AN INTRODUCTION TO AFFINE SCHEMES

BROOKE ULLERY

ABSTRACT. This paper gives a basic introduction to modern algebraic geom-
etry. The goal of this paper is to present the basic concepts of algebraic
geometry, in particular affine schemes and sheaf theory, in such a way that
they are more accessible to a student with a background in commutative al-
gebra and basic algebraic curves or classical algebraic geometry. This paper
is based on introductions to the subject by Robin Hartshorne, Qing Liu, and
David Eisenbud and Joe Harris, but provides more rudimentary explanations
as well as original proofs and numerous original examples.

CONTENTS
1. Sheaves in General 1
2. The Structure Sheaf and Affine Schemes 3
3. Affine n-Space Over Algebraically Closed Fields 5
4. Affine n-space Over Non-Algebraically Closed Fields 8
5. The Gluing Construction 9
6. Conclusion 11
7. Acknowledgements 11
References 11

1. SHEAVES IN GENERAL

Before we discuss schemes, we must introduce the notion of a sheaf, without
which we could not even define a scheme.

Definitions 1.1. Let X be a topological space. A presheaf % of commutative
rings on X has the following properties:
(1) For each open set U C X, .%(U) is a commutative ring whose elements are
called the sections of % over U,
(2) Z(0) is the zero ring, and
(3) for every inclusion U C V C X such that U and V are open in X, there is
a restriction map

resyy : F (V) — F(U)
such that
(a) resy,y is a homomorphism of rings,
(b) resy,y is the identity map, and
(c) for allopen U CV C W C X, resy,y oresy,y = resw,u.
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In order to simplify notation, we will refer to resy,y(f) for f € F(V) as the
restriction of f to U, or simply as f|y, and we refer to the elements of (V) as
the sections over V.

We can similarly define presheaves of modules, abelian groups, or even just sets.
However, for our purposes, we will only be dealing with presheaves of commutative
rings, and from now on, we will assume that all rings mentioned are commutative
and have a multiplicative identity 1.

In order for a presheaf to be a sheaf, it needs to satisfy an additional condition,
called the sheaf axiom. We state this as a definition:

Definition 1.2. Let .# be a presheaf on a topological space X, and let U C X be
open. Then .7 is a sheaf if it satisfies the following condition, known as the sheaf
aziom:

If U = U;c, Ui is an open covering of U and {f;}ics is a set of elements with
fi € F(U;) for all i € J such that fi|v,nv, = fjlv,nu, for each pair i,j € J, then
there exists a unique element f € .%(U) such that f|y, = f; for all i € J.

Now we look at a simple example of sheaves over discrete spaces.

Example 1.3. Consider the set X = {0, 1} given the discrete topology, and let &
be a sheaf over X. The two single-element open sets only contain themselves in
their respective open coverings, so they give us no information about .%. Instead,
let’s consider the covering {{0},{1}} of X. Let fy € .#(0) and f; € .%#(1). Then,
since there is only one section over the empty set, we have

folgoyngy = folo = file = filjoyniay-
Thus by the sheaf axiom, there is a unique section g over X such that g|oy = fo
and g|r1y = f1. That is, .#(X) is set theoretically equal to .#({0}) x .#({1}), and
the restriction maps are simply the projection maps.
More generally, if Y is any space given the discrete topology, it is clear that

FY) =1Ilev 7{yh)-

Another important feature of a sheaf is its stalks. The stalks describe the space
and its sheaf locally, near a given point. We give a more precise definition.

Definition 1.4. Let X be a topological space and .% a presheaf on X. Let x € X.
Then the stalk of % at x, denoted .%#,, is defined to be

F.= im FO)=| || Z#@O) / ~,
zeUCX 2€UCX
U open Uo;;en

where ~ is an equivalence relation such that a ~ b if ¢ € ZF(U),b € F(V) and
there is an open neighborhood W C U NV such that a|w = b|w .

We illustrate this concept with a few more simple examples.

Example 1.5. We again consider the space of two elements given the discrete
topology. We call it X = {0,1}. By our definition, we have

Fo=F{0})uF({0,1})/ ~ .

Clearly {0} N {0,1} = {0}, and if a € F({0,1}) then a|fy € F#({0}) so that
a ~ b for some b € #({0}). Thus F#, C F({0}). However, if f, " € F({0})
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such that f ~ f’, then f = f’ since resjoy {0y is the identity on .#({0}). That is,
Fo = F#({0}), and similarly .7, = .#({1}).

It is again clear that we can generalize to any space Y given the discrete topology:
fory e Y, #, = #({y}). Moreover, if any single point in a space is open, the stalk
at the point is simply the sheaf on the set containing only that point.

Example 1.6. Now we consider a non-discrete, but still simple, example. Let
X = {0,1}, but this time let the open sets be only (), {0}, and {0,1}. From the
previous example we see that %y = .#({0}). Now, it is clear that the stalk at 1 is
simply .71 = % ({0,1}), since {0,1} is the only open neighborhood of 1.

After defining sheaves and stalks, it is natural to define maps between them.

Definition 1.7. Let X be a topological space and let % and ¢ be sheaves on X.
Then a morphism ¢ : F — 4 of sheaves is a collection of maps ¢(U) : ZF(U) —
%(U) where U C X is open and for every V open in X such that U C V| the
following diagram commutes:

F(V) —— 4(V)

lresw J{resv,u
7)) 29 g

In the case where % and ¢ are sheaves of rings, the maps ¢(U) are ring homo-
morphisms.

A morphism of sheaves also induces a morphism of stalks, in this case a ring
homomorphism, of the respective sheaves. We denote this morphism ¢, : %, — ¥,
for z € X.

2. THE STRUCTURE SHEAF AND AFFINE SCHEMES

Now that we have described some of the basics of sheaves, we present a specific
sheaf, which we will use throughout the rest of the paper: the structure sheaf. First,
we must quickly review a few definitions from commutative algebra:

The spectrum of a ring R, denoted Spec R, is a topological space whose under-
lying set is the set of prime ideals of R. We give Spec R the Zariski Topology. The
closed sets of this topology are of the form

V(S):={p|SCp}
for S an arbitrary subset of R.

Given f € R, we define the distinguished open set of X = Spec R associated

with f to be

Xy :=8pecR—V(f)={p €SpecR| f ¢ p}.
The set of distinguished open sets of X, {X | f € R}, form a basis for the topology
on X.

Now that we have a topology on X, we can define the structure sheaf &x on
X. When the space over which we are dealing is clear, we will denote the structure
sheaf simply as &. It turns out that it suffices to define the sections of & over
distinguished open sets and the restriction maps between basic open sets. In fact,
every sheaf on basis elements of a space Y satisfying the sheaf axiom with respect
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to inclusions and coverings can be extended uniquely to a sheaf on Y. For the
purposes of this paper, we will omit the proof of this statement.

Going back to our space X = Spec R, with basis {X | f € R}, we set 0(Xy) =
Ry, the localization of R at f. If Xy C X, (that is f € 1/(g), or f € (g) for some
power n), then we define the restriction map resy, x,; : g — Ry, as the localization
map R, — Ryr = Ry. This leads us to the following simple observations:

Observation 2.1. If X = SpecR, then 0(X) = R.

Proof. Consider X; = SpecR — V(1) = X — 0 = X. Then we have 0(X) =
0(X1) = R1 = R, as desired. O

Observation 2.2. A point p € X = Spec R is closed if and only if p is a mazimal
ideal of R.

Proof. The point p is closed in X if and only if {p} = V(S) for some S C R if and
only if there is no prime ideal properly containing p if and only if p is a maximal
ideal of R. (]

Now we are able to construct the stalks of &

Lemma 2.3. Let O be the structure sheaf on Spec R = X, and let p € X. Then
the stalk at yp is O, = Ry, the localization at the prime ideal p.

Proof. We begin by simply using our definition of a stalk. We have

O,= lm oU)=| || o) /~
peUCX peUCX
U open U open
where a ~ b if there exists an open neighborhood X}, containing p such that a|x, =
b|x, . However, we simplify this by showing that it suffices to take the direct limit
of O(U) where U is a basis element:
Suppose we have U open in X, and f € 0(U). Let V be a distinguished open
set such that x € V. C U. Then f|y ~ f, so it represents the same element of the
stalk. Thus, we can write

Op = lim O(Xy) = lim Ry.
peXy fép
There is a canonical ring homomorphism
¢:lim Ry — Ry
fép

that sends each element to its equivalence class. Thus it suffices to show that ¢ is
an isomorphism. Let a € Ry. Then o = % for some f ¢ p. Thus « is mapped to by

some element of Ry, so ¢ is surjective. Now, suppose ¢ (Jﬁ%) =0, for some f ¢ p.

a

This implies that there is a g ¢ p such that ga = 0, so we have = 0 in Rgyy.

Since gf ¢ p, this implies that ker¢ = 0, so ¢ is injective and thus an isomorphism.
Thus 0, = R,, as desired. O

Since all the stalks of the structure sheaf are local rings, we call X along with
the sheaf & a locally ringed space, which is simply a topological space together with
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a sheaf of commutative rings on the space such that all the stalks of the sheaf are
local rings.
We now have the machinery necessary to define an affine scheme.

Definition 2.4. Let the topological space X along with the sheaf &x be a locally
ringed space, where Ox(X) = R. Then X along with its sheaf &x, which we will
denote (X, Ox), is an affine scheme if it is isomorphic to (Spec (R), Ospec r), which
is true when the following conditions hold:

(1) ﬁx(Xf) = Rf, and

(2) X and Spec (R) are homeomorphic as topological spaces.

Now we give a few basic examples of affine schemes.

Example 2.5. Let K be a field. Then Spec K consists of exactly one point,
corresponding to the zero ideal, and the structure sheaf on Spec K is simply K.
That is, these are the sections over the unique point.

Example 2.6. Let K be a field, and let R = K[z](,), the localization at the
maximal ideal (x). Then R is a local ring with only two prime ideals, (0) and (z).
The ideal (z) is the only closed point of X = Spec R by observation 2.2, so the only
nonempty open sets of X are {(0)} and X, which is the situation given in example
1.6. Thus we have
OX)=00p =R

and

0((0)) = O0) = R(o) = K(z),
the field of rational functions.
Example 2.7. Let R = Z/6Z. R has exactly two prime ideals, (2) and (3), both

of which are maximal. Thus X = Spec R is the discrete space on two points, as in
Examples 1.3 and 1.5. Using these examples, we see that

Localizing at (2), we notice that 1 = 2 = 2 since 3-1=3-3 =35 =3 and
similarly, ¥ = 2 = 4. Thus, R(s) = Z/2Z.
From example 1.3, we see that
0((2) x 0((3)) =0(X) =2Z/6Z.
Thus
7/27 x 0((3)) =Z/6Z,
which means that
6((3)) = Oy = L/3L.
3. AFFINE n-SPACE OVER ALGEBRAICALLY CLOSED FIELDS

Though the simple examples of finite schemes at the end of the previous sec-
tion give relatively interesting algebraic results, we now turn to schemes that have
much more interesting geometric structures, which generalize the notion of an affine
variety in classical algebraic geometry.

Definition 3.1. Let K be an algebraically closed field. Then the scheme
% :=Spec K[z1,x2,. .., Ty

is called affine n-space over K.
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In order to understand this space geometrically, we state a useful result from
commutative algebra, a corollary to the weak Nullstellensatz:

Proposition 3.2. Let K be an algebraically closed field. Then the mazimal ideals
of K[z1,xa,...,2,] are of the form

m= (l’lfalax2*a2w~~axn*an)a

where a; € K. That is, the mazximal ideals are in one-to-one correspondence with
the points of K™.

This proposition, along with observation 2.2, implies that the closed points of
A7, are precisely the points corresponding to prime ideals of the form (x; —ay, 22 —
ag,...,Ty — a,). That is, the closed points correspond to vectors in K™.

We will first look at the simplest example of an affine n-space, the case in which
n = 1. We refer to A}, = Spec K[z], in this case, as the affine line. According to
the proposition, the maximal ideals of A}, are ideals of the form (z —a), a € K.
In fact, since K is algebraically closed, these are the only nontrivial prime ideals
of Al.. Thus the scheme Al is almost identical to its classical algebraic geometry
counterpart, with one notable difference: since Klx] is a domain, (0) is a prime
ideal, so AL actually has one additional, non-closed point. This point has an
interesting property: its closure, W, is the whole affine line, since 0 is contained
in every ideal. We call this point the generic point of Ak,. We now look at a simple
example of a map from the affine line to itself.

Example 3.3. Let ¢* : A}, — AL be the map induced by the ring homomorphism
¢ : K[z] — K|x] defined by mapping x to 2. We now determine what the prime
ideals are mapped to under ¢*. First, let’s look at (z — a). Elements of (x — a) are
of the form (z —a) f(x). Thus 2% —a? € (z—a). So 2?2 —a? € ¢((x —a?)) C (x —a).
Therefore, since (z — a?) is maximal, and the preimage of prime ideals under a
homomorphism is prime, we have that the preimage of (z — a) under ¢ must be
precisely (z —a?). That is, ¢*((x —a)) = (z —a?). Similarly, ¢*((z +a)) = (x — a?)
as well, so that the fiber of (z —a?) under ¢* is {(z+a), (r —a)}. Thus (z) only has
one point, (), in its fiber under ¢*. We know that ¢ is an injective homomorphism,
so the preimage of 0 under ¢ is simply 0. Thus ¢*((0)) = (0).

This example is illustrated in the picture below, which is based on a picture from
exercise II-2 in Eisenbud and Harris.
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(X)

@

(X

It is necessary to keep in mind that K might not actually be a “line” in the
usual topological sense (for example, we don’t usually think of the visualization of
C as a line), so our scheme diagrams cannot completely illustrate how these spaces
behave geometrically. However, they can be useful as a visualization tool.

We now look at the example of the affine plane, A% = Spec K[z, y]. Again by our
proposition, the closed points of A% are precisely points of the form (z — a,y — b),
where a,b € K. However, the affine plane behaves much more interestingly than
the line since it has many more prime ideals. Let us classify and examine these
ideals. First, we have the obvious maximal ideals that we mentioned, and, just as
on the affine line, we have (0) as the generic point. The last class of prime ideals
are those of the form (f(z,y)), where f is an irreducible polynomial in K|z,y].
When we take the closure of (f), for instance, we get the set of maximal ideals
{(x —a,y —b) | f(a,b) = 0} along with the point itself. Again, we call this point
the generic point of this set. Although these points are not closed and thus do not
have representatives on the coordinate plane, we can think of them as defining the
curve that is their closure: the generic point is infinitely “close,” in the topological
sense, to the curve that it defines. It is clear that these points correspond to the
irreducible subvarieties of the classical affine plane.

The picture below, based on one from section II.1.1 of Eisenbud and Harris,
illustrates this idea, showing examples of the points of AZ%.
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(0) : Generic Point of
the Affine Plane

(x-a,y-b) ®

o
(X) : Generic Point
of thex—axis

Generic point of the curve

(y) : Generic Point
of they—axis

The example of the affine plane can be easily extended to affine n-space, A%.
Just like in the plane, we have three types of points in affine n-space:

(1) Closed points, which are of the form (z1 — a1,22 — aga, ..., T, — ay),

(2) Non-closed points whose closures correspond to irreducible subvarieties of
classical affine n-space, and

(3) (0), the generic point of A’.

4. AFFINE n-SPACE OVER Non-ALGEBRAICALLY CLOSED FIELDS

In the previous section, we noticed that affine space over algebraically closed
fields behaved very nicely, due to the fact that the maximal ideals of K[z, za, ..., z,)
are in one-to-one correspondence with points in K. However, this is not the case
when working over non-algebraically closed fields.

We first give the example of the affine line over R, or A} = SpecR[z].

Example 4.1. We can figure out what the closed points of A} are by looking at
the map from A} to A} induced by the inclusion map from R[z] to C[z]. The points
of the form (z —a) in A{, where a is real, are simply sent to the same points in A}.
However, with points of the form (z — b) such that b € C — R, we have

(. —b) — (z —b)(x —b) = 2% — (b+ b)x + (bb) = 2* — 2Re(b)x + |b|*.
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Since the only irreducible polynomials in R[z] are of these two forms, along with the
fact that R[z] is a principal ideal domain, we see that these are the only maximal
ideals, and that there is only one other prime ideal, the zero ideal.

Thus every closed point of A} corresponds either to a point on the real line or
to a complex number and its conjugate, so we can think of this affine line as the
complex plane with complex conjugates identified, or the closed upper half plane,
along with the generic point, (0).

In general, if K is a field and K its algebraic closure, the points of the affine
n-space over K correspond to the orbits of the action of the corresponding Galois
group. In this next example, we look at the natural map from Aé to A%.

Example 4.2. Let ¢* : A% — A?@ be the map induced by the inclusion map
¢ : Q[z,y] — Qlx,y]. In particular, we will determine the image of the point m =
(r—V2,y—?2) € A% under ¢*. Since ¢ is simply the inclusion map, it is clear that
¢*(m) = mNQ[z, y]. We recall from Galois Theory that the only field automorphism
of Q(v/2) acting nontrivially on v/2 sends v/2 to its conjugate —v/2. However, this
automorphism fixes elements of Q, so we have ¢*(m) Cm = (z + /2,y + v/2), and
ﬁlus ¢*(m) C mNm. Now (x+ \/5) —(x - V2) =22 em+m. 2y/2is a unit in
Q[z,y], so m+m = Q[z, y]; that is, m and m are coprime, which means that
o*(m) CmNm =mm = (2% —2,9° — 2,2y — V22 +V2y — 2, 2y + V2 — V2y — 2).
We obtain from this
(zy — V2 +V2y — 2) + (zy + V2x — V2y — 2) = 22y — 4 € Wm,

which means that

1

Q(ny —4)=zy—2emmnNQ[z,y]
Thus we have

(2* =2,y = 2,2y — 2) C@mN Q[z,y] = ¢"(m) C Qla, y].
However, we notice that
1

1
—50?(@® = 2) + S (ay +6)(ay —2) =3° - 2,

so that
(2 —2,9% — 2,2y — 2) = (2 — 2,2y — 2).

Now, modding out by this ideal, we get

Qle, y)/(@® - 2,2y — 2) = Q(V2),
which is a field. Thus (22 — 2,7y — 2) is maximal in Q[z,y], which means that
¢*(m) = (22 — 2,2y — 2).

5. THE GLUING CONSTRUCTION

Just like their classical counterpart, schemes can be glued together to make more
complicated schemes. At this point, it is necessary to define a scheme in general
(that is, a scheme that is not necessarily affine).
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Definition 5.1. A scheme X is a topological space, denoted | X|, together with a
sheaf O of rings on X such that (|X|, Ox) is locally affine. Locally affine means
that | X| has an open cover {U;} such that there exist rings R; and homeomorphisms
|Spec R;| = U; such that Ox|uy, = Ospec r; -

It now seems natural, seeing this definition, that affine schemes can be glued
(a term that we will define below) to create general schemes. Naively it seems
reasonable to glue schemes along open subsets of their underlying topological spaces.
In fact, we make this more precise by defining an open subscheme:

Definition 5.2. Let U be an open subset of a scheme X. Then the pair (U, Ox|v)
is again a scheme, called an open subscheme of X.

We can finally describe the gluing construction. Suppose we have two schemes
X and Y and open sets U C X, V C Y such that there is an isomorphism of
schemes ¢ : U — V. We can then glue U and V along v in the natural way: we
glue the underlying topological spaces along the corresponding homeomorphic open
sets, and the sheaves on U and V, that is the restrictions of the original sheaves to
U and V, are already identical by our assumption.

We now give two examples of gluing affine lines, the second of which naturally
leads to the definition of projective schemes.

Example 5.3. Let K be an algebraically closed field, and let X = Spec K[z] and
Y = Spec K[y]. Let U = X, and V =Y. These are both simply the affine line
without the origin. Let ¥ : V' — U be the isomorphism corresponding to the map

Ox(U) = K[z,27'] = Kly,y~'] = Oy (V)

sending = to y. The resulting scheme, 77, is identical to the affine line everywhere
but the origin. In place of the origin, there are two points corresponding to x and v,
which are not glued. Thus Z; is the affine line with a doubled origin, as illustrated
below.

X )
. — o -
o / v

%

<

Example 5.4. Let X and Y and U and V be defined as in the previous exam-
ple. However, now let v : V' — U be the morphism corresponding to the map
K[z, — Kly,y '] sending z to y~. We call the resulting space Zs, illustrated
below.
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()

X )
@ —
Z,
o —_—
Y ¥

$%

The scheme Zs actually turns out to be isomorphic to the projective line P%,. In
fact, we construct projective n-space in general in an analogous way. We conclude
with a “teaser”: let R be a ring. Projective n-space over R, denoted P}, is made
by gluing n + 1 copies of affine space A% over R.

6. CONCLUSION

Although we have only skimmed the surface of modern algebraic geometry, we
can get a feeling for the power and generality of schemes, and the beautiful union
of algebra and geometry that is not as obvious when merely dealing with algebraic
varieties.
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