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THE SPECTRA ASSOCIATED TO PERMUTATIVE 
CATEGORIES 

J. P. MAY 

(Receiced 19 September 1977) 

IN [l], FIED~ROWICZ axiomatized the passage from rings to spectra. In [5], Thomason 
and I axiomatized the passage from %-spaces to spectra for a suitable category of 
operators 3. In this sequel to [5], I shall axiomatize the passage from permutative 
categories to spectra. The idea of such an axiomatization is due to Fiedorowicz, who 
contemplated a proof parallel to his argument in [I]. All unexplained concepts and 
notation are taken from [5], and the definition of a permutative category will be 
recalled below. 

Given the techniques of [5], the only really subtle point is the explanation of just 
why this further consistency statement is of interest. By [5], we know that the infinite 
loop space machines of Segal[6] and myself [3] turn out equivalent spectra when fed 
the same data. Here the “same data” means the same %-space for some category of 
operators 3. Many of the most interesting examples come from permutative cate- 
gories, via functorial associations of (e-spaces to such categories. The point is that 
there are two essentially different functors known. As we shall explain shortly, ideas 
of Segal[6] lead to a functor which associates an p-space Bd to a permutative 
category d. Here 9 is the category of finite based sets, Ba is a functor from 9 to the 
category T of based spaces, and the nth space of Bd is equivalent but not equal to the 
n-fold Cartesian product of its first space, which is the classifying space Bd. On the 
other hand, I showed in [3, 041 that Bd is a g-space for a suitable E, operad 9. As 
explained in [5, 041, 9 determines a category of operators 6 and B& determines a 
g-space whose nth space is precisely @a)“. A direct comparison between these 
functors seems to be surprisingly difficult, and each of them has distinct advantages 
over the other. For example, Friedlander[2] has shown how the machinery of Ctale 
homotopy leads to -9-spaces, and his proof of the stable Adams conjecture requires 
naturality arguments based on the use of Segal’s functor. Here the freedom to use 
products up to equivalence is vital. On the other hand, in multiplicative infinite loop 
space theory as developed in [4], the use of g-spaces and precise products is certainly 
convenient and probably essential for at least some of the arguments. Our present 
result shows that these functors become equivalent after passage to spectra. Pre- 
cisely, we have the following definitions and theorem. 

Let 0.& and Ad denote the object and morphism spaces of a small topological 
category &; we require the identity function I?& -*A& to be a cofibration. 

Definition 1. A permutative category SB = (Sa, 0, *, c) is a small topological cate- 
gory d, a nondegenerate basepoint * E 0sP, a continuous product 0: & x & +sB, and a 
natural commutativity isomorphism c: AUB -BOA such that Cl is associative with 
unit * and the following diagrams commute: 

AO*c- * q A, 

II II I 
A-A 

AOB -!+ AOB, and AOBOC A COAOB. 

\/ A/L, 

BOA AOCCIB 

225 



226 J. P. MAY 

A continuous functor f: ti +d’ ” Is a map of permutative categories if f(*) = *, 
f - El = Cl * cf X f): d X d +d’, and f(c) = c on f(AOB) = f(A)Of(B); f is said to be 
an equivalence if Bf is an equivalence (that is, weak equivalence) of spaces. Let 9% 
denote the cate the category of permutative categories. 

The reader is referred to [4, VI] for discussion and examples. Suffice ii to say that 
such categories play a vital role in algebraic K-Theory. We have the following analog 
of [5, 2.11. 

Definition 2. An infinite loop space machine defined on permutative categories is a 
functor E from 9% to connective spectra, written Ed = (Eid, ai}, together with a 
natural group completion L: Bd + Eod. 

Our conventions on spectra are explained in [5, 021. Let S denote Segal’s infinite 
loop space machine defined on F-spaces, as constructed in [5, 931. The following 
uniqueness theorem is our main result. 

THEOREM 3. For any infinite loop space machine E defined on permutative cate- 
gories, there is a natural equivalence of spectra between Ed and SBd. 

For example, this applies to Ed = MB&, the composite of the May machine 
defined on a-spaces and the functor B: 9% +9[T]. 

We assume given a fixed machine E defined on 9%. The proof of Theorem 3 
begins with the following analogs of [5, 2.2-2.41, which admit the same proofs. Recall 
that the classifying space functor B from based categories to based spaces preserves 
equivalences and products. 

LEMMA 4. If ITOB& is a group, then L: B& + E& is an equivalence. 

LEMMA 5. If f: d +d’ is an equivalence of pet-mutative categories, then Ef :EsB + 
Ed’ is an equivalence. 

LEMMA 6. For permutative categories z-4 and &‘, the projections specify an 
equivalence E(& x a’) + Ed x Ed’. 

The proof of the uniqueness theorem in [5] depended on use of the notion of an 
$%-space [5, 3.11, or s-object in the category of %-spaces. We require the following 
analog. 

Definition 7. An 9-permutative category is a functor 3: 9 + 9%, written n+ 5% 
on objects, such that the following properties hold. 

(1) ?& is equivalent to the trivial category. 
(2) For n > 1, the functor % + 9,” with coordinates 6i is an equivalence of 

permutative categories. 
Let .%%’ denote the category of 9-permutative categories, its morphisms being 

the natural transformations under 9. 

The following lemmas are analogs of [5, 3.2 and 3.31. 

LEMMA 8. Let D be any functor from permutative categories to based spaces which 
satisfies the following properties. 

(i) If d is equivalent to the trivial category, then Dd is aspherical. 
(ii) If f: d +d’ is an equivalence of permutative categories, then Of: DSP + Dz.4’ is 

an equivalence. 
(iii) The map D(sQ x &‘)+D& x D&’ given by the projections is an equivalence. 
Then for any .9-permutative category 93, the spaces D% and maps D+ for 

4: m + n in 9 specify an improper s-space D93. 

Obviously the classifying space functor B satisfies the specified properties, and 
Lemmas 4-6 show that each functor Ei also does so. 

LEMMA 9. The group completions L: B% + E$& and equivalences (+i: Ei93” + 
REi+lO” specify maps L: BB + E&i3 and ui: Ei93 +C4Ei+,93 of improper s-spaces. 
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As in [5], all improper .9-spaces of interest are in fact F-spaces, but we shall 
exploit [5, I.61 rather than assume conditions on E which ensure this. 

The only 9-permutative categories we shall need arise via the following analog of 
[5, 3.41, which is also abstracted from ideas of Segal[6]. I am indebted to Richard 
Steiner for a very helpful discussion of these ideas. 

Construction 10. Construct a functor 9% + $V%, written & +d on objects, in 
two steps as follows. 

Step 1. Construction of the n th permutative category &: The objects of & are 
the systems (A,; i&, where s runs through those subsets of n = (0, 1,. . ., n} which 
contain 0, (s, t) runs through those pairs of subsets with s fit = {0}, the A, are objects 
ofsBandAo= *, and the &,) are isomorphisms AS”, +A,OA, such that the following 
diagrams commute: 

the morphisms (A,; id+(A:; i;s,rJ are the systems (a,) of morphisms as: A, -+A: 
such that a0 = 1 on * and the following diagrams commute: 

A 
h.t) 

su - A,OA, 

“1.0 
A:, - A:OA:. 

Composition and identities are inherited from d, and the sets 0.& and &L% are 
topologized as subspaces of 

The unit * of & is the object with each A, = * and each k,,, = 1. The product 
q : a,, x a’, +d,, is specified on objects by 

(A 5 ; LdCKAk h) = (AOA:; (lOcO1)(i(,.,,Oi;,.,,)) 

and on morphisms by (a,)O(a~) = (aslJai). The commutativity isomorphism c is 
inherited from that of SB. 

Step 2. Construction of the 9-permutative structure on d: For a map 9: m + n in 
9, construct a functor 4: &, +a, as follows. On objects, 6 sends (A,; i(s.Jd to 
03, ; Ar.dr where 

B, = At,, and he) = i(s(r,.scr,)) 

with s(t) = (0) U{i]+(i) E t - (0)). On morphisms, 4 sends (aI) to (p,) where pt = a,cl). 

With this definition, it is straightforward to verify that 4 is a map of permutative 
categories and that 3 is a functor from 9 to 9%. Clearly do is the trivial category, 
and it remains to verify that, for n > 1, 

is an equivalence of topological categories. Clearly S sends the object (A,; i& to 
(AI,. . ., A,) and the morphism (a,) to (al,. . ., a,), where the subscripts i, 1 5 i I n, 
refer to the subset (0, i} of n. Define a continuous functor Y: SB” +L& as follows. On 
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objects, v sends (AI, . . ., A;) ‘to (A,; c~,.,,), where A, = AJI . . . q ASY if s = 
(0. SI,. . ., sq} with 0 < sI < . * * < sq and c(,,,) is that shuffle (defined in terms of the 
commutativity isomorphism c) which rearranges A,,, in the form AJJA,. On 
morphisms, Y sends ((Y,, . . ., a.) to (a,), where as = cu,,!J . . . q lasq for s as above. 
Clearly 6~: &?” + d” is the identity functor. Define a natural equivalence f: l+ ~8 of 
functors d, -+a’, by letting 5 assign to the object (A,; i(s.r,) the isomorphism (&), 
where 6 : A, + AJI . . . CIA,” for s as above is the isomorphism determined in- 
ductively (and uniquely by associativity) by the its.,,. 

By Lemma 8, we now have a well-defined improper F-space Bd, and it is easy to 
verify from Step 2 that Bk? satisfies the cofibration condition required of 9-spaces in 
[5, 1.21. Thus the Segal spectrum SBd is defined. We now have all the preliminaries 
necessary for the proof of Theorem 3. Indeed, we have the proof itself: the argument 
consists of a word for word repetition of the proof of the uniqueness theorem in [5, 83 
and App. B], but with the T-space Y, ZEF-space Y, and group completion L: Y +&P 
used there replaced by the permutative category JFZ, 9-permutative category 3, and 
group completion L: Bd + Ed present here. 
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