 
($(m)) k = + 0(S(r)xk(log x) 3 ) , 

m<_x (k+l)rk+Ick(r) 

rim 
(3.20a) 

where c k and ck(r) are as ~iven in Theorem 3.2. 

(ii) For any posltive inte6er r and k ~ 2, 

(~(m)) k = xk+l~(2)(@(r))k-iDk (r) 

m<x (k+l)r k 

rlm 

3k-I 

+ ~(S(r)xk(Iog x) 3 ) , (3.20b) 

where Dk(r) is as ~iven in Theorem 3.3. 

PROOF: Follows from Theorems 3.2, 3.3 and partial surmnation. 

REMARK 3.1: Theorem 3.1 in case r = i was originally established by S.D. Chowla 

[3] with a weaker O-estlmate of the error term: 0((log x)k). Taking r = i and 

k = 2 in (3.20) and (3.2Oa) we obtain results due to D. Suryanarayana ([17]), 

Theorems 3.6 and 3.7) who established them using the identitites 

~2(n) = ~ ~*(d)~(d)~(~)~ and $2(n) = ~ %'(d)~*(d)~(d)~(~)~ 
d~=m d~=m 

where k'(d) = (-i) ~(d), ~(m) being the total number of prime factors of m. 

Remark 3.2. Formula (3.20) (k=l) was established by O. Holder [6[ and S.S. Plllai 

[9] with error term 0 (x log x) which does not appear to be uniform in r. In 

1961, E. Cohen ([2], lermna 3.2, s=l) obtained the formula (3.20) (k=l) with error 

term 0 (8(r)r-lx log x). In 1977, Suryanarayana and Subrahmanyam (of. [20], lemma 

3.1) established (3.20) (k=l) with error term 0 (x%(x)) which they stated to be 

uniform in r. We may mention here that in view of Remark 2.1, in [20] they would 

get (3,20) (k=l) with error term 0 (xl(x)a ~(r)) where a = (I(3)) -1 (For example, 

see the proof of lemma 2.1 in [14]) and the error term in (3.20) (k=l) is clearly 

better than this since a > 2. 

THEOREM 3.4. For each fixed integer k ~ I, 

r~(m)~ k m~(m) ~ = ~kBk +~X(~)(log x)) N+k-l , 

(~.21) 
where 
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and 

N =Nk= 

(k~2)(k-l) + i , if k is even 

k 
((k+i/2))(k-l) + I , if k is odd , 

A k = ~ {I + (P-l,,)k((p+l)k-pk) } , 

p pk+l(p+l)kBk(p) 

(3.22) 

(3.23) 

where B k and Bk(P) are as given in Theorem 3.1. 

PROOF: Let g(m) = mk/(~(m)) k for any m. We write 

g(m) = Z f(d) , (3.24) 
dm] 

for any m, so that by the M'obius inversion formula, we get f(m) = [ ~(d)g(mld). 
d m | 

Therefore, if p is a prime and a is a positive integer, we have 

f(p~) = g(p~) _ g(p~-l) 

g(p)-I , if ~ = i 

~ 0 , if ~ > _ 2 , 

since g(pa) = g(p) for any prime p and ~ > i. We have 

(3.25) 

]f(p)[ = Ig(p)-ll = i - 
k )k pk p = (p+l - 

(p+l) k (p+l) k 

+ C )p' + . . .  + ck _ )p 

(p+l) k 

< 
i + (k-l)Mkpk-i (l+(k-l)~)p k-I 

< 
( p+t )k -- (p+1)k 

where M k is the maximum of the binomial coefficients (~) , (~),...,(kkl) for 

k ~ 2, with M I = i , so that 

M k = 

[k72 ) , if k is even 

k 
..[(k+l)/2 ] , if k is odd. 

From the definition of N given in (3.22), we get 
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If(p) 1 = Ig(p)-ll < Np k-I 
-- (p+l) k " 

(3.26) 

From (3.25) and (3.26), we obtain 

2 Nm(m)mk-i If(m) l < ~ (m)mk-iN ~(m) < 
-- (~(m)) k -- (~(m)) k ' 

(3.27) 

for any m. Now, by (3.24) and Theorem 3.1, we get 

m[< r~(m)] k= m~x(m~) k dl m f(d) x ~(m) j 

= ~ f(d) I (m~-~) k 
d<_x m<x 

dlm 

= ~ f(d) { xBk(~(d))k 

d<_x dk+iBk(d) 
+0(l(x)(log x)k-lo:l+e(d)( d(~] k-l} 

f(d)~?(d))k +0(X(x)(log x) k-I 
= XBkd~__x dk+iBk(d) d<_x 

If(d) lO:l+~(d)(~(d)) k-I 

dk-I ) • 
(3.28) 

Since ~(m) ~ m, from (3.27) we obtain, 

and 

[ I f(m)] ! ~ Nm(m) = ¢((log x)N), 
m 

m<x m<x 

[f(d) lO:l+g(d)(~(d)) k-I Nm(d)o*l+e(d) 

I dk- I ~ I d d<x d<x 

= 0((log x) N) , 

(3.29) 

(3.30) 

which follows from lemma 2.2 and induction on N. From (3.29) and partial 

summation, we get that 

[ If(m)[ = O((log x) N) • 

m>x m x 
(3.31) 

Also, the series -~ f(d)(~(d))k converges absolutely. Expanding this as an 
d: =i dk+iBk(d) 
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infinite product of Euler-type, we obtain from (3.23) that 

A k = ~ f(d)(~(d))k 

d=l dk+iBk(d) 

From this, (3.31), (3.30) and (3.28), we obtain Theorem 3.4. 

Taking k = i in Theorem 3.4, we obtain 

Corollary 3.3 

where 

X ,(m)~(m) = ~ +0(XCx)1og x), 
m<x 

s 2 

P 

(3.32) 

Remark 3.2. Formula (3.32) has been established by D. Suryanarayana ([19], Theorem 

3.5) with a weaker ~-estimate of the error term: (log2x). This formula was 

originally established by S. Wigert ([22],[23]) with much weaker 0-estlmate of the 

error term, namely 0(xl/21og3/2x). 

On lines similar to that of Theorem 3.4, we can prove the following: 

Theorem 3.5. Let g be a multiplicative function satisfying 
m 

(i) g(pm) = g(p), for all prime powers p , m > I 

(ii) Ig(p)-ll J Npk-I/(p+l) k, for some positive integers k and 

p. 

N, for all primes 

Then 

where 
m<x 

g(m)(~(m)m-l) k ffi xA~B k +0(l(x)(log x) N+k-l) , 

A~ = ~ (I+ (P-l)k(g(p)-l)~ 
k+l~ . . J ' 

P P ~kkP) 

where Bk(P) is as given in Theorem 3.1. 

Corollary 3.4. Let t be an non-integral real number > I. Let 

integral part and s be the fractional part of t. Then we have 

I (m~) t = ~B T +0(%(x)(log x) N+T-I) , 
m<x 

where N is any positive integer with N ~s(~) T+I , and 

T be the 
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A~ " n (i - (P-I)T(pS-(p-I)S)) • 

p pt+IBT(P) 

Proof. We take k = T and g(m) = (m~) s in Theorem 3.5. Then 

,<,>-c, b +, '>:Cb: 
For a ~ 2, 

so that 

Further 

Since 

I ( ~ ) I  : s (1 - , , ) (2 -~ )  ... ( ( a - J ) - s )  < s . O . 2  . . . ( a - l ) )  s 
a !  . . . . . . . . . . . . . . . . .  a !  = 7 ' 

I g(p)-i I < s-+sp a=27 apla < s- +- p ~s . --2pl . ~ -p< s + s__ :p 2 s (p+l)p 2 

T-I 
s(p+l) < N -J~ <=> N > s(l+ I]T+I 

2 -- 
t ) "P +l~r -- P" p 

(i+ l]p.T+l _< (i+ ~)11T+I = (2)3 T+I , 

N > s(3) T+I Implies that 

T-I 
P______ Ig(p)-ll < N 
( p+l )T 

g 

Now, Corollary 3.4 follows from Theorem 3.5. 
3 5 

As special cases, taking t ~ ~ and t = 

obtain the following: 

successively in Corollary 3.4, we 

and 

where 

and 

( )3i2 6~<; 
m<x : ~2 +0(x(x)(iog x)2), 

m<x = 2 +0(X(x)(log x)), 

P pl/2 (p+l * 

I/4_(p_i)i/4 
B~ o (I- P ) 

p pl/4 (p+l) 

Remark 3.3. Let 0 < s < I. Taking k = i and g(m) = (~mm)) s-I 

we get 

in Theorem 3.5 
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(~g2~-) ~ 
m<x 

6x i I (P-l)S(pl-S-(p-l)l-s) } + 0(k(x)(log x) N) =-f {I+ 
P ( p2 -i ) 

for any integer N > 3(l-s). However I.I. lljasov [6] proved a better result that 

for 0 < s < i 

((ng~)) s = cx + 0(X(x)). 
n<x 

where c is a positive constant. 

Lemma 3.1. Let N and k be fixed positive integers. Then we have 

(a) [ N~(m)s<m~ = 0((log x) N) 
m<x m 

N~(m)s(m)m k-I 
(b) [ = 0((log x) N) 

m<x (~(m)) k 

r~(m)~ k 0(x). 
(c) m~x~(m) , = 

(d) [ N~(m) (~(m)]k = ~x(log x) N-I) 
m<x ~w(m)' 

where S(m) is as given in (2.10). 

Proof. The result in part (a) can be proved by induction on 

S(m)m -I =0 (log x) and (N+I) ~(m) = ~ p2(d)N~(d) " 
m<_x d m 

N, using the results 

Result (b) follows using induction on k and the result in (a). 

Result (c) can be obtained from the identity ~<m~ = I ~2(d)8(d)/~(d) and 
~(m) d m 

I 
induction on k. 

Result (d) follows by induction on N and the result in (c). 

Hence Lemaa 3.1 follows. 

Theorem 3.6. Suppose h is a multlpllcatlve function satisfying 

(1) h(p m) = h(p) , for all primes p and m > i. 



229 

(ii) lh(p) - i I ~ Npk-i/(p-l) k , for some fixed positive integers N and for all 

pr imes  p.  

Then we have 

where 

[ h(m)(~(m)m-l) k = xA~'c k 
m<x 

3k-i 
--+N 
3 

+ 0((log x) ) , 

A~' = ~ (i+ (P+l)k(h(p)-l)] 
k+l ~ ' 

P P ok(P) 

c k and ek(P) being as given in Theorem 3.2. 

Proof. The proof is similar to that of Theorem 3.5 if we make use of Lena 3.1 and 

Theorem 3.2. 

Corollary 3.5. Let t be a real number > 1 and t be not an integer. Let T 

be the integer part and s be the fractional part of to Then for any positive 
3s 

integer N ~-- , we have 

where 

m[<x( (m~)t = x ~'C T 

3T-I 
--+N 

+#((log x) 3 ) , 

A~' = ~ (i + (P+I)T((p+I)S-pS)) . 

p pt+iCT(P) 

Proof. This follows from Theorem 3.6, by taking k = T and h(m) = [~(m)]s. The 
- m - 

3s 
condition N ~-- ensures that h satisfies condition (ii) of Theorem 3.6. 

Remark 3.5. Taking h(m) = (m/9(m)) k in Theorem 3.6, we obtain an asymptotic 
3k-i 

(~(m)~k +Nk) where N k is as give formula for m~x<~(m) j with error term 0((log x) 3 

in Theorem 3.4~ For k = I, this formula becomes ~ ~(m) = +0((log x)5/3), 
m<x ~(m) ax 

a being an absolute constant. 

Remark 3.6. Taking h(m) = [ (m~) s-I , where 0 < s < i and k = i 

3 . 6 ,  we o b t a i n  t h e  f o l l o w i n g  a s y m p t o t i c  f o r m u l a :  For  0 < s < 1 

in Theorem 
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[ ( m.~)s 15x (I-(P+!)S((p+I)I-s-pl-s)) 0(Clog x) 5/3) 
=--i-- H + . 

m<x ~ p p2+l 

§4. Some Remarks. Using Theorems 3.1, 3.2 and [ p(d) = i or 0 according as 
d | n 

n = i or n > i, it is not difficult to prove the following: For any positive 

integers k and n, we have 

and 

where 

(m(~) k = XBk.Bk(n ) 
m<x 

(m,n)=l 

+0(log x)k-iSk,e(n)) 

(m(~) k = XCk. CkCn) +0((log x) 
m<x 

(m,n)=l 

* ~(d)(~(d)) k 
Bk(n) = ~ .k+l 

d n d Bk(d)_ _ 

3k-i 
3 

S'(n)) 

(4.1) 

(4.2) 

Ck(n) = d~n ~<d)~k<d) 
d k+l C k (d) 

and 

~2(d)(~(d))k-lo~l+c(d) 
Sk'E(n) = d~n d k-I 

8(n)n 
S'(n) - d r~ B2(d)S(d) = ~(n) " 

The -estimates in (4.1) and (4.2) are uniform in x and n. 

In fact, by somewhat more complicated arguments, we can also establish 

asymptotic formulae for sums such as 

~ (m~-~) k and ~ ((m~) k , 
m<x m<x 

(m,n)=l (m,n)=l 

m~a(mod h) m~a(mod b) 

with (a,b) - I for any positive integers r and n satisfying (r,n) = i, with 

uniform0 -estimates. This would be done later in a separate paper. 
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§5. As~mptotlc Formula Involvin ~ the Unitar~ Analogues of p and o Functions. 

We recall that these unitary analogues ~ and o have the evaluation [I]: 

(n) = ~ (pa-l) , o (n) = ~ (pa+l), 

pan n pa~ n 

where palln denotes paln but pa+l~n. Using Lemma 2.11, formula (4.1) (k=l) 

of this paper and induction on k, we can establish the following results: (using 

le~as 2.3 and 2.4 of [19]): 

THEOREM 5.1. For any positive integer k we have 

where the 

and for k ~ 2, 

THEOREM 5.2 

where 

with at(n ) 

(a m.~) k = x~ (2)Sk(n) 
I 
m<x ~ (3) 
m 

(m,n)=l 

6k-I 
+ orne(n) 3 (log x) ) 

k~(n) 

-constant depends only on k and 

~(n~2(n) 
81(n ) = J3(n ) ' 

6k(n ) = ~ °*(~ ))k-tSk-t (n6) 
6k+l = ~(i). 

6=1 
(6,n)=l 

For integers k > i we have 

[ (m~) k = xa.ak(n) + 0(k(x)(log x)2k-is*(n)). 
m<x 

(m,n)=l 

i 
a = I~ (i p(p+l) )' 

P 

ak(n ) = I 
m=l 

(m,n)=l 

(<p* (m)) k-llJ * (m)ak_l (mn) 

k+l 
m 

2 E p-i 

Pln p2-p-I " 

, for k > 2, 
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Remark. Similar results can be obtained for functions associated with biunitary 

divisors [16]; however we shall not go into details. 

§6. C oncludin$ Remarks. An estimate for ~ ~2(m) also appeared earlier in 1964 
m<x 

in a paper of S.L. Segal [12], who gave the weaker error term 0(x21og2x) which is 

the same as Chowlas' result for k = 2. A probabilistic proof of the formula for 

~2(m) without error term has been given by M. Kac [8] who ascribed it to 
m<x 
Schur. 

The first author thanks S. Rame Gowda, Principal, Pondieherry Engineering 

College, for his constant encouragement. The second author thanks the Natural 

Sciences and Engineering Research Council of Canada, for a research grant. 
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