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CHAPTER 1

The POD Method in Rm

In this chapter we introduce the POD method in the Euclidean space Rm. For
an extension to the complex space Cm we refer the reader to [22], for instance. The
goal is to find a proper orthonormal basis, the POD basis {ψi}ℓi=1 of rank ℓ, for the
snapshot set spanned by n given vectors (the so-called snapshots) y1, . . . , yn ∈ Rm.
We assume that ℓ ≤ min{m,n} holds true. The POD method is formulated as a
constrained optimization problem that is solved by a Lagrangian frame work in Sec-
tion 1. It turns out that the associated first-order necessary optimality conditions
are strongly related to the singular value decomposition (SVD) of the rectangular
matrix Y ∈ Rm×n whose columns are given by the snapshots yj , 1 ≤ j ≤ n. In
Section 2 we present properties of the POD basis. Section 3 is devoted to the ex-
tension of the POD method for the Euclidean space Rm supplied with a weighted
inner product. This is used later in the formulation of the POD method for dis-
cretized partial differential equations; see Section 1.3 on Chapter 2. In Section 4
we focus on m-dimensional systems of ordinary differential equations. We consider
two different variants of the POD method: one variant utilizes the whole solution
trajectory y(t), t ∈ [0, T ], the other one makes use of the solution y at certain time
instances 0 ≤ t1 < . . . < tn ≤ T . The relationship of both variants is investigated.

1. POD and Singular Value Decomposition (SVD)

Let Y = [y1, . . . , yn] be a real-valued m×n matrix of rank d ≤ min{m,n} with
columns yj ∈ Rm, 1 ≤ j ≤ n. Consequently,

(1.1.1) ȳ =
1

n

n∑

j=1

yj

can be viewed as the column-averaged mean of the matrix Y .
Singular value decomposition (SVD) [17] guarantees the existence of real num-

bers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matrices Ψ ∈ Rm×m with columns
{ψi}mi=1 and Φ ∈ Rn×n with columns {φi}ni=1 such that

(1.1.2) Ψ⊤Y Φ =

(
D 0
0 0

)

=: Σ ∈ Rm×n,

where D = diag (σ1, . . . , σd) ∈ Rd×d, the zeros in (1.1.2) denote matrices of appro-
priate dimensions and ‘⊤’ stands for the transpose of a matrix (or vector). Moreover
the vectors {ψi}di=1 and {φi}di=1 satisfy

(1.1.3) Y φi = σiψi and Y ⊤ψi = σiφi for i = 1, . . . , d.

They are eigenvectors of Y Y ⊤ and Y ⊤Y , respectively, with eigenvalues λi = σ2
i > 0,

i = 1, . . . , d. The vectors {ψi}mi=d+1 and {φi}ni=d+1 (if d < m respectively d < n)

are eigenvectors of Y Y ⊤ and Y ⊤Y with eigenvalue 0.
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From (1.1.2) we deduce that

Y = ΨΣΦ⊤.

It follows that Y can also be expressed as

(1.1.4) Y = ΨdD(Φd)⊤,

where the matrices Ψd ∈ Rm×d and Φd ∈ Rn×d are given by

Ψdij = Ψij for 1 ≤ i ≤ m, 1 ≤ j ≤ d,
Φdij = Φij for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Setting Bd = D(Φd)⊤ ∈ Rd×n we can write (1.1.4) in the form

Y = ΨdBd with Bd = D(Φd)⊤ ∈ Rd×n.

Thus, the column space of Y can be represented in terms of the d linearly in-
dependent columns of Ψd. The coefficients in the expansion for the columns yj ,
j = 1, . . . , n, in the basis {ψi}di=1 are given by the j-th column of Bd. Since Ψ is
orthogonal, we find that

yj =

d∑

i=1

BdijΨ
d
·,i =

d∑

i=1

(
D(Φd)⊤

)

ij
ψi =

d∑

i=1

(
(Ψd)⊤Ψd
︸ ︷︷ ︸

=Id

D(Φd)⊤
)

ij
ψi

(1.1.4)
=

d∑

i=1

(
(Ψd)⊤Y

)

ij
ψi =

d∑

i=1

( m∑

k=1

ΨdkiYkj

︸ ︷︷ ︸

=ψ⊤

i yj

)

ψi =

d∑

i=1

〈ψi, yj〉Rm ψi,

where Id ∈ Rd×d stands for the identity matrix and 〈· , ·〉Rm denotes the canonical
inner product in Rm. Thus,

(1.1.5) yj =
d∑

i=1

〈yj , ψi〉Rm ψi for j = 1, . . . , n.

Let us now interprete SVD in terms of POD. One of the central issues of POD
is the reduction of data expressing their essential information by means of a few
basis vectors. The problem of approximating all spatial coordinate vectors yj of Y
simultaneously by a single, normalized vector as well as possible can be expressed
as

(P1) max
ψ̃∈Rm

n∑

j=1

∣
∣〈yj , ψ̃〉Rm

∣
∣
2

subject to (s.t.) ‖ψ̃‖2
Rm = 1,

where ‖ψ̃‖Rm =
√

〈ψ̃, ψ̃〉Rm for ψ̃ ∈ Rm.

Note that (P1) is a constrained optimization problem that can be solved by
considering first-order necessary optimality conditions; see Appendix D. For that
purpose we want to write (P1) in the standard form (P) on page 78. We introduce
the function e : Rm → R by e(ψ) = 1 − ‖ψ‖2

Rm for ψ ∈ Rm. Then, the equality
constraint in (P1) can be expressed as e(ψ) = 0. To ensure the existence of Lagrange
multipliers a constraint qualification is needed. Notice that ∇e(ψ) = 2ψ⊤ is linear
independent if ψ 6= 0 holds. In particular, a solution to (P1) satisfies ψ 6= 0. Thus,
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any solution to (P1) is a regular point; see Definition D.2. Let L : Rm ×R→ R be
the Lagrange functional associated with (P1), i.e.,

L(ψ, λ) =
n∑

j=1

∣
∣〈yj , ψ〉Rm

∣
∣
2
+ λ

(
1− ‖ψ‖2

Rm

)
for (ψ, λ) ∈ Rm × R.

Suppose that ψ ∈ Rm is a solution to (P1). Since ψ is a regular point, we infer from
Theorem D.4 that there exists a unique Lagrange multiplier λ ∈ Rm satisfying the
first-order necessary optimality condition

∇L(ψ, λ) !
= 0 in Rm × R.

We compute the gradient of L with respect to ψ:

∂L
∂ψi

(ψ, λ) =
∂

∂ψi

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

Ykjψk

∣
∣
∣
∣

2

+ λ

(

1−
m∑

k=1

ψ2
k

))

= 2

n∑

j=1

( m∑

k=1

Ykjψk

)

Yij − 2λψi

= 2

m∑

k=1

( n∑

j=1

YijY
⊤
jk

︸ ︷︷ ︸

=(Y Y ⊤)ik

ψk

)

− 2λψi.

Thus,

(1.1.6) ∇ψL(ψ, λ) = 2
(
Y Y ⊤ψ − λψ

) !
= 0 in Rm.

Equation (1.1.6) yields the eigenvalue problem

(1.1.7a) Y Y ⊤ψ = λψ in Rm.

Notice that Y Y ⊤ ∈ Rm×m is a symmetric matrix satisfying

ψ⊤(Y Y ⊤)ψ = (Y ⊤ψ)⊤Y ⊤ψ = ‖Y ⊤ψ‖2
Rn ≥ 0 for all ψ ∈ Rm.

Thus, Y Y ⊤ is positive semi-definite. It follows that Y Y ⊤ possesses m nonnegative
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 and the corresponding eigenvectors can be
chosen such that they are pairwise orthonormal.

From ∂L
∂λ (ψ, λ)

!
= 0 in R we infer the constraint

(1.1.7b) ‖ψ‖
Rm = 1.

Due to SVD the vector ψ1 solves (1.1.7) and
n∑

j=1

∣
∣〈yj , ψ1〉Rm

∣
∣
2
=

n∑

j=1

〈yj , ψ1〉Rm〈yj , ψ1〉Rm =

n∑

j=1

〈
〈yj , ψ1〉Rmyj , ψ1

〉

Rm

=

〈 n∑

j=1

〈yj , ψ1〉Rmyj , ψ1

〉

Rm

=

〈 n∑

j=1

( m∑

k=1

Ykj(ψ1)k

)

yj , ψ1

〉

Rm

=

〈 m∑

k=1

( n∑

j=1

Y·,jY
⊤
jk(ψ1)k

)

, ψ1

〉

Rm

=
〈
Y Y ⊤ψ1, ψ1

〉

Rm

= λ1
〈
ψ1, ψ1

〉

Rm = λ1 ‖ψ1‖2Rm = λ1,

where (ψ1)k denotes the k-th component of the vector ψ1.
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Note that ∇ψψL(ψ, λ) = 2(Y Y ⊤ − λIm) ∈ Rm×m holds. Let ψ ∈ Rm be
chosen arbitrary. Since Y Y ⊤ is symmetric, there exist m orthonomal eigenvectors
ψ1, . . . , ψm ∈ Rm of Y Y ⊤ satisfying Y Y ⊤ψi = λiψi for 1 ≤ i ≤ m. Then, we can
write ψ in the form

ψ =
m∑

i=1

〈ψ,ψi〉Rm ψi.

At (ψ1, λ1) we conlude from λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 that

〈ψ,∇ψψL(ψ1, λ1)ψ〉Rm = 2 〈ψ,
(
Y Y ⊤ − λ1Im

)
ψ〉

Rm

= 2
m∑

i=1

m∑

j=1

〈ψ,ψi〉Rm〈ψ,ψj〉Rm〈ψi,
(
Y Y ⊤ − λ1Im

)
ψj〉

Rm

= 2
m∑

i=1

m∑

j=1

(
λj − λ1

)
〈ψ,ψi〉Rm〈ψ,ψj〉Rm〈ψi, ψj〉Rm

= 2

m∑

i=1

(
λj − λ1

)∣
∣〈ψ,ψi〉Rm

∣
∣
2 ≤ 0.

Thus, (ψ1, λ1) satisfies the second-order necessary optimality conditions for a max-
imum, but not the sufficient ones; compare Theorems D.5 and D.6. We next prove
that ψ1 actually solves (P1). Suppose that ψ̃ ∈ Rm is an arbitrary vector with

‖ψ̃‖Rm = 1. Since {ψi}mi=1 is an orthonormal basis in Rm, we have

ψ̃ =

m∑

i=1

〈ψ̃, ψi〉Rm ψi.

Thus,

n∑

j=1

∣
∣〈yj , ψ̃〉Rm

∣
∣
2
=

n∑

j=1

∣
∣
∣
∣
∣

〈

yj ,
m∑

i=1

〈ψ̃, ψi〉Rm ψi

〉

Rm

∣
∣
∣
∣
∣

2

=

n∑

j=1

m∑

i=1

m∑

k=1

(〈
yj , 〈ψ̃, ψi〉Rm ψi

〉

Rm

〈
yj , 〈ψ̃, ψk〉Rm ψk

〉

Rm

)

=

n∑

j=1

m∑

i=1

m∑

k=1

(

〈yj , ψi〉Rm〈yj , ψk〉Rm〈ψ̃, ψi〉Rm〈ψ̃, ψk〉Rm

)

=

m∑

i=1

m∑

k=1

(〈 n∑

j=1

〈yj , ψi〉Rm yj

︸ ︷︷ ︸

=λiψi

, ψk

〉

Rm

〈ψ̃, ψi〉Rm〈ψ̃, ψk〉Rm

)

=
m∑

i=1

m∑

k=1

(

〈λiψi, ψk〉Rm

︸ ︷︷ ︸

=λiδik

〈ψ̃, ψi〉Rm〈ψ̃, ψk〉Rm

)

=

m∑

i=1

λi
∣
∣〈ψ̃, ψi〉Rm

∣
∣
2 ≤ λ1

m∑

i=1

∣
∣〈ψ̃, ψi〉Rm

∣
∣
2
= λ1 ‖ψ̃‖

2

Rm = λ1

=
n∑

j=1

∣
∣〈yj , ψ1〉Rm

∣
∣
2
.



1. POD AND SINGULAR VALUE DECOMPOSITION (SVD) 9

Consequently, ψ1 solves (P1) and argmax (P1) = σ2
1 = λ1.

If we look for a second vector, orthogonal to ψ1 that again describes the data
set {yi}ni=1 as well as possible then we need to solve

(P2) max
ψ̃∈Rm

n∑

j=1

∣
∣〈yj , ψ̃〉Rm

∣
∣
2

s.t. ‖ψ̃‖
Rm = 1 and 〈ψ̃, ψ1〉Rm = 0.

SVD implies that ψ2 is a solution to (P2) and argmax (P2) = σ2
2 = λ2. In fact, ψ2

solves the first-order necessary optimality conditions (1.1.7) and for

ψ̃ =
m∑

i=2

〈ψ̃, ψi〉Rm ψi ∈ span {ψ1}⊥

we have
n∑

j=1

∣
∣〈yj , ψ̃〉Rm

∣
∣
2 ≤ λ2 =

n∑

j=1

∣
∣〈yj , ψ2〉Rm

∣
∣
2
.

Clearly this procedure can be continued by finite induction. We summarize our
results in the following theorem.

Theorem 1.1.1. Let Y = [y1, . . . , yn] ∈ Rm×n be a given matrix with rank
d ≤ min{m,n}. Further, let Y = ΨΣΦT be the singular value decomposition of Y ,
where Ψ = [ψ1, . . . , ψm] ∈ Rm×m, Φ = [φ1, . . . , φn] ∈ Rn×n are orthogonal matrices
and the matrix Σ ∈ Rm×n has the form as (1.1.2). Then, for any ℓ ∈ {1, . . . , d}
the solution to

(Pℓ) max
ψ̃1,...,ψ̃ℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψ̃i〉Rm

∣
∣
2

s.t. 〈ψ̃i, ψ̃j〉Rm = δij for 1 ≤ i, j ≤ ℓ

is given by the singular vectors {ψi}ℓi=1, i.e., by the first ℓ columns of Ψ. In (Pℓ)
we denote by δij the Kronecker symbol satisfying δij = 1 for i = j and δij = 0
otherwise. Moreover,

(1.1.8) argmax (Pℓ) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Since (Pℓ) is an equality constrained optimization problem, we intro-
duce the Lagrangian (see Appendix D)

L : Rm × . . .× Rm
︸ ︷︷ ︸

ℓ-times

×Rℓ×ℓ

by

L(ψ1, . . . , ψℓ,Λ) =

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
+

ℓ∑

i,j=1

λij
(
δij − 〈ψi, ψj〉Rm

)

for ψ1, . . . , ψℓ ∈ Rm and Λ = ((λij)) ∈ Rℓ×ℓ. First-order necessary optimality
conditions for (Pℓ) are given by

(1.1.9)
∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 0 for all δψk ∈ Rm and k ∈ {1, . . . , ℓ}.
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From

∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 2
ℓ∑

i=1

n∑

j=1

〈yj , ψi〉Rm〈yj , δψk〉Rmδik

−
ℓ∑

i,j=1

λij〈ψi, δψk〉Rmδjk −
ℓ∑

i,j=1

λij〈δψk, ψj〉Rmδki

= 2

n∑

j=1

〈yj , ψk〉Rm〈yj , δψk〉Rm −
ℓ∑

i=1

(λik + λki) 〈ψi, δψk〉Rm

=

〈

2
n∑

j=1

〈yj , ψk〉Rm yj −
ℓ∑

i=1

(λik + λki)ψi, δψk

〉

Rm

and (1.1.9) we infer that

(1.1.10)
n∑

j=1

〈yj , ψk〉Rm yj =
1

2

ℓ∑

i=1

(λik + λki)ψi in Rm for all k ∈ {1, . . . , ℓ}.

Note that

Y Y ⊤ψ =
n∑

j=1

〈yj , ψ〉Rm yj for ψ ∈ Rm.

Thus, condition (1.1.10) can be expressed as

(1.1.11) Y Y ⊤ψk =
1

2

ℓ∑

i=1

(λik + λki)ψi in Rm for all k ∈ {1, . . . , ℓ}.

Now we proceed by induction. For ℓ = 1 we have k = 1. It follows from (1.1.11)
that

(1.1.12) Y Y ⊤ψ1 = λ1ψ1 in Rm

with λ1 = λ11. Next we suppose that for ℓ ≥ 1 the first-order optimality conditions
are given by

(1.1.13) Y Y ⊤ψk = λkψk in Rm for all k ∈ {1, . . . , ℓ}.

We want to show that the first-order necessary optimality conditions for a POD
basis {ψi}ℓ+1

i=1 of rank ℓ+ 1 are given by

(1.1.14) Y Y ⊤ψk = λkψk in Rm for all k ∈ {1, . . . , ℓ+ 1}.

By assumption we have (1.1.13). Thus, we only have to prove that

(1.1.15) Y Y ⊤ψℓ+1 = λℓ+1ψℓ+1 in Rm.

Due to (1.1.11) we have

(1.1.16) Y Y ⊤ψℓ+1 =
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i)ψi in Rm.
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Since {ψi}ℓ+1
i=1 is a POD basis we have 〈ψℓ+1, ψj〉Rm = 0 for 1 ≤ j ≤ ℓ. Using

(1.1.13) and the symmetry of Y Y ⊤ we have for any j ∈ {1, . . . , ℓ}

0 = λj 〈ψℓ+1, ψj〉Rm = 〈ψℓ+1, Y Y
⊤ψj〉Rm = 〈Y Y ⊤ψℓ+1, ψj〉Rm

=
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i) 〈ψi, ψj〉Rm = (λj,ℓ+1 + λℓ+1,j) .

This gives

(1.1.17) λℓ+1,i = −λi,ℓ+1 for any i ∈ {1, . . . , ℓ}.

Inserting (1.1.17) into (1.1.16) we obtain

Y Y ⊤ψℓ+1 =
1

2

ℓ∑

i=1

(λi,ℓ+1 + λℓ+1,i)ψi + λℓ+1,ℓ+1 ψℓ+1

=
1

2

ℓ∑

i=1

(λi,ℓ+1 − λi,ℓ+1)ψi + λℓ+1,ℓ+1 ψℓ+1 = λℓ+1,ℓ+1 ψℓ+1.

Setting λℓ+1 = λℓ+1,ℓ+1 we obtain (1.1.15).
Summarizing, the necessary optimality conditions for (Pℓ) are given by the sym-
metric m×m eigenvalue problem

(1.1.18) Y Y ⊤ψi = λiψi for i = 1, . . . , ℓ.

It follows from SVD that {ψi}ℓi=1 solves (1.1.18). The proof that {ψi}ℓi=1 is a

solution to (Pℓ) and that argmax (Pℓ) =
∑ℓ
i=1 σ

2
i holds is analogous to the proof

for (P1); see Exercise 1.5.5. �

Motivated by the previous theorem we give the next definition. Moreover, in
Algorithm 1 the computation of a POD basis of rank ℓ is summarized.

Definition 1.1.2. For ℓ ∈ {1, . . . , d} the vectors {ψi}ℓi=1 are called POD basis
of rank ℓ.

Algorithm 1 (POD basis of rank ℓ)

Require: Snapshots {yj}nj=1 ⊂ Rm, POD rank ℓ ≤ d and flag for the solver;

1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: if flag = 0 then
3: Compute singular value decomposition [Ψ,Σ,Φ] = svd (Y );
4: Set ψi = Ψ·,i ∈ Rm and λi = Σ2

ii for i = 1, . . . , ℓ;
5: else if flag = 1 then
6: Determine R = Y Y ⊤ ∈ Rm×m;
7: Compute eigenvalue decomposition [Ψ,Λ] = eig (R);
8: Set ψi = Ψ·,i ∈ Rm and λi = Λii for i = 1, . . . , ℓ;
9: end if

10: return POD basis {ψi}ℓi=1 and eigenvalues {λi}ℓi=1;
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2. Properties of the POD Basis

The following result states that for every ℓ ≤ d the approximation of the
columns of Y by the first ℓ singular vectors {ψi}ℓi=1 is optimal in the mean among
all rank ℓ approximations to the columns of Y .

Corollary 1.2.1 (Optimality of the POD basis). Let all hypotheses of The-

orem 1.1.1 be satisfied. Suppose that Ψ̂d ∈ Rm×d denotes a matrix with pairwise

orthonormal vectors ψ̂i and that the expansion of the columns of Y in the basis

{ψ̂i}di=1 be given by

Y = Ψ̂dCd, where Cdij = 〈ψ̂i, yj〉Rm for 1 ≤ i ≤ d, 1 ≤ j ≤ n.
Then for every ℓ ∈ {1, . . . , d} we have

(1.2.1) ‖Y −ΨℓBℓ‖F ≤ ‖Y − Ψ̂ℓCℓ‖F .
In (1.2.1), ‖ · ‖F denotes the Frobenius norm given by

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

∣
∣Aij

∣
∣
2
=
√

trace
(
A⊤A

)
for A ∈ Rm×n,

the matrix Ψℓ denotes the first ℓ ≤ d columns of Ψ, Bℓ the first ℓ rows of B and
similarly for Ψ̂ℓ and Cℓ. Moreover, trace (A) denotes the sum over the diagonal
elements of a given matrix A.

Proof of Corollary 1.2.1. From Exercise 1.4.6 it follows that

‖Y − Ψ̂ℓCℓ‖2F = ‖Ψ̂d(Cd − Cℓ0)‖
2

F = ‖Cd − Cℓ0‖
2

F =

d∑

i=ℓ+1

n∑

j=1

∣
∣Cdij

∣
∣
2
,

where Cℓ0 ∈ Rd×n results from C ∈ Rd×n by replacing the last d − ℓ rows by 0.
Similarly,

(1.2.2)

‖Y −ΨℓBℓ‖2F = ‖Ψk(Bd −Bℓ0)‖
2

F = ‖Bd −Bℓ0‖
2

F =

d∑

i=ℓ+1

n∑

j=1

∣
∣Bdij

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2

=
d∑

i=ℓ+1

n∑

j=1

〈
〈yj , ψi〉Rmyj , ψi

〉

Rm =
d∑

i=ℓ+1

〈Y Y ⊤ψi, ψi〉Rm

=

d∑

i=ℓ+1

σ2
i ,

By Theorem 1.1.1 the vectors ψ1, . . . , ψℓ solve (Pℓ). From (1.2.2),

‖Y ‖2F = ‖Ψ̂dCd‖2F = ‖Cd‖2F =

d∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2

and

‖Y ‖2F = ‖ΨdBd‖2F = ‖Bd‖2F =
d∑

i=1

n∑

j=1

∣
∣Bdij

∣
∣
2
=

d∑

i=1

σ2
i
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we infer that

‖Y −ΨℓBℓ‖2F =

d∑

i=ℓ+1

σ2
i =

d∑

i=1

σ2
i −

ℓ∑

i=1

σ2
i = ‖Y ‖2F −

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2

≤ ‖Y ‖2F −
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψ̂i〉Rm

∣
∣
2
=

d∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2 −

ℓ∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

∣
∣Cdij

∣
∣
2
= ‖Y − Ψ̂ℓCℓ‖2F ,

which gives (1.2.1). �

Notice that

‖Y − Ψ̂ℓCℓ‖2F =

m∑

i=1

n∑

j=1

∣
∣
∣Yij −

ℓ∑

k=1

Ψ̂ℓikCkj

∣
∣
∣

2

=

n∑

j=1

m∑

i=1

∣
∣
∣Yij −

ℓ∑

k=1

〈ψ̂k, yj〉RmΨ̂ℓik

∣
∣
∣

2

=

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ψ̂k〉Rm ψ̂k

∥
∥
∥

2

Rm
.

Analogously,

‖Y −ΨℓBℓ‖2F =

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ψk〉Rmψk

∥
∥
∥

2

Rm
.

Thus, (1.2.1) implies that

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ψk〉Rmψk

∥
∥
∥

2

Rm
≤

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ψ̂k〉Rm ψ̂k

∥
∥
∥

2

Rm

for any other set {ψ̂i}ℓi=1 of ℓ pairwise orthonormal vectors. Hence, it follows from
Corollary 1.2.1 that the POD basis of rank ℓ can also be determined by solving

(1.2.3)
min

ψ̃1,...,ψ̃ℓ∈Rm

n∑

j=1

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψ̃i〉Rm ψ̃i

∥
∥
∥

2

Rm

s.t. 〈ψ̃i, ψ̃j〉Rm = δij for 1 ≤ i, j ≤ ℓ.

Remark 1.2.2. We compare first-order optimality conditions for (Pℓ) and
(1.2.3). Let {ψi}ℓi=1 be a given set of orthonormal vectors in Rm, i.e.

(1.2.4) 〈ψi, ψk〉Rm = δik for i, k ∈ {1, . . . ,m}.
For any index k ∈ {1, . . . , ℓ} and any direction ψδ ∈ Rm we have

0 =
∂

∂ψk

(
δik
)
ψδ =

∂

∂ψk

(
〈ψi, ψk〉Rm

)
ψδ

=

{

〈ψi, ψδ〉Rm for i ∈ {1, . . . , ℓ} \ {k},
2 〈ψi, ψδ〉Rm for i = k.

Hence

(1.2.5) 〈ψi, ψδ〉Rm = 0 for i ∈ {1, . . . , ℓ} and ψδ ∈ Rm.
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Suppose that y1, . . . , yn ∈ Rm are the given snapshots. For ℓ ∈ {1, . . . ,m} we set

zj = zj(ψ1, . . . , ψℓ) = yj −
ℓ∑

i=1

〈yj , ψi〉Rm ψi ∈ Rm for j = 1, . . . , n.

Let

(1.2.6) J(ψ1, . . . , ψℓ) =
n∑

j=1

‖zj‖2Rm .

Using (1.2.4) we have

(1.2.7)

‖zj‖22 = 〈zj , zj〉Rm =

〈

yj −
ℓ∑

k=1

〈yj , ψk〉Rm ψk, yj −
ℓ∑

i=1

〈yj , ψi〉Rm ψi

〉

Rm

= 〈yj , yj〉Rm − 2
ℓ∑

i=1

〈yj , ψi〉Rm〈yj , ψi〉Rm

+
ℓ∑

i=1

ℓ∑

k=1

〈yj , ψi〉Rm〈yj , ψk〉Rm〈ψi, ψk〉Rm

= ‖yj‖2Rm − 2

ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
+

ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2

= ‖yj‖2Rm −
ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
.

Combining (1.2.6) and (1.2.7) we derive

(1.2.8) J(ψ1, . . . , ψℓ) =
n∑

j=1

‖zj‖2Rm =
n∑

j=1

(

‖yj‖2Rm −
ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
)

.

For any k ∈ {1, . . . , ℓ} we will consider the derivatives

∂

∂ψk

( n∑

j=1

(

‖yj‖2Rm −
ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
))

and
∂

∂ψk

( n∑

j=1

‖zj(ψ1, . . . , ψℓ)‖2Rm

)

Due to (1.2.8) both derivatives must be the same. Notice that

∂J

∂ψk
(ψ1, . . . , ψℓ)ψδ =

∂

∂ψk

( n∑

j=1

(

‖yj‖2Rm −
ℓ∑

i=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
))

ψδ

=

n∑

j=1

∂

∂ψk

(

‖yj‖2Rm −
ℓ∑

i=1

〈yj , ψi〉Rm

∣
∣
2
)

ψδ

= −
n∑

j=1

2〈yj , ψk〉Rm〈yj , ψδ〉Rm

=

〈

− 2
n∑

j=1

〈yj , ψk〉Rmyj , ψδ

〉

Rm
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for any direction ψδ ∈ Rm and for 1 ≤ k ≤ ℓ. Note that

n∑

j=1

〈yj , ψ〉Rm yj = Y Y ⊤ψ for ψ ∈ Rm.

Then, we find that

(1.2.9)
∂J

∂ψk
(ψ1, . . . , ψℓ) = −2Y Y ⊤ψk for 1 ≤ k ≤ ℓ.

On the other hand we have

∂zj
∂ψk

ψδ = −〈yj , ψk〉Rmψδ − 〈yj , ψδ〉Rmψk = −〈yj , ψk〉Rm ψδ − 〈yj , ψδ〉Rm ψk

for 1 ≤ k ≤ ℓ and ψδ ∈ Rm. Using (1.2.4) and (1.2.5) we find that

∂

∂ψk

(

‖zj‖2Rm

)

ψδ =
∂

∂ψk

(
〈zj , zj〉Rm

)
ψδ = 2

〈

zj ,
∂zj
∂ψk

uδ

〉

Rm

= 2

〈

yj −
ℓ∑

i=1

〈yj , ψi〉Rm ψi,−〈yj , ψδ〉Rm ψk − 〈yj , ψk〉Rm ψδ

〉

Rm

= −2 〈yj , ψδ〉Rm〈yj , ψk〉Rm + 2
ℓ∑

i=1

〈yj , ψi〉Rm〈yj , ψδ〉Rm〈yj , ψk〉Rm

− 2 〈yj , ψk〉Rm〈yj , ψδ〉Rm + 2
ℓ∑

i=1

〈yj , ui〉Rm〈yj , uk〉Rm〈yj , ψδ〉Rm

= −2 〈yj , ψk〉Rm〈yj , ψδ〉Rm =
〈
− 2〈yj , ψk〉Rm yj , ψδ

〉

Rm

for any direction ψδ ∈ Rm, for j = 1, . . . , n and for 1 ≤ k ≤ ℓ. Summarizing, we
have

∂J

∂ψk
(ψ1, . . . , ψℓ) = −2

n∑

j=1

〈yj , ψk〉Rm yj = −2Y Y ⊤ψk

which coincides with (1.2.9). ♦

Remark 1.2.3. It follows from Corollary 1.2.1 that the POD basis of rank ℓ
is optimal in the sense of representing in the mean the columns {yj}nj=1 of Y as a
linear combination by an orthonormal basis of rank ℓ:

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
=

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi ≥
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψ̂i〉Rm

∣
∣
2

for any other set of orthonormal vectors {ψ̂i}ℓi=1. ♦

The next corollary states that the POD coefficients are uncorrelated.

Corollary 1.2.4 (Uncorrelated POD coefficients). Let all hypotheses of The-
orem 1.1.1 hold. Then.

n∑

j=1

〈yj , ψi〉Rm〈yj , ψk〉Rm =
n∑

j=1

BℓijB
ℓ
kj = σ2

i δik for 1 ≤ i, k ≤ ℓ.
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Proof. The claim follows from (1.1.18) and 〈ψi, ψk〉Rm = δik for 1 ≤ i, k ≤ ℓ:
n∑

j=1

〈yj , ψi〉Rm〈yj , ψk〉Rm =

〈 n∑

j=1

〈yj , ψi〉Rmyj

︸ ︷︷ ︸

=Y Y ⊤ψi

, ψk

〉

Rm

= 〈σ2
i ψi, ψk〉Rm = σ2

i δik.

�

Next we turn to the practical computation of a POD-basis of rank ℓ. If n < m
then one can determine the POD basis of rank ℓ as follows: Compute the eigenvec-
tors φ1, . . . , φℓ ∈ Rn by solving the symmetric n× n eigenvalue problem

(1.2.10) Y ⊤Y φi = λiφi for i = 1, . . . , ℓ

and set, by (1.1.3),

ψi =
1√
λi
Y φi for i = 1, . . . , ℓ.

For historical reasons [20] this method of determing the POD-basis is sometimes
called the method of snapshots. On the other hand, if m < n holds, we can obtain
the POD basis by solving the m×m eigenvalue problem (1.1.18).

For the application of POD to concrete problems the choice of ℓ is certainly of
central importance for applying POD. It appears that no general a-priori rules are
available. Rather the choice of ℓ is based on heuristic considerations combined with
observing the ratio of the modeled to the total energy contained in the system Y ,
which is expressed by

E(ℓ) =
∑ℓ
i=1 λi

∑d
i=1 λi

.

Notice that we have
∑d
i=1 λi = trace (Y Y ⊤) = trace (Y ⊤Y ). Let us mention that

POD is also called Principal Component Analysis (PCA) and Karhunen-Loève De-
composition. In Algorithm 2 we extend Algorithm 1.

Algorithm 2 (POD basis of rank ℓ)

Require: Snapshots {yj}nj=1 ⊂ Rm, POD rank ℓ ≤ d and flag for the solver;

1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: if flag = 0 then
3: Compute singular value decomposition [Ψ,Σ,Φ] = svd (Y );
4: Set ψi = Ψ·,i ∈ Rm and λi = Σ2

ii for i = 1, . . . , ℓ;
5: else if flag = 1 then
6: Determine R = Y Y ⊤ ∈ Rm×m;
7: Compute eigenvalue decomposition [Ψ,Λ] = eig (R);
8: Set ψi = Ψ·,i ∈ Rm and λi = Λii for i = 1, . . . , ℓ;
9: else if flag = 2 then

10: Determine K = Y ⊤Y ∈ Rn×n;
11: Compute eigenvalue decomposition [Φ,Λ] = eig (K);
12: Set ψi = Y Φ·,i/

√
λi ∈ Rm and λi = Λii for i = 1, . . . , ℓ;

13: end if
14: Compute E(ℓ) =∑ℓ

i=1 λi/
∑d
i=1 λi;

15: return POD basis {ψi}ℓi=1, eigenvalues {λi}ℓi=1 and ratio E(ℓ);
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3. The POD Method with a Weighted Inner Product

Let us endow the Euclidean space Rm with the weighted inner product

(1.3.1) 〈ψ, ψ̃〉W = ψ⊤Wψ̃ = 〈ψ,Wψ̃〉
Rm = 〈Wψ, ψ̃〉

Rm for ψ, ψ̃ ∈ Rm,

where W ∈ Rm×m is a symmetric, positive definite matrix. Furthermore, let
‖ψ‖W =

√

〈ψ,ψ〉W for ψ ∈ Rm be the associated induced norm. For the choice
W = Im, the inner product (1.3.1) coincides the Euclidean inner product.

Example 1.3.1. Let us motivate the weighted inner product by an example.
Suppose that Ω = (0, 1) ⊂ R holds. We consider the space L2(Ω) of square inte-
grable functions on Ω:

L2(Ω) =

{

ϕ : Ω→ R
∣
∣
∣

∫

Ω

|ϕ|2 dx <∞
}

.

Recall that L2(Ω) is a Hilbert space endowed with the inner product

〈ϕ, ϕ̃〉L2(Ω) =

∫

Ω

ϕϕ̃ dx for ϕ, ϕ̃ ∈ L2(Ω)

and the induced norm ‖ϕ‖L2(Ω) =
√
〈ϕ,ϕ〉L2(Ω) for ϕ ∈ L2(Ω). For the step size

h = 1/(m− 1) let us introduce a spatial grid in Ω by

xi = (i− 1)h for i = 1, . . . ,m.

For any ϕ, ϕ̃ ∈ L2(Ω) we introduce a discrete inner product by trapezoidal approx-
imation:

(1.3.2) 〈ϕ, ϕ̃〉L2
h
(Ω) = h

(
ϕh1 ϕ̃

h
1

2
+

m−1∑

i=2

(
ϕhi ϕ̃

h
i

)
+
ϕhmϕ̃

h
m

2

)

,

where

ϕhi =







2

h

∫ h/2

0

ϕ(x) dx for i = 1,

1

h

∫ xi+h/2

xi−h/2

ϕ(x) dx for i = 2, . . . ,m− 1,

2

h

∫ 1

1−h/2

ϕ(x) dx for i = m

and the ϕ̃hi ’s are defined analogously. Setting W = diag (h/2, h, . . . , h, h/2) ∈
Rm×m, ϕh = (ϕh1 , . . . , ϕ

h
m)T ∈ Rm and ϕ̃h = (ϕ̃h1 , . . . , ϕ̃

h
m)T ∈ Rm we find

〈ϕ, ϕ̃〉L2
h
(Ω) = 〈ϕh, ϕ̃h〉W = (ϕh)TWϕ̃h.

Thus, the discrete L2-inner product can be written as a weighted inner product
of the form (1.3.1). Let us also refer to Exercise 1.5.7, where an extension to a
two-dimensional domain Ω is investigated. ♦

Now we replace (P1) by

(P1
W ) max

ψ̃∈Rm

n∑

j=1

∣
∣〈yj , ψ̃〉W

∣
∣
2

s.t. ‖ψ̃‖W = 1.
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Analogously to Section 1.1 we treat (P1
W ) as an equality constrained optimization

problem. The Lagrangian L : Rm × R→ R for (P1
W ) is given by

L(ψ, λ) =
n∑

j=1

∣
∣〈yj , ψ〉W

∣
∣
2
+ λ

(
1− ‖ψ‖2W

)
for (ψ, λ) ∈ Rm × R.

We introduce the function e : Rm → R by e(ψ) = 1 − ‖ψ‖2
Rm = 1 − ψ⊤Wψ for

ψ ∈ Rm. Then, the equality constraint in (P1
W ) can be expressed as e(ψ̃) = 0.

Notice that ∇e(ψ) = 2ψ⊤W is linear independent if ψ 6= 0 holds. Suppose that
ψ ∈ Rm is a solution to (P1

W ). Then, ψ 6= 0 is true, so that any solution ψ is
a regular point for (P1

W ); compare Definition D.2. Consequently, there exists a
Lagrange multiplier associated with the optimal solution ψ, so that the first-order
necessary optimality condition

∇L(ψ, λ) !
= 0 in Rm × R

is satisfied; see Theorem D.4. We compute the gradient of L with respect to ψ:
Since W is symmetric, we derive

∂L
∂ψi

(ψ, λ) =
∂

∂ψi

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

m∑

ν=1

Y ⊤
jνWνkψk

∣
∣
∣
∣

2

+ λ

(

1−
m∑

k=1

m∑

ν=1

ψνWνkψk

))

= 2
n∑

j=1

( m∑

k=1

m∑

ν=1

Y ⊤
jνWνkψk

)( m∑

µ=1

Y ⊤
jµWµi

)

− λ
( m∑

ν=1

uνWνi +

m∑

k=1

Wikψk

)

= 2

m∑

k=1

m∑

ν=1

m∑

µ=1

Wiµ

n∑

j=1

YµjY
⊤
jνWνkψk − 2λ

( m∑

k=1

Wikψk

)

= 2

(

WY Y ⊤Wψ − λWψ

)

i

.

Thus,

(1.3.3) ∇ψL(ψ, λ) = 2
(
WY Y ⊤Wψ − λWψ

) !
= 0 in Rm.

Equation (1.3.3) yields the generalized eigenvalue problem

(1.3.4) (WY )(WY )⊤ψ = λWψ.

Since W is symmetric and positive definite, W possesses an eigenvalue decomposi-
tion of the formW = QDQ⊤, where D = diag (η1, . . . , ηm) contains the eigenvalues
η1 ≥ . . . ≥ ηm > 0 of W and Q ∈ Rm×m is an orthogonal matrix. We define

Wα = Qdiag (ηα1 , . . . , η
α
m)Q⊤ for α ∈ R.

Note that (Wα)−1 = W−α and Wα+β = WαW β for α, β ∈ R; see Exercise 1.5.8.
Moreover, we have

〈ψ, ψ̃〉W = 〈W 1/2ψ,W 1/2ψ̃〉
Rm for ψ, ψ̃ ∈ Rm

and ‖ψ‖W = ‖W 1/2ψ‖Rm for ψ ∈ Rm. Setting ψ̄ = W 1/2ψ ∈ Rm and Ȳ =
W 1/2Y ∈ Rm×n and multiplying (1.3.4) by W−1/2 from the left we deduce the
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symmetric, m×m eigenvalue problem

(1.3.5a) Ȳ Ȳ ⊤ψ̄ = λψ̄ in Rm.

From ∂L
∂λ (ψ, λ)

!
= 0 in R we infer the constraint ‖ψ‖W = 1 that can be expressed as

(1.3.5b) ‖ψ̄‖
Rm = 1.

Thus, the first-order optimality conditions (1.3.5) for (P1
W ) are — as for (P1)

(compare (1.1.7)) — an m×m eigenvalue problem, but the matrix Y as well as the
vector ψ have to be weighted by the matrix W 1/2.

Notice that ∇ψψL(ψ, λ) = 2(WY Y ⊤Wψ − λWψ) ∈ Rm×m. Let ψ ∈ Rm be
chosen arbitrary. Since Ȳ Ȳ ⊤ is symmetric, there exist m orthonomal (with respect
to the Euclidean inner product) eigenvectors ψ̄1, . . . , ψ̄m ∈ Rm of Ȳ Ȳ ⊤ satisfying
Ȳ Ȳ ⊤ψ̄i = λiψ̄i for 1 ≤ i ≤ m. We set ψi = W−1/2ψ̄i, 1 ≤ i ≤ m. Then, {ψi}mi=1

form an orthonormal (with respect to the weighted inner product) basis in Rm and
WY Y ⊤Wψi = λiWψi holds true. We write ψ in the form

ψ =

m∑

j=1

〈ψ,ψi〉Rm ψi.

At (ψ1, λ1) we conlude from λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 that

ψ⊤∇ψψL(ψ1, λ1)ψ = 2ψ⊤
(
WY Y ⊤W − λ1W

)
ψ

= 2
m∑

i=1

m∑

j=1

〈ψ,ψi〉Rm〈ψ,ψj〉Rmψ
⊤
i

(
WY Y ⊤W − λ1W

)
ψj

= 2

m∑

i=1

m∑

j=1

(
λj − λ1

)
〈ψ,ψi〉Rm〈ψ,ψj〉Rmψ

⊤
i Wψj

= 2

m∑

i=1

(
λj − λ1

)∣
∣〈ψ,ψi〉Rm

∣
∣
2 ≤ 0.

Thus, the matrix ∇ψψL(ψ1, λ1) is negative semi-definite, which is the second-order
necessary optimality condition; compare Theorem D.5. However, analogously to
Section 1 it can be shown (see Exercise 1.4.1)) that

ψ1 =W−1/2ψ̄1

solves (P1
W ), where ū1 is an eigenvector of Ȳ Ȳ ⊤ corresponding to the largest eigen-

value λ1 with ‖ψ̄1‖Rm = 1. Due to SVD the vector ψ1 can be also determined by
solving the symmetric n× n eigenvalue problem

Ȳ ⊤Ȳ φ̄1 = λ1φ̄1

where Ȳ ⊤Ȳ = Y ⊤WY , and setting

(1.3.6) ψ1 =W−1/2ψ̄1 =
1√
λ1

W−1/2Ȳ φ̄1 =
1√
λ1
Y φ̄1.

As in Section 1 we can continue by looking at a second vector ψ ∈ Rm with
〈ψ,ψ1〉W = 0 that maximizes

∑n
j=1 |〈yj , ψ〉W |2. Let us generalize Theorem 1.1.1

as follows; see Exercise 1.5.9.
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Theorem 1.3.2. Let Y ∈ Rm×n be a given matrix with rank d ≤ min{m,n},
W a symmetric, positive definite matrix, Ȳ = W 1/2Y and ℓ ∈ {1, . . . , d}. Further,
let Ȳ = Ψ̄ΣΦ̄⊤ be the singular value decomposition of Ȳ , where Ψ̄ = [ψ̄1, . . . , ψ̄m] ∈
Rm×m, Φ̄ = [φ̄1, . . . , φ̄n] ∈ Rn×n are orthogonal matrices and the matrix Σ has the
form

Ψ̄⊤Ȳ Φ̄ =

(
D 0
0 0

)

= Σ ∈ Rm×n.

Then the solution to

(Pℓ
W ) max

ψ̃1,...,ψ̃ℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψ̃i〉W

∣
∣
2

s.t. 〈ψ̃i, ψ̃j〉W = δij for 1 ≤ i, j ≤ ℓ

is given by the vectors ψi =W−1/2ψ̄i, i = 1, . . . , ℓ. Moreover,

(1.3.7) argmax (Pℓ
W ) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Using similar arguments as in the proof of Theorem 1.1.1 one can
prove that {ψi}ℓi=1 solves (Pℓ

W ); see Exercise 1.4.8. �

Remark 1.3.3. Due to SVD and Ȳ ⊤Ȳ = Y ⊤WY the POD basis {ψi}ℓi=1

of rank ℓ can be determined by the method of snapshots as follows: Solve the
symmetric n× n eigenvalue problem

Y ⊤WY φ̄i = λiφ̄i for i = 1, . . . , ℓ,

and set

ψi =W−1/2ψ̄i =
1√
λi
W−1/2

(
Ȳ φ̄i

)
=

1√
λi
W−1/2W 1/2Y φ̄i =

1√
λi
Y φ̄i

for i = 1, . . . , ℓ. Notice that

〈ψi, ψj〉W = ψ⊤
i Wuj =

δijλj
√
λiλj

for 1 ≤ i, j ≤ ℓ.

For m ≫ n the method of snapshots turns out to be faster than computing the
POD basis via (1.3.5). Notice that the matrix W 1/2 is also not required for the
method of snapshots. ♦

In Algorithm 3 we extend Algorithm 2.

4. POD for Time-Dependent Systems

For T > 0 we consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)) for t ∈ (0, T ],(1.4.1a)

y(0) = y◦,(1.4.1b)

where y◦ ∈ Rm is a chosen initial condition, A ∈ Rm×m is a given matrix, f : [0, T ]×
Rm → Rm is continuous in both arguments and locally Lipschitz-continuous with
respect to the second argument. It is well known that (1.4.1) has a unique (classical)
solution y ∈ C1(0, T∗;R

m) ∩ C([0, T∗];Rm) for some maximal time T∗ ∈ (0, T ].
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Algorithm 3 (POD basis of rank ℓ with a weighted inner product)

Require: Snapshots {yj}nj=1 ⊂ Rm, POD rank ℓ ≤ d, symmetric, positive-definite

matrix W ∈ Rm×m and flag for the solver;
1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: if flag = 0 then
3: Determine Ȳ =W 1/2Y ∈ Rm×n;
4: Compute singular value decomposition [Ψ̄,Σ, Φ̄] = svd (Ȳ );
5: Set ψi =W−1/2Ψ̄·,i ∈ Rm and λi = Σ2

ii for i = 1, . . . , ℓ;
6: else if flag = 1 then
7: Determine Ȳ =W 1/2Y ∈ Rm×n;
8: Set R = Ȳ Ȳ ⊤ ∈ Rm×m;
9: Compute eigenvalue decomposition [Ψ̄,Λ] = eig (R);

10: Set ψi =W−1/2Ψ̄·,i ∈ Rm and λi = Λii for i = 1, . . . , ℓ;
11: else if flag = 2 then
12: Determine K = Y ⊤WY ∈ Rn×n;
13: Compute eigenvalue decomposition [Φ̄,Λ] = eig (K);
14: Set ψi = Y Φ̄·,i/

√
λi ∈ Rm and λi = Λii for i = 1, . . . , ℓ;

15: end if
16: Compute E(ℓ) =∑ℓ

i=1 λi/
∑d
i=1 λi;

17: return POD basis {ψi}ℓi=1, eigenvalues {λi}ℓi=1 and ratio E(ℓ);

Throughout we suppose that we can choose T∗ = T . Then, the solution y to (1.4.1)
is given by the implicit integral representation

y(t) = etAy◦ +

∫ t

0

e(t−s)Af(s, y(s)) ds

with etA =
∑∞
n=0 t

nAn/(n!).

4.1. Application of POD for Time-Dependent Systems. Let 0 ≤ t1 <
t2 < . . . < tn ≤ T be a given time grid in the interval [0, T ]. For simplicity of
the presentation, the time grid is assumed to be equidistant with step-size ∆t =
T/(n− 1), i.e., tj = (j − 1)∆t. We suppose that we know the solution to (1.4.1) at
the given time instances tj , j ∈ {1, . . . , n}. Our goal is to determine a POD basis
of rank ℓ ≤ min{m,n} that describes the ensemble

yj = y(tj) = etjAy◦ +

∫ tj

0

e(tj−s)Af(s, y(s)) ds, j = 1, . . . , n,

as well as possible with respect to the weighted inner product:

(P̂n,ℓ
W )

min
ψ̃1,...,ψ̃ℓ∈Rm

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψ̃i〉W ψ̃i
∥
∥
∥

2

W

s.t. 〈ψ̃i, ψ̃j〉W = δij , 1 ≤ i, j ≤ ℓ,

where the αj ’s denote nonnegative weights which will be specified later on. Note

that for αj = 1 for j = 1, . . . , n and W = Im problem (P̂n,ℓ
W ) coincides with (1.2.3).
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Example 1.4.1. Let us consider the following one-dimensional heat equation:

θt(t, x) = θxx(t, x) for all (t, x) ∈ Q = (0, T )× Ω,(1.4.2a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ),(1.4.2b)

θ(0, x) = θ◦(x) for all x ∈ Ω = (0, 1) ⊆ R,(1.4.2c)

where θ◦ ∈ C(Ω) is a given initial condition. To solve (1.4.2) numerically we apply a
classical finite difference approximation for the spatial variable x. In Example 1.3.1
we have introduced the spatial grid {xi}mi=1 in the interval [0, 1]. Let us denote
by yi : [0, T ] → R the numerical approximation for θ(· , xi) for i = 1, . . . ,m. The
second partial derivative θxx in (1.4.2a) and the boundary conditions (1.4.2b) are
discretized by centered difference quotients of second-order so that we obtain the
following ordinary differential equations for the time-dependent functions yi:

(1.4.3a)







ẏ1(t) =
−2y1(t) + 2y2(t)

h2
,

ẏi(t) =
yi−1(t)− 2yi(t) + yi+1(t)

h2
, i = 2, . . . ,m− 1,

ẏm(t) =
−2ym(t) + 2ym−1(t)

h2

for t ∈ (0, T ]. From (1.4.2c) we infer the initial condion

(1.4.3b) yi(0) = θ◦(xi), i = 1, . . . ,m.

Introducing the matrix

A =
1

h2










−2 2 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 2 −2










∈ Rm×m

and the vectors

y(t) =






y1(t)
...

ym(t)




 for t ∈ [0, T ], y◦ =






θ◦(x1)
...

θ◦(xm)




 ∈ Rm

we can express (1.4.3) in the form

(1.4.4)
ẏ(t) = Ay(t) for t ∈ (0, T ],
y(0) = y◦

Setting f ≡ 0 the linear initial-value problem coincides with (1.4.1). Note that
now the vector y(t), t ∈ [0, T ], represents a function in Ω evaluated at m grid
points. Therefore, we should supply Rm by a weighted inner product representing
a discretized inner product in an appropriate function space. Here we choose the
inner product introduced in (1.3.2); see Example 1.3.1. Next we choose a time
grid {tj}nj=1 in the interval [0, T ] and define yj = y(tj) for j = 1, . . . , n. If we are
interested in finding a POD basis of rank ℓ ≤ min{m,n} that desribes the ensemble

{yj}nj=1 as well as possible, we end up with (P̂n,ℓ
W ). ♦



4. POD FOR TIME-DEPENDENT SYSTEMS 23

To solve (P̂n,ℓ
W ) we apply the techniques used in Sections 1 and 3, i.e., we use

the Lagrangian framework; see Appendix D. Thus, we introduce the Lagrange
functional

L : Rm × . . .× Rm
︸ ︷︷ ︸

ℓ−times

×Rℓ×ℓ → R

by

L(ψ1, . . . , ψℓ,Λ) =

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψi〉Wψi
∥
∥
∥

2

W
+

ℓ∑

i=1

ℓ∑

j=1

Λij
(
1− 〈ψi, ψj〉W

)

for ψ1, . . . , ψℓ ∈ Rm and Λ ∈ Rℓ×ℓ with elements Λij , 1 ≤ i, j ≤ ℓ. It turns out that
the solution to (P̂n,ℓ

W ) is given by the first-order necessary optimality conditions

(1.4.5a) ∇ψi
L(ψ1, . . . , ψℓ,Λ)

!
= 0 in Rm, 1 ≤ i ≤ ℓ,

and

(1.4.5b) 〈ψi, ψj〉W
!
= δij , 1 ≤ i, j ≤ ℓ;

compare Theorem D.4. From (1.4.5a) we derive

(1.4.6) Y DY ⊤Wψi = λiψi for i = 1, . . . , ℓ,

where D = diag (α1, . . . , αn) ∈ Rn×n. Inserting ψi = W−1/2ψ̄i in (1.4.6) and
multiplying (1.4.6) by W 1/2 from the left yield

(1.4.7a) W 1/2Y DY ⊤W 1/2ψ̄i = λiψ̄i.

From (1.4.5b) we find

(1.4.7b) 〈ψ̄i, ψ̄j〉Rm = ψ̄⊤
i ψ̄j = ψ⊤

i Wψj = 〈ψi, ψj〉W = δij , 1 ≤ i, j ≤ ℓ.
Setting Ȳ =W 1/2Y D1/2 ∈ Rm×n and using W⊤ =W as well as D⊤ = D we infer

from (1.4.7) that the solution {ψi}ℓi=1 to (P̂n,ℓ
W ) is given by the symmetric m ×m

eigenvalue problem

Ȳ Ȳ ⊤ψ̄i = λiψ̄i, 1 ≤ i ≤ ℓ and 〈ψ̄i, ψ̄j〉Rm = δij , 1 ≤ i, j ≤ ℓ.
Note that

Ȳ ⊤Ȳ = D1/2Y ⊤WYD1/2 ∈ Rn×n.

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots
as follows: First solve the symmetric n× n eigenvalue problem

Ȳ ⊤Ȳ φ̄i = λiφ̄i, 1 ≤ i ≤ ℓ and 〈φ̄i, φ̄j〉Rn = δij , 1 ≤ i, j ≤ ℓ.
Then we set (by SVD)

ψi =W−1/2ψ̄i =
1√
λi
W−1/2Ȳ φ̄i =

1√
λi
Y D1/2φ̄i, 1 ≤ i ≤ ℓ;

compare (1.3.6). Note that

〈ψi, ψj〉W = ψTi Wψj =
1

√
λiλj

ψ̄⊤
i D

1/2Y ⊤WYD1/2
︸ ︷︷ ︸

=Ȳ ⊤Ȳ

φ̄j =
λi

√
λiλj

φ̄⊤i φ̄j =
λiδij
√
λiλj

for 1 ≤ i, j ≤ ℓ, i.e., the POD basis vectors ψ1, . . . , ψℓ are orthonormal in Rm with
respect to the inner product 〈· , ·〉W .

In Algorithm 4 the computation of a POD basis of rank ℓ is summarized for
finite-dimensional dynamical systems.
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Algorithm 4 (POD basis of rank ℓ for finite-dimensional dynamical systems)

Require: Snapshots {yj}nj=1 ⊂ Rm, POD rank ℓ ≤ d, symmetric, positive-definite

matrix W ∈ Rm×m, diagonal matrix D ∈ Rn×n containing the temporal quad-
rature weights and flag for the solver;

1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: if flag = 0 then
3: Determine Ȳ =W 1/2Y D1/2 ∈ Rm×n;
4: Compute singular value decomposition [Ψ̄,Σ, Φ̄] = svd (Ȳ );
5: Set ψi =W−1/2Ψ̄·,i ∈ Rm and λi = Σ2

ii for i = 1, . . . , ℓ;
6: else if flag = 1 then
7: Determine Ȳ =W 1/2Y D1/2 ∈ Rm×n;
8: Set R = Ȳ Ȳ ⊤ ∈ Rm×m;
9: Compute eigenvalue decomposition [Ψ̄,Λ] = eig (R);

10: Set ψi =W−1/2Ψ̄·,i ∈ Rm and λi = Λii for i = 1, . . . , ℓ;
11: else if flag = 2 then
12: Determine K = D1/2Y ⊤WYD1/2 ∈ Rn×n;
13: Compute eigenvalue decomposition [Φ̄,Λ] = eig (K);
14: Set ψi = Y D1/2Φ̄·,i/

√
λi ∈ Rm and λi = Λii for i = 1, . . . , ℓ;

15: end if
16: Compute E(ℓ) =∑ℓ

i=1 λi/
∑d
i=1 λi;

17: return POD basis {ψi}ℓi=1, eigenvalues {λi}ℓi=1 and ratio E(ℓ);

4.2. The Continuous Version of the POD Method. Of course, the snap-

shot ensemble {yj}nj=1 for (P̂n,ℓ
W ) and therefore the snapshot set span {y1, . . . , yn}

depend on the chosen time instances {tj}nj=1. Consequently, the POD basis vec-

tors {ψi}ℓi=1 and the corresponding eigenvalues {λi}ℓi=1 depend also on the time
instances, i.e.,

ψi = ψni and λi = λni , 1 ≤ i ≤ ℓ.
Moreover, we have not discussed so far what is the motivation to introduce the

nonnegative weights {αj}nj=1 in (P̂n,ℓ
W ). For this reason we proceed by investigating

the following two questions:

• How to choose good time instances for the snapshots?
• What are appropriate nonnegative weights {αj}nj=1?

To address these two questions we will introduce a continuous version of POD.
Suppose that (1.4.1) has a unique solution y : [0, T ]→ Rm. If we are interested to
find a POD basis of rank ℓ that describes the whole trajectory {y(t) | t ∈ [0, T ]} ⊂
Rm as good as possible we have to consider the following minimization problem

(P̂ℓ
W )

min
ψ̃1,...,ψ̃ℓ∈Rm

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψ̃i〉W ψ̃i

∥
∥
∥

2

W
dt

s.t. 〈ψ̃i, ψ̃j〉W = δij , 1 ≤ i, j ≤ ℓ,
To solve (P̂ℓ

W ) we use similar arguments as in Sections 1 and 3. For ℓ = 1 we obtain

instead of (P̂ℓ
W ) the minimization problem

(1.4.8) min
ψ̃∈Rm

∫ T

0

∥
∥y(t)− 〈y(t), ψ̃〉W ψ̃

∥
∥
2

W
dt s.t. ‖ψ̃‖2W = 1,
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Suppose that {ψ̃i}mi=2 are chosen in such a way that {ψ̃, ψ̃2, . . . , ψ̃m} is an orthonor-
mal basis in Rm with respect to the inner product 〈· , ·〉W . Then we have

y(t) = 〈y(t), ψ̃〉W ψ̃ +

m∑

i=2

〈y(t), ψ̃i〉W ψ̃i for all t ∈ [0, T ].

Thus,
∫ T

0

∥
∥
∥y(t)− 〈y(t), ψ̃〉W ψ̃

∥
∥
∥

2

W
dt =

∫ T

0

∥
∥
∥

m∑

i=2

〈y(t), ψ̃〉W ψ̃i

∥
∥
∥

2

W
dt

=

m∑

i=2

∫ T

0

∣
∣〈y(t), ψ̃i〉W

∣
∣
2
dt

we conclude that (1.4.8) is equivalent with the following maximization problem

(1.4.9) max
ψ̃∈Rm

∫ T

0

∣
∣〈y(t), ψ̃〉W

∣
∣
2
dt s.t. ‖ψ̃‖2W = 1.

The Lagrange functional L : Rm × R→ R associated with (1.4.9) is given by

L(ψ, λ) =
∫ T

0

∣
∣〈y(t), ψ〉W

∣
∣
2
dt+ λ

(
1− ‖ψ‖2W

)
for (ψ, λ) ∈ Rm × R.

Arguing as in Sections 1 and 3 any optimal solution to (1.4.9) is a regular point;
see Exercise 1.5.10. Consequently, first-order necessary optimality conditions are
given by

∇L(ψ, λ) !
= 0 in Rm × R.

Therefore, we compute the partial derivative of L with respect to the i-th component
ψi of the vector ψ:

∂L
∂ψi

(u, λ) =
∂

∂ψi

(∫ T

0

∣
∣
∣

m∑

k=1

m∑

ν=1

yk(t)Wkνψν

∣
∣
∣

2

dt+ λ
(

1−
m∑

k=1

m∑

ν=1

ψkWkνψν

))

= 2

∫ T

0

( m∑

k=1

m∑

ν=1

yk(t)Wkνψν

) m∑

µ=1

yµ(t)Wµi dt− 2λ

m∑

k=1

Wikψk

= 2

(∫ T

0

〈y(t), ψ〉WWy(t) dt− λWψ

)

i

for i ∈ {1, . . . ,m}. Thus,

∇ψL(ψ, λ) = 2

(∫ T

0

〈y(t), ψ〉WWy(t) dt− λWψ

)

!
= 0 in Rm,

which gives

(1.4.10)

∫ T

0

〈y(t), ψ〉W Wy(t) dt = λWψ in Rm.

Multiplying (1.4.10) by W−1 from the left yields

(1.4.11)

∫ T

0

〈y(t), ψ〉W y(t) dt = λψ in Rm.
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We define the operator R : Rm → Rm as

Rψ =

∫ T

0

〈y(t), ψ〉W y(t) dt for ψ ∈ Rm.

Lemma 1.4.2. The operator R is linear and bounded (i.e., continuous). More-
over,

1) R is nonnegative:

〈Rψ,ψ〉W ≥ 0 for all ψ ∈ Rm.

2) R is self-adjoint (or symmetric):

〈Rψ, ψ̃〉W = 〈ψ,Rψ̃〉W for all ψ, ψ̃ ∈ Rm.

Proof. For arbitrary ψ, ψ̃ ∈ Rm and α, α̃ ∈ R we have

R
(
αψ + α̃ψ̃

)
=

∫ T

0

〈y(t), αψ + α̃ψ̃〉W y(t) dt

=

∫ T

0

(

α 〈y(t), ψ〉W + α̃ 〈y(t), ψ̃〉W
)

y(t) dt

= α

∫ T

0

〈y(t), ψ〉W y(t) dt+ α̃

∫ T

0

〈y(t), ψ̃〉W y(t) dt = αRψ + α̃Rψ̃,

so that R is linear. From the Cauchy-Schwarz inequality we derive

‖Rψ‖W ≤
∫ T

0

∥
∥〈y(t), ψ〉W y(t)

∥
∥
W

dt =

∫ T

0

∣
∣〈y(t), ψ〉W

∣
∣ ‖y(t)‖W dt

≤
∫ T

0

‖y(t)‖2W ‖ψ‖W dt =

(∫ T

0

‖y(t)‖2W dt

)

‖ψ‖W = ‖y‖2L2(0,T ;Rm)‖ψ‖W

for an arbitrary ψ ∈ Rm. Since y ∈ C([0, T ];Rm) ⊂ L2(0, T ;Rm) holds, the norm
‖y‖L2(0,T ;Rm) is bounded. Therefore, R is bounded. Since

〈Rψ,ψ〉W =

(∫ T

0

〈y(t), ψ〉W y(t) dt

)⊤

Wψ =

∫ T

0

〈y(t), ψ〉W y(t)⊤Wψ dt

=

∫ T

0

∣
∣〈y(t), ψ〉W

∣
∣
2
dt ≥ 0

for all ψ ∈ Rm holds, R is nonnegative. Finally, we infer from

〈Rψ, ψ̃〉W =

∫ T

0

〈y(t), ψ〉W 〈y(t), ψ̃〉W dt =

〈∫ T

0

〈y(t), ψ̃〉W y(t) dt, ψ
〉

W

= 〈Rψ̃, ψ〉W = 〈ψ,Rψ̃〉W
for all ψ, ψ̃ ∈ Rm that R is self-adjoint. �

Utilizing the operator R we can write (1.4.11) as the eigenvalue problem

Rψ = λψ in Rm.

It follows from Lemma 1.4.2 that R possesses eigenvectors {ψi}mi=1 and associated
real eigenvalues {λi}mi=1 such that

(1.4.12) Rψi = λiψi for 1 ≤ i ≤ m and λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0.
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Note that
∫ T

0

∣
∣〈y(t), ψi〉W

∣
∣
2
dt =

∫ T

0

〈
〈y(t), ψi〉W y(t), ψi

〉

W
dt = 〈Rψi, ψi〉W = λi ‖ψi‖2W

= λi for i ∈ {1, . . . ,m}

so that ψ1 solves (1.4.8). Proceeding as in Sections 1 and 3 we obtain the following
result; see Exercise 1.5.11.

Theorem 1.4.3. Suppose that (1.4.1) has a unique solution y : [0, T ] → Rm.

Then the POD basis of rank ℓ solving the minimization problem (P̂ℓ
W ) is given by the

eigenvectors {ψi}ℓi=1 of R corresponding to the ℓ largest eigenvalues λ1 ≥ . . . ≥ λℓ.

Remark 1.4.4 (Methods of snapshots). Let us define the linear and bounded
operator Y : L2(0, T )→ Rm by

Yφ =

∫ T

0

φ(t)y(t) dt for φ ∈ L2(0, T ).

The (Hilbert space) adjoint Y⋆ : Rm → L2(0, T ) satisfying (see Definition A.5)

〈Y⋆ψ, φ〉L2(0,T ) = 〈ψ,Yφ〉W for all (ψ, φ) ∈ Rm × L2(0, T )

is given as

(Y⋆ψ)(t) = 〈ψ, y(t)〉W for ψ ∈ Rm and almost all t ∈ [0, T ].

Then we have

YY⋆ψ =

∫ T

0

〈ψ, y(t)〉W y(t) dt =

∫ T

0

〈y(t), ψ〉W y(t) dt = Rψ

for all ψ ∈ Rm, i.e., R = YY⋆ holds. Furthermore,

(Y⋆Yφ)(t) =
〈∫ T

0

φ(s)y(s) ds, y(t)

〉

W

=

∫ T

0

〈y(s), y(t)〉W φ(s) ds =: (Kφ)(t)

for all φ ∈ L2(0, T ) and almost all t ∈ [0, T ]. Thus, K = Y⋆Y. It can be shown
that the operator K is linear, bounded, nonnegative and self-adjoint. Moreover, K
is compact. Therefore, the POD basis can also be computed as follows: Solve

(1.4.13) Kφi = λiφi for 1 ≤ i ≤ ℓ, λ1 ≥ . . . ≥ λℓ > 0,

∫ T

0

φi(t)φj(t) dt = δij

and set

ψi =
1√
λi
Yφi =

1√
λi

∫ T

0

φi(t)y(t) dt for i = 1, . . . , ℓ.

Note that (1.4.13) is a symmetric eigenvalue problem in the infinite-dimensional
function space L2(0, T ). ♦

In Algorithm 5 the computation of a POD basis of rank ℓ is summarized in the
context of the continuous version of the POD method.
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Algorithm 5 (POD basis of rank ℓ for dynamical systems [continuous version])

Require: Snapshots {y(t) | t ∈ [0, T ]} ⊂ Rm, POD rank ℓ ≤ d, symmetric,
positive-definite matrix W ∈ Rm×m and flag for the solver;

1: if flag = 1 then

2: Set R =
∫ T

0
〈y(t), •〉W y(t) dt ∈ L(Rm);

3: Solve the eigenvalue problem Rψi = λiψi, 1 ≤ i ≤ ℓ, with 〈ψi, ψj〉W = δij ;
4: else if flag = 2 then

5: Set K =
∫ T

0
〈y(s), y(·)〉W • ds ∈ L(L2(0, T ));

6: Solve the problem Kφi = λiφi, 1 ≤ i ≤ ℓ, with 〈φi, φj〉L2(0,T ) = δij ;

7: Set ψi =
∫ T

0
y(t)φi(t) dt/

√
λi ∈ Rm;

8: end if
9: Compute E(ℓ) =∑ℓ

i=1 λi/
∑d
i=1 λi;

10: return POD basis {ψi}ℓi=1, eigenvalues {λi}ℓi=1 and ratio E(ℓ);

Let us turn back to the optimality conditions (1.4.6). For any ψ ∈ Rm and
i ∈ {1, . . . ,m} we derive

(
Y DY ⊤Wψ

)

i
=

m∑

ν=1

m∑

j=1

m∑

k=1

αjYijYkjWkνψν =

n∑

j=1

αjYij 〈yj , ψ〉W

=

n∑

j=1

αj 〈yj , ψ〉W (yj)i,

where (yj)i stands for the i-th component of the vector yj ∈ Rm. Thus,

Y DY ⊤Wψ =

n∑

j=1

αj 〈yj , ψ〉W yj =: Rnψ.

Note that the operator Rn : Rm → Rm is linear and bounded. Moreover,

〈Rnψ,ψ〉W =

〈 n∑

j=1

αj 〈yj , ψ〉W yj , ψ
〉

W

=

n∑

j=1

αj
∣
∣〈yj , ψ〉W

∣
∣
2 ≥ 0

holds for all ψ ∈ Rm so that Rn is nonnegative. Further,

〈Rnψ, ψ̃〉W =

〈 n∑

j=1

αj 〈yj , ψ〉W yj , ψ̃

〉

W

=
n∑

j=1

αj 〈yj , ψ〉W 〈yj , ψ̃〉W

=

〈 n∑

j=1

αj 〈yj , ψ̃〉W yj , ψ

〉

W

= 〈Rnψ̃, ψ〉W = 〈ψ,Rnψ̃〉W

for all ψ, ψ̃ ∈ Rm, i.e., Rn is self-adjoint. Therefore, Rn has the same properties as
the operator R. Summarizing, we have

Rnψni = λni ψ
n
i , λn1 ≥ . . . λnℓ ≥ . . . λnd(n) > λnd(n)+1 = . . . = λnm = 0,(1.4.14a)

Rψi = λiψi, λ1 ≥ . . . λℓ ≥ . . . λd > λd+1 = . . . = λm = 0.(1.4.14b)

Let us note that

(1.4.15)

∫ T

0

‖y(t)‖2W dt =

d∑

i=1

λi =

m∑

i=1

λi.
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In fact,

Rψi =
∫ T

0

〈y(t), ψi〉W y(t) dt for every i ∈ {1, . . . ,m}.

Taking the inner product with ui, using (1.4.14b) and summing over i we arrive at

d∑

i=1

∫ T

0

∣
∣〈y(t), ψi〉W

∣
∣
2
dt =

d∑

i=1

〈Rψi, ψi〉W =

d∑

i=1

λi =

m∑

i=1

λi.

Expanding y(t) ∈ Rm in terms of {ψi}mi=1 we have

y(t) =

m∑

i=1

〈y(t), ψi〉W ψi

and hence
∫ T

0

‖y(t)‖2W dt =
m∑

i=1

∫ T

0

∣
∣〈y(t), ψi〉W

∣
∣
2
dt =

m∑

i=1

λi,

which is (1.4.15). Analogously, we obtain

(1.4.16)
n∑

j=1

αj ‖y(tj)‖2W =

d(n)
∑

i=1

λni =
m∑

i=1

λni for every n ∈ N;

see Exercise 1.5.12. For convenience we do not indicate the dependence of αj on n.
Let y ∈ C([0, T ];Rm) hold. To ensure

(1.4.17)

n∑

j=1

αj ‖y(tj)‖2W →
∫ T

0

‖y(t)‖2W dt as ∆t→ 0

we have to choose the αj ’s appropriately. Here we take the trapezoidal weights

(1.4.18) α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n− 1, αn =

∆t

2
.

Suppose that we have

(1.4.19) lim
n→∞

‖Rn −R‖L(Rm) = lim
n→∞

sup
‖ψ‖W=1

‖Rnψ −Rψ‖W = 0

provided y ∈ C1([0, T ];Rm) is satisfied. In (1.4.19) we denote by L(Rm) the Ba-
nach space of all linear and bounded operators mapping from Rm into itself; see
Appendix A. Combining (1.4.17) with (1.4.15) and (1.4.16) we find

(1.4.20)
m∑

i=1

λni →
m∑

i=1

λi as n→∞.

Now choose and fix

(1.4.21) ℓ such that λℓ 6= λℓ+1.

Then by spectral analysis of compact operators [13, pp. 212-214] and (1.4.19) it
follows that

(1.4.22) λni → λi for 1 ≤ i ≤ ℓ as n→∞.
Combining (1.4.20) and (1.4.22) there exists n̄ ∈ N such that

(1.4.23)
m∑

i=ℓ+1

λni ≤ 2
m∑

i=ℓ+1

λi for all n ≥ n̄,
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if
∑m
i=ℓ+1 λi 6= 0. Moreover, for ℓ as above, n̄ can also be chosen such that

(1.4.24)

d(n)
∑

i=ℓ+1

∣
∣〈y◦, ψni 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∣
∣〈y◦, ψi〉W

∣
∣
2

for all n ≥ n̄,

provided that
∑m
i=ℓ+1 |〈y◦, ψi〉W |2 6= 0 and (1.4.19) hold. Recall that the vector

y◦ ∈ Rm stands for the initial condition in (1.4.1b). Then we have

(1.4.25) ‖y◦‖2W =

m∑

i=1

∣
∣〈y◦, ψi〉W

∣
∣
2
.

If t1 = 0 holds, we have y◦ ∈ span {yj}nj=1 for every n and

(1.4.26) ‖y◦‖2W =

d(n)
∑

i=1

∣
∣〈y◦, ψni 〉W

∣
∣
2
.

Therefore, for ℓ < d(n) by (1.4.25) and (1.4.26)

d(n)
∑

i=ℓ+1

∣
∣〈y◦, ψni 〉W

∣
∣
2
=

d(n)
∑

i=1

∣
∣〈y◦, ψni 〉W

∣
∣
2 −

ℓ∑

i=1

∣
∣〈y◦, ψni 〉W

∣
∣
2
+

ℓ∑

i=1

∣
∣〈y◦, ψi〉W

∣
∣
2

+

m∑

i=ℓ+1

∣
∣〈y◦, ψi〉W

∣
∣
2 −

m∑

i=1

∣
∣〈y◦, ψi〉W

∣
∣
2

=

ℓ∑

i=1

(∣
∣〈y◦, ψi〉W

∣
∣
2 −

∣
∣〈y◦, ψni 〉W

∣
∣
2
)

+

m∑

i=ℓ+1

∣
∣〈y◦, ψi〉W

∣
∣
2
.

As a consequence of (1.4.19) and (1.4.21) we have limn→∞ ‖ψni − ψi‖W = 0 for
i = 1, . . . , ℓ and hence (1.4.24) follows.

Summarizing we have the following theorem.

Theorem 1.4.5. Suppose that (1.4.1) has a unique solution y : [0, T ] → Rm.
Let {(ψni , λni )}mi=1 and {(ψi, λi)}mi=1 be the eigenvector-eigenvalue pairs given by
(1.4.14). Suppose that ℓ ∈ {1, . . . ,m} is fixed such that (1.4.21) and

m∑

i=ℓ+1

λi 6= 0,

m∑

i=ℓ+1

∣
∣〈y◦, ψi〉W

∣
∣
2 6= 0

hold. Then we have

(1.4.27) lim
n→∞

‖Rn −R‖L(Rm) = 0.

This implies

lim
n→∞

∣
∣λni − λi

∣
∣ = lim

n→∞
‖ψni − ψi‖W = 0 for 1 ≤ i ≤ ℓ,

lim
n→∞

m∑

i=ℓ+1

(
λni − λi

)
= 0 and lim

n→∞

m∑

i=ℓ+1

∣
∣〈y◦, ψni 〉W

∣
∣
2
=

m∑

i=ℓ+1

∣
∣〈y◦, ψi〉W

∣
∣
2
.

Proof. We only have to verify (1.4.27). For that purpose we choose an arbi-
trary ψ ∈ Rm with ‖ψ‖W = 1 and introduce fψ : [0, T ]→ Rm by

fψ(t) = 〈y(t), ψ〉W y(t) for t ∈ [0, T ].
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Then, we have fu ∈ C1([0, T ];Rm) with

ḟψ(t) = 〈ẏ(t), ψ〉W y(t) + 〈y(t), ψ〉W ẏ(t) for t ∈ [0, T ]

By Taylor expansion there exist τj1(t), τj2(t) ∈ [tj , tj+1] depending on t
∫ tj+1

tj

fψ(t) dt =
1

2

∫ tj+1

tj

fψ(tj) + ḟψ(τj1(t))(t− tj) dt

+
1

2

∫ tj+1

tj

fψ(tj+1) + ḟψ(τj2(t))(t− tj+1) dt

=
∆t

2
(fψ(tj) + fψ(tj+1)) +

1

2

∫ tj+1

tj

ḟψ(τj1(t))(t− tj) dt

+
1

2

∫ tj+1

tj

ḟψ(τj2(t))(t− tj+1) dt.

Hence,

∥
∥Rnu−Ru

∥
∥
W

=

∥
∥
∥
∥

n∑

j=1

αjfψ(tj)−
∫ T

0

fψ(t) dt

∥
∥
∥
∥
W

=

∥
∥
∥
∥

n−1∑

j=1

(∆t

2
(fψ(tj) + fψ(tj+1))−

∫ tj+1

tj

fψ(t) dt
)
∥
∥
∥
∥
W

≤ 1

2

n−1∑

j=1

∫ tj+1

tj

∥
∥ḟψ(τj1(t))

∥
∥
W

∣
∣t− tj

∣
∣+
∥
∥ḟψ(τj2(t))

∥
∥
W

∣
∣t− tj+1

∣
∣ dt

≤ 1

2
max
t∈[0,T ]

∥
∥ḟψ(t)

∥
∥
W

n−1∑

j=1

( (t− tj)2
2

− (tj+1 − t)2
2

)
∣
∣
∣
∣

t=tj+1

t=tj

=
∆t

2
max
t∈[0,T ]

∥
∥ḟψ(t)

∥
∥
W

n−1∑

j=1

∆t =
∆t T

2
max
t∈[0,T ]

∥
∥ḟψ(t)

∥
∥
W

≤ ∆t T

2
max
t∈[0,T ]

∥
∥ḟψ(t)

∥
∥
W

=
∆t T

2
max
t∈[0,T ]

∥
∥〈ẏ(t), ψ〉W y(t) + 〈y(t), ψ〉W ẏ(t)

∥
∥
W

= ∆t T max
t∈[0,T ]

‖ẏ(t)‖W ‖y(t)‖W ≤ ∆t T ‖y‖2C1([0,T ];Rm).

Consequently,

‖Rn −R‖L(Rm) = sup
‖ψ‖W=1

‖Rnψ −Rψ‖W ≤ 2∆t ‖y‖2C1([0,T ];Rm)
∆t→0−→ 0

which is (1.4.27). �

5. Exercises

Exercise 1.5.1. Let A ∈ Rm×n, m > n, a matrix with rank n. Suppose that
Ψ⊤AΦ = Σ is the singular value decomposition of A with the singular values
σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Prove the following claims:
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a) Aφi = σiψi and A⊤ψi = σiφi for i = 1, . . . , n, where {ψi}mi=1 ⊂ Rm

and {φi}ni=1 ⊂ Rn denote the columns of Ψ ∈ Rm×m and Φ ∈ Rn×n,
respectively.

b) ‖A‖2 = σ1.
c) The matrix A⊤A is symmetric and prositive definite.
d) The set of all positive singular values of A coincides with the set of square

roots of all positive eigenvalues of A⊤A.

Exercise 1.5.2. Assume that A ∈ Rn×n is an invertible matrix and that A =
ΨΣΦ⊤ is a singular value decomposition on A. What is the singular value decom-
position of A−1?

Exercise 1.5.3. Compute the singular value decomposition of the matrix

A =





−2 0
0 1
0 −1



 .

Exercise 1.5.4. Show that any optimal solution to (Pℓ) is a regular point.

Exercise 1.5.5. Verify the claim in Theorem 1.1.1 that argmax (Pℓ) =
∑ℓ
i=1 σ

2
i

holds true.

Exercise 1.5.6. Show that the Frobenius norm is a matrix norm and that

‖AB‖F ≤ ‖A‖F ‖B‖F for any A, B ∈ Rn×n

is valid. Suppose that Ψd ∈ Rm×d is a matrix with pairwise orthonormal vectors
ψi ∈ Rm, 1 ≤ i ≤ d. Prove that

‖ΨdA‖F = ‖A‖F for any matrix A ∈ Rd×n.

Exercise 1.5.7. We extend Example 1.3.1 to the two-dimensional domain Ω =
(0, 1) × (0, 1) ⊂ R2 be given. We choose the trapezoidal quadrature rule with an
equidistant grid size h = 1/(n − 1) in both dimensions. Determine the weighting
matrix W ∈ Rm×m, where m = n2 holds, so that the trapezoidal approximation
can be written as the weighted inner product 〈· , ·〉W .

Exercise 1.5.8. Suppose that W ∈ Rm×m is symmetric and positive definite. Let
η1 ≥ . . . ≥ ηm > 0 denote the eigenvalues of W and Wα = Qdiag (ηα1 , . . . , η

α
m)Q⊤

be the eigenvalue decomposition of W . We define

Wα = Qdiag (ηα1 , . . . , η
α
m)Q⊤ for α ∈ R.

Show that (Wα)−1 exists and (Wα)−1 =W−α. Prove that Wα+β =WαW β holds
for α, β ∈ R.

Exercise 1.5.9. Verify the claims of Theorem 1.3.2.

a) Ensure a regular point condition, which guarantees the existence of La-
grange multiplieres.

b) Prove that ψi = W−1/2ψ̄i, 1 ≤ i ≤ ℓ, solves (Pℓ
W ), where the matrix W

and the vectors ψ̄1, . . . , ψ̄m are introduced in Theorem 1.3.2.
c) Show that (1.3.7) holds.

Exercise 1.5.10. Agrue that any optimal solution to (1.4.9) is a regular point.

Exercise 1.5.11. Prove that u1 given by (1.4.12) is a global solution to (1.4.8).

How can this result be extended for (P̂ℓ
W )?

Exercise 1.5.12. Verify (1.4.16).



CHAPTER 2

The POD Method for Partial Differential

Equations

In this chapter we formulate the POD method for partial differential equations
(PDEs). For that purpose an extension of the approach presented in Chapter 1
to separable Hilbert spaces is needed. Our approach is motivated by the goal to
derive reduced-order models for parabolic and elliptic partial differential equations.
In Section 1 we focus on parabolic PDEs. The presented approach generalizes
the theory presented in Section 4 of Chapter 1. We also discuss the numerical
realization as well as the treatment of nonlinearities. Parametrized elliptic problems
are analyzed in Section 2. Whereas for parabolic problems the time t serves as
the sampling parameter, a variation of the parameter values are used for elliptic
problems to build a POD basis.

Throughout this chapter we make use of the following notations and assump-
tions: Let V and H be real, separable Hilbert spaces and suppose that V is dense in
H with compact embedding. By 〈· , ·〉V and 〈· , ·〉H we denote the inner products in

V and H with associated norm ‖·‖V =
√

〈· , ·〉V and ‖·‖H =
√

〈· , ·〉H , respectively.

1. POD for Parabolic Partial Differential Equations

Now we consider the POD method for linear evolution problems. Then, its nu-
merical approximation is dicussed. Moreover, we explain the extension to nonlinear
evolution problems by using empirical interpolation.

1.1. Linear Evolution Equations. Let T > 0 be the final time. For t ∈
[0, T ] we define a time-dependent symmetric bilinear form a(t; · , ·) : V × V → R

satisfying

∣
∣a(t;ϕ,ψ)

∣
∣ ≤ β ‖ϕ‖V ‖ψ‖V ,(2.1.1a)

a(t;ϕ,ϕ) ≥ κ ‖ϕ‖2V − η ‖ϕ‖
2
H(2.1.1b)

for all ϕ,ψ ∈ V and t, t1, t2 ∈ [0, T ], where β, κ > 0 and η ≥ 0 are constants, which
do not depend on t. By identifying H with its dual H ′ it follows that

V →֒ H = H ′ →֒ V ′,

each embedding being continuous and dense. In Appendix B we introduce the
function space W (0, T ), which is a Hilbert space endowed with the common inner
product. When the time t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·)
considered as a function in Ω only.

33
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For y◦ ∈ H and f ∈ L2(0, T ;V ′) we consider the linear evolution problem

(2.1.2)

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈f(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V.
Throughout we write ‘f.a.a.’ for ‘for almost all’.

Example 2.1.1. Suppose that Ω ( Rd, d ∈ {1, 2, 3}, is an open and bounded
domain with Lipschitz-continuous boundary Γ = ∂Ω. For T > 0 we set Q =
(0, T ) × Ω and Σ = (0, T ) × Γ. Let H = L2(Ω) and V = H1(Ω). Then, for given
y◦ ∈ H, f ∈ L2(0, T ;H) and g ∈ L2(0, T ;L2(ΓC)), we consider the linear heat
equation

(2.1.3)

yt(t,x)−∇ ·
(
c(t,x)∇y(t,x)

)
+ a(t,x)y(t,x) = f(t,x), (t,x) ∈ Q,

c(t, s)
∂y

∂n
(t, s) = g(t, s), (t, s) ∈ Σ,

y(0,x) = y◦(x), x ∈ Ω,

where c ∈ C([0, T ];L∞(Ω)) satisfying c(t,x) ≥ ca > 0 f.a.a. (t,x) ∈ Q, a ∈
C([0, T ];L∞(Ω)) and b ∈ L∞(0, T ;L∞(ΓC)). For t ∈ [0, T ] a.e. we introduce the
bilinear form a(t; · , ·) : V × V → R by

a(t;ϕ,ψ) =

∫

Ω

c(t)∇ϕ · ∇ψ + a(t)ϕψ dx for ϕ,ψ ∈ V

and the linear, bounded functional f ∈ L2(0, T ;V ′) by

〈f(t), ϕ〉V ′,V = 〈f(t), ϕ〉H +

∫

ΓN

g(t)ϕds for t ∈ [0, T ] a.e. and ϕ,ψ ∈ V,

where “a.e.” stands for “almost everywhere”. Then, it follows that the weak formu-
lation of (2.1.3) can be expressed in the form (2.1.2). From c, a ∈ C([0, T ];L∞(Ω))
we infer that the time-dependent bilinear form a(t; · , ·) satisfies (2.1.1). ♦

Example 2.1.2. Let us present a further example for (2.1.2). Suppose that –
as in Example 2.1.1 – the set Ω ⊂ Rd, d ∈ {1, 2, 3}, is an open and bounded domain
with Lipschitz-continuous boundary Γ = ∂Ω. For T > 0 we set Q = (0, T )×Ω and
Σ = (0, T )× Γ. Let H = L2(Ω) and V = H1

0 (Ω). Then, for given initial condition
y◦ ∈ H we consider the linear heat equation

yt(t,x)−∇ ·
(
c(t,x)∇y(t,x)

)
+ a(t,x)y(t,x) = f(t,x), (t,x) ∈ Q,(2.1.4a)

y(t, s) = 0, (t, s) ∈ Σ,(2.1.4b)

y(0,x) = y◦(x), x ∈ Ω.(2.1.4c)

In (2.1.4a) we suppose that c, a and f satisfies the same assumptions as in Exam-
ple 2.1.1. Introducing the bilinear form a(t; · , ·) : V × V → R for every t ∈ [0, T ]
by

a(t;ϕ,ψ) =

∫

Ω

c(t,x)∇ϕ(x) · ∇ψ(x) + a(t,x)ϕ(x)ψ(x) dx for ϕ,ψ ∈ V

it follows that the weak formulation of (2.1.4) can be written in the form (2.1.2).♦

It follows from Theorem C.1 that for every f ∈ L2(0, T ;V ′) and y◦ ∈ H
there exists a unique weak solution y ∈ W (0, T ) satisfying (2.1.2). Moreover, if
f ∈ L2(0, T ;H), a(t; · , ·) = a(· , ·) (independent of t) and y◦ ∈ V hold, we even
have y ∈ C([0, T ];V ); see Corollary C.3.
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1.2. The Continuous POD Method for Linear Evolution Equations.
Let f ∈ L2(0, T ;V ′) and y◦ ∈ V be given arbitrarily so that the solution y ∈
W (0, T ) to (2.1.2) belongs to C([0, T ];V ) →֒ C([0, T ];X), where X denotes either
the space V or the space H. Then,

(2.1.5) V = span
{
y(t) | t ∈ [0, T ]

}
⊆ V ⊂ X.

If y◦ 6= 0 holds, then V 6= {0} and d = dimV ∈ [1,∞], but V may have infinite
dimension. Now we proceed similar as in Remark 1.4.4. We define a bounded linear
operator Y : L2(0, T )→ X by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ).

Its Hilbert space adjoint Y⋆ : X → L2(0, T ) satisfying

〈Yϕ,ψ〉X = 〈ϕ,Y⋆ψ〉L2(0,T ) for (ϕ,ψ) ∈ L2(0, T )×X
is given by (Y⋆ψ)(t) = 〈ψ, y(t)〉X for ψ ∈ X and f.a.a. t ∈ [0, T ]. The linear
operator R = YY⋆ : X → V ⊂ X has the form

(2.1.6) Rψ =

∫ T

0

〈ψ, y(t)〉X y(t) dt for ψ ∈ X.

Moreover, let K = Y⋆Y : L2(0, T )→ L2(0, T ) be defined by

(2.1.7)
(
Kφ
)
(t) =

∫ T

0

〈y(s), y(t)〉X φ(s) ds for φ ∈ L2(0, T ).

Lemma 2.1.3. Let X denote either the space V or the space H and y ∈W (0, T )
hold. Then, the linear operator R is bounded, compact, nonnegative and symmetric.

Proof. Applying the Cauchy-Schwarz inequality we infer that

(2.1.8)
‖Rψ‖X ≤

∫ T

0

∣
∣〈ψ, y(t)〉X

∣
∣ ‖y(t)‖X dt ≤ ‖ψ‖X

∫ T

0

‖y(t)‖2X dt

= ‖y‖2L2(0,T ;X) ‖ψ‖X for ψ ∈ X
holds. By assumption, y ∈ W (0, T ) ⊂ L2(0, T ;X). Thus, from (2.1.8) we infer
that R is bounded. Again using y ∈ W (0, T ) ⊂ L2(0, T ;X) the kernel k(s, t) =
〈y(t), y(s)〉X of K is square integrable over (0, T ) × (0, T ); see Exercise 2.3.1. By
Remark A.14 we conclude that the integral operator K is compact. Remark A.16
implies that R = K⋆ is compact as well. From

〈Rψ,ψ〉X =

〈∫ T

0

〈ψ, y(t)〉X y(t) dt, ψ
〉

X

=

∫ T

0

∣
∣〈ψ, y(t)〉X

∣
∣
2
dt ≥ 0 for all ψ ∈ X

we infer that R is nonnegative. Finally, we have

〈Rψ, ψ̃〉X =

〈∫ T

0

〈ψ, y(t)〉X y(t) dt, ψ̃
〉

X

=

∫ T

0

〈ψ, y(t)〉X 〈y(t), ψ̃〉Xdt

=

∫ T

0

〈
ψ, 〈y(t), ψ̃〉X y(t)

〉

X
dt =

〈

ψ,

∫ T

0

〈y(t), ψ̃〉X y(t) dt
〉

X

= 〈ψ,Rψ̃〉X for all ψ, ψ̃ ∈ X.
Hence, the operator R is selfadjoint. �
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From Theorems A.17 and A.18 it follows that there exists a complete orthonor-
mal basis {ψi}∞i=1 for X and a sequence {λi}∞i=1 of nonnegative real numbers such
that

(2.1.9) Rψi = λiψi, λ1 ≥ λ2 ≥ . . . , and lim
i→∞

λi = 0.

The spectrum of R is a pure point spectrum except for possibly 0. Each nonzero
eigenvalue of R has finite multiplicity and 0 is the only possible accumulation point
of the spectrum of R. Let us note that

∫ T

0

‖y(t)‖2X dt =

∞∑

i=1

λi and ‖y◦‖X =

∞∑

i=1

∣
∣〈y◦, ψi〉X

∣
∣
2
.

Remark 2.1.4. 1) Analogously to the theory of singular value decom-
position for matrices, we find that the linear, bounded, compact and self-
adjoint operator K has the same eigenvalues {λi}di=1 as the operator R.
For all λi > 0 the corresponding eigenfunctions of K are given by

φi(t) =
1√
λi

(
Y⋆ψi

)
(t) =

1√
λi
〈ψi, y(t)〉X f.a.a. t ∈ [0, T ] and 1 ≤ i ≤ ℓ.

2) Notice that – independent of the choice for X — V ⊂ V implies ψi ∈ V
for 1 ≤ i ≤ ℓ. ♦

In the following theorem we formulate properties of the eigenvalues and eigen-
vectors of R.

Theorem 2.1.5. Let {λi}∞i=1 and {ψi}∞i=1 denote the eigenvalues and eigen-
functions, respectively, of R. Then, for every ℓ ∈ N the first ℓ eigenfunctions
ψ1, . . . , ψℓ ∈ X solve the minimization problem

(2.1.10)







min
ψ̃1,...,ψ̃ℓ∈X

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψ̃i〉X ψ̃i
∥
∥
∥

2

X
dt

s.t. 〈ψ̃i, ψ̃j〉X = δij for 1 ≤ i, j ≤ ℓ.
Moreover,

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψi〉X ψi
∥
∥
∥

2

X
dt =

∞∑

i=ℓ+1

λi.

Proof. We proceed as in the proof of Theorem 1.1.1. First note that (2.1.10)
is equivalent to

(2.1.11)







max
ψ̃1,...,ψ̃ℓ∈X

ℓ∑

i=1

∫ T

0

∣
∣〈y(t), ψ̃i〉X

∣
∣
2
dt

s.t. 〈ψ̃i, ψ̃j〉X = δij for 1 ≤ i, j ≤ ℓ.
We define the Lagrange function

L : X × . . .×X
︸ ︷︷ ︸

ℓ-times

×Rℓ×ℓ

by

L(ψ1, . . . , ψℓ,Λ) =
ℓ∑

i=1

∫ T

0

∣
∣〈y(t), ψ̃i〉X

∣
∣
2
+

ℓ∑

i,j

λij
(
δij − 〈ψi, ψj〉X

)
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for ψ1, . . . , ψℓ ∈ X and Λ = ((λij)) ∈ Rℓ×ℓ. To derive first-order optimality con-
ditions we show a constraint qualification for (2.1.11). For that purpose let us
introduce the mapping

e : X × . . .×X
︸ ︷︷ ︸

ℓ-times

→ Rℓ×ℓ, e(ψ̃1, . . . , ψ̃ℓ) = δij − 〈ψ̃i, ψ̃j〉X

Then, we have e(ψ̃1, . . . , ψ̃ℓ) = e(ψ̃1, . . . , ψ̃ℓ)
T . This reflects the fact that we can

replace the constraints in (2.1.11) by 〈ψ̃i, ψ̃j〉X = δij for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ i.
Moreover, introducing the set of feasible solutions

Xℓ
ad =

{
(ψ̃1, . . . , ψ̃ℓ)

∣
∣ψ̃1, . . . , ψ̃ℓ ∈ X and e(ψ̃1, . . . , ψ̃ℓ) = 0 ∈ Rℓ×ℓ

}

problem (2.1.11) can be expressed as

(2.1.12) max

ℓ∑

i=1

∫ T

0

∣
∣〈y(t), ψ̃i〉X

∣
∣
2

s.t. (ψ̃1, . . . , ψ̃ℓ) ∈ Xℓ
ad.

To derive first-order optimality conditions we show a constraint qualification for
the set Xℓ

ad. The Fréchet derivative of e is given by

e′(ψ1, . . . , ψℓ)(ψ
δ
1, . . . , ψ

δ
ℓ ) =

((
− 〈ψδi , ψj〉X − 〈ψi, ψδj 〉X

))

1≤i,j≤ℓ

for given directions ψδ1, . . . , ψ
δ
ℓ ∈ X. Suppose that {ψi}ℓi=1 satisfies 〈ψ̃i, ψ̃j〉X = δij

for 1 ≤ i, j ≤ ℓ and that A = ((aij)) ∈ Rℓ×ℓ is a symmetric matrix. Then a con-
straint qualification holds at {ψi}ℓi=1 provided there exists an ℓ-tupel (ψδ1, . . . , ψ

δ
ℓ )

such that

e′(ψ1, . . . , ψℓ)(ψ
δ
1, . . . , ψ

δ
ℓ ) = A.

Choosing ψδi = −
∑ℓ
k=1 aikψk/2 for 1 ≤ i ≤ ℓ and using 〈ψi, ψj〉X = δij we have

−〈ψδi , ψj〉X − 〈ψi, ψδj 〉X =
1

2

ℓ∑

k=1

(

aik〈ψk, ψj〉X + ajk〈ψi, ψk〉X
)

=
1

2

(
aij + aji

)
= aij for i, j ∈ {1, . . . , ℓ}.

Thus, {ψi}ℓi=1 satisfies a constraint qualification so that first-order necessary op-
timality conditions are given by setting the Fréchet derivative of the Lagrangian
equal to zero; see Theorem D.4 in the Appendix. Instead of (1.1.10) we get

Rψk =

∫ T

0

〈y(t), ψk〉X y(t) dt =
1

2

ℓ∑

i=1

(λik + λki)ψi in X for all k ∈ {1, . . . , ℓ}.

Therefore, we can follow the lines of the proof of Theorem 1.1.1 and conlude that
λi,ℓ = −λℓ,i for 1 ≤ i ≤ ℓ−1. Setting λi = λii for all i ∈ {1,≤ i ≤ ℓ} the first-order
necessary optimality conditions for (2.1.12) – and hence also for (2.1.10) – are given
by

(2.1.13) Rψi = λiψi in X for all i ∈ {1, . . . , ℓ}.
It follows that {ψi}ℓi=1 solves (2.1.13). The proof that {ψi}ℓi=1 is a solution to

(2.1.12) and that argmax (2.1.12) =
∑ℓ
i=1 λ

2
i holds is analogous to the proof for

(P1); see Exercise 2.3.2. �
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1.3. The Truth Approximation for Linear Evolution Problems. To
compute the POD basis {ψi}ℓi=1 as described in Section 1.2 we need the snapshots
y(t) for t ∈ [0, T ]. This is realized numerically by computing approximations for
y(t) using a spatial and temporal discretization method. First, we consider the case
that the snapshots are given by finite element approximations. In a second step we
turn to the temporal discretization.

1.3.1. Spatial discretization. Let us introduce a spatial discretization for (2.1.2).
For m ∈ N the functions ϕ1, . . . , ϕm denote m linearly independent nodal basis
functions. Then we define the m-dimensional subspace

V h = span
{
ϕ1, . . . , ϕm

}
⊂ V

endowed with the topology in V . We apply a standard Galerkin scheme for (2.1.2).
Thus, we look for a function yh ∈ L2(0, T ;V h) ∩H1(0, T ;V ′

h) satisfying

(2.1.14)

d

dt
〈yh(t), ϕh〉H + a(t; yh(t), ϕh) = 〈f(t), ϕh〉V ′,V , t ∈ [0, T ], ∀ϕh ∈ V h,

〈yh(0), ϕh〉H = 〈y◦, ϕh〉H ∀ϕh ∈ V h.
Since yh(t) ∈ V h holds, we make the Galerkin ansatz of the form

(2.1.15) yh(t) =

m∑

i=1

yhi (t)ϕi

and define the modal coefficient vector

yh(t) =
(
yhi (t)

)

1≤i≤m
for t ∈ [0, T ].

From (2.1.14) we derive the linear system of ordinary differential equations

(2.1.16) M ẏh(t) +A(t)yh(t) = b(t) f.a.a. t ∈ [0, T ], Myh(0) = y◦

with

Mij = 〈ϕj , ϕi〉H , (A(t))ij = a(t;ϕj , ϕi),

(y◦)i = 〈y◦, ϕi〉H , (b(t))i = 〈f(t), ϕi〉V ′,V ,

for 1 ≤ i, j ≤ m and t ∈ [0, T ]. System (2.1.16) is referred to as the truth approxi-
mation for (2.1.2). Note that (2.1.16) can then be solved by using an appropriate
method for the time discretization. System (2.1.16) can be written in the form
(1.4.1) with A = 0 and

f(t, y) =M−1
(
b(t)−A(t)y

)
, (t, y) ∈ [0, T ]× Rm.

From (2.1.1) it follows that (2.1.16) has a unique solution y ∈ H1(0, T ;Rm); see
Exercise 2.3.3. If f ∈ C([0, T ];V ′) holds and t 7→ a(t;ϕ, φ) is continuous for any
ϕ,ψ ∈ V , then y ∈ C([0, T ];Rm) and we can proceed as in Section 4.2 of Chapter 1.

Remark 2.1.6. Suppose that u = (ui)1≤i≤m and v = (vi)1≤i≤m are two arbi-
trary vectors in Rm. Then,

uh(x) =

m∑

i=1

uiϕi(x) and vh(x) =

m∑

i=1

viϕi(x)

are elements in the finite element space V h. We have

〈uh, vh〉H = 〈u, v〉W and ‖uh‖H = ‖u‖W
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with W = M , where the symmetric, positive definite mass matrix has been intro-
duced above. Analogously,we obtain

〈uh, vh〉V = 〈u, v〉W and ‖uh‖V = ‖u‖W
with W = S, where the symmetric, positive definite stiffness matrix is given by

Sij = 〈ϕj , ϕi〉V for 1 ≤ i, j ≤ m
Summarizing, the weighted inner product 〈· , ·〉W is used to replace the inner prod-
ucts in the m-dimensional finite element space V h by an inner product in Rm for
the finite element nodal coefficients. ♦

Let V = span {yh(t) | t ∈ [0, T ]} ⊂ Rm and d = dimV ≤ m. For any
ℓ ∈ {1, . . . , d} we construct a low-dimensional orthonormal basis by solving the
optimization problem

(2.1.17)
min

ψ̃1,...,ψ̃ℓ∈Rm

∫ T

0

∥
∥
∥y
h(t)−

ℓ∑

i=1

〈yh(t), ψ̃i〉W ψ̃i

∥
∥
∥

2

W
dt

s.t. 〈ψ̃i, ψ̃j〉W = δij for 1 ≤ i, j ≤ ℓ.
The solution to (2.1.17) is given by the theory presented in Section 4.2 of Chapter 1.
Thus, let us define the linear, bounded, nonnegative and selfadjoint operator Rh :
Rm → Rm by

Rhψ =

∫ T

0

〈yh(t), ψ〉W yh(t) dt for ψ ∈ Rm.

Now the solution to (2.1.17) is given by the eigenvectors corresponding to the d
largest (positive) eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd > 0 solving the symmetric m×m
eigenvalue problem

(2.1.18) Rhψi = λiψi for i = 1, . . . , d.

Again, we can quantify the POD approximation error as follows
∫ T

0

∥
∥
∥y
h(t)−

ℓ∑

i=1

〈yh(t), ψi〉W ψi

∥
∥
∥

2

W
dt =

d∑

i=ℓ+1

λi.

1.3.2. Temporal discretization. In real computations we do not have the whole
trajectory yh(t) ∈ Rm (or yh(t) ∈ V h) for t ∈ [0, T ]. For this purpose let 0 = t1 <
t2 < . . . < tn = T be a given grid in [0, T ] with step sizes δj = tj−tj−1 for 2 ≤ j ≤ n.
To solve (2.1.16) we apply an implicit Euler method for the time integration. Of
course, other time intergation schemes can be used; see Exercises 2.3.4 and 2.3.5.
The sequence {yhj }nj=1 in Rm is the solution to

(2.1.19)
(
M + δtjA(tj)

)
yhj =Myhj−1 + δtjb(tj) for 2 ≤ j ≤ n, Myh = y◦.

Remark 2.1.7. We set

yhj =

m∑

i=1

(yhj )iϕi ∈ V h for 1 ≤ j ≤ n

the Galerkin functions yhj are approximations for the solution yh to (2.1.14) at time

t = tj . Then, {yhj }nj=1 ⊂ V h satisfies

〈∂jyhj , ϕh〉H + a(tj ; y
h
j , ϕ

h) = 〈f(tj), ϕh〉V ′,V for 2 ≤ j ≤ n, ∀ϕh ∈ V h,
〈yh1 , ϕh〉H = 〈y◦, ϕh〉H ∀ϕh ∈ V h.
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where ∂jy
h
j = (yhj − yhj−1)/δtj ∈ V h stands for the backward difference quotient. ♦

Analogous to Section 1.3.1 we set V = span {yhj | 1 ≤ j ≤ n} ⊂ Rm and
d = dimV ≤ min(m,n). For any ℓ ∈ {1, . . . , d} we construct a low-dimensional
orthonormal basis by solving the optimization problem

(2.1.20)
min

ψ̃1,...,ψ̃ℓ∈Rm

n∑

j=1

αj

∥
∥
∥y
h
j −

ℓ∑

i=1

〈yhj , ψ̃i〉W ψ̃i

∥
∥
∥

2

W

s.t. 〈ψ̃i, ψ̃j〉W = δij for 1 ≤ i, j ≤ ℓ.
The solution to (2.1.20) is given by the theory presented in Section 4.1 of Chapter 1.
As in (2.1.6), let us define the linear, bounded, nonnegative and selfadjoint operator
Rh,n : Rm → Rm by

Rh,nψ =

n∑

j=1

αj 〈yhj , ψ〉W yhj for ψ ∈ Rm.

Now the solution to (2.1.20) is given by the eigenvectors corresponding to the d
largest (positive) eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd > 0 solving the symmetric m×m
eigenvalue problem

Rh,nψi = λiψi for i = 1, . . . , d.

Again, we can quantify the POD approximation error as follows

n∑

j=1

αj

∥
∥
∥y
h
j −

ℓ∑

i=1

〈yhj , ψi〉W ψi

∥
∥
∥

2

W
=

d∑

i=ℓ+1

λi.

In Exercise 2.3.6 a POD basis is computed for the truth approximation of the heat
equation.

Remark 2.1.8. In [15] an asymptotic analysis is carried analogously to the
approach presented in Section 4.2 in Chapter 1. ♦

1.4. POD for Nonlinear Evolution Equations. The application of the
POD method can easily be extended for nonlinear evolution problems. Let N :
[0, T ]× V → V ′ be a given nonlinearity and y◦ ∈ H. Instead of (2.1.2) we consider

(2.1.21)

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈N (t, y(t)), ϕ〉V ′,V , t ∈ [0, T ], ∀ϕ ∈ V,

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V.
We suppose that (2.1.21) possesses a unique solution y ∈W (0, T ). In the following
example we present two applications considered in the literature.

Remark 2.1.9. 1) A monotonous nonlinearity: Let the bilinear form a
be independent of t, i.e., a(t; · , ·) = a(· , ·). Moreover B : V → V ′ is a
continuous nonlinear operator satisfying

a(ϕ,ϕ) + 〈B(ϕ), ϕ〉V ′,V ≥ κ ‖ϕ‖
2
V − η ‖ϕ‖

2
H for all ϕ ∈ V

for constants κ > 0 and η ≥ 0. For f ∈ L2(0, T ;V ′) we set N (t, ϕ) =
f(t)− B(ϕ) ∈ V ′ f.a.a. t ∈ [0, T ] and for ϕ ∈ V . Then, the POD method
problem for (2.1.21) is considered in [14], for instance.
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2) A general equation in fluid dynamics [21]: Let the bilinear form a be
independent of t, i.e., a(t; · , ·) = a(· , ·). As in Appendix C we define the
linear bounded operator A : V → V ′ by

〈Aϕ, φ〉V ′,V = a(ϕ, φ) for ϕ, φ ∈ V.
The domain of A is given by the set D(A) = {ϕ ∈ V | Aϕ ∈ H}. Further,
let us introduce the continuous operator B : V → V ′, which maps D(A)
into H and satisfies

(2.1.22)
‖Bϕ‖H ≤ CB ‖ϕ‖1−δ1V ‖Aϕ‖H for all ϕ ∈ D(A),

∣
∣〈Bϕ,ϕ〉V ′,V

∣
∣ ≤ CB ‖ϕ‖1+δ2V ‖ϕ‖1−δ2H for all ϕ ∈ V

for a constant CB > 0 and for δ1, δ2 ∈ [0, 1). We also assume that A+ B
satisfies

(2.1.23) a(ϕ,ϕ) + 〈Bϕ,ϕ〉V ′,V ≥ κ ‖ϕ‖
2
V − η ‖ϕ‖

2
H for all ϕ ∈ V

with constants κ > 0 and η ≥ 0. Moreover, let C : V × V → V ′ be
a bilinear continuous operator mapping from D(A) ×D(A) into H such
that there exist constants CC > 0 and δ3, δ4, δ5 ∈ [0, 1) satisfying

(2.1.24)

〈C(ϕ, φ), φ〉V ′,V = 0,
∣
∣〈C(ϕ, φ), ψ〉V ′,V

∣
∣ ≤ CC ‖ϕ‖δ3H‖ϕ‖

1−δ3
V ‖φ‖δ3V ‖ψ‖

δ3
V ‖ψ‖

δ3
H ,

‖C(ϕ, χ‖H + ‖C(χ, ϕ)‖H ≤ CC ‖ϕ‖V ‖χ‖
1−δ4
V ‖Aχ‖δ4H ,

‖C(ϕ, χ)‖H ≤ CC ‖ϕ‖δ5H‖ϕ‖
1−δ5
V ‖χ‖1−δ5V ‖Aχ‖δ5H

for all ϕ, φ, ψ ∈ V and for all χ ∈ D(A). Setting
(2.1.25) N (t, ϕ) = f(t)− Bϕ− C(ϕ,ϕ) f.a.a. t ∈ [0, T ] and for ϕ ∈ V

problem (2.1.21) is studied in [15, 16]. In particular, it is proved in [21]
that the two-dimensional Navier-Stokes equations can be expressed in the
form (2.1.21) taking the nonlinearity (2.1.25). ♦

Let y ∈ W (0, T ) be a solution to (2.1.21). For the snapshot set V = {y(t) | t ∈
[0, T ]} a POD basis of rank ℓ can be determined as described in Section 1.2. Pro-
ceeding as in Section 1.3 we can also compute a POD basis for the aproximate
solutions to the nonlinear equations. For later reference we state here the spa-
tial discretization following the arguments in Section 1.3.1. Instead of (2.1.14) the
solution yh ∈ L2(0, T ;V h) ∩H1(0, T ;V ′

h) satisfies

(2.1.26)

d

dt
〈yh(t), ϕh〉H + a(t; yh(t), ϕh) = 〈N (t, y(t)), ϕh〉V ′,V ,

f.a.a. t ∈ [0, T ], ∀ϕh ∈ V h,
〈yh(0), ϕh〉H = 〈y◦, ϕh〉H ∀ϕh ∈ V h.

To derive a system of ordinary differential equations for the coefficients yh(t) ∈ Rm

of the Galerkin ansatz yh(t) =
∑m
i=1 y

h
i (t)ϕi ∈ V h we introduce the nonlinearity

f : [0, T ]× Rm → Rm as follows:

f(t, y) =
(

〈N (t, yh), ϕi〉V ′,V

)

1≤i≤m
, (t, y) ∈ [0, T ]× Rm,
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where we set yh =
∑m
i=1 yiϕi ∈ V h and yi denotes the i-th component of the vector

y. Now, (2.1.26) leads to the following system (compare (2.1.16))

(2.1.27) M ẏh(t) +A(t)yh(t) = f(t, yh(t)) f.a.a. t ∈ [0, T ], Myh(0) = y◦.

2. POD for Parametrized Elliptic Partial Differential Equations

In this section we concentrate on the POD method for parametrized elliptic
PDEs. We explain briefly the numerical implementation, which is similar as de-
scribed in Section 1.3.1. Let us also refer to [12].

2.1. Linear Elliptic Equations. Let D ⊂ RP be a bounded and closed
subset. Suppose that for µ ∈ D the parameter dependent bilinear form a(µ; · ·) :
V × V → R satisfies

∣
∣a(µ;ϕ, φ)

∣
∣ ≤ β ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V and for µ ∈ D,(2.2.1a)

a(µ;ϕ,ϕ) ≥ κ ‖ϕ‖2V for all ϕ ∈ V and for µ ∈ D(2.2.1b)

for positive constants β, κ. Further, for µ ∈ D let f(µ) ∈ V ′ be a parameter
dependent right-hand side. For given parameter µ ∈ D we consider the variational
problem: find y = y(µ) ∈ V solving

(2.2.2) a(µ; y, ϕ) = 〈f(µ), ϕ〉V ′,V for all ϕ ∈ V.

Example 2.2.1. For µa, µb ∈ R with µa < µb we define the parameter subset
D = [µa, µb]. Then we define the parameter dependent bilinear form a(µ; · , ·) :
V × V → R as

a(µ;ϕ, φ) = 〈ϕ, φ〉V + µ 〈ϕ, φ〉H for ϕ, φ ∈ V and µ ∈ D.

For any µ ∈ D we infer from (B.1) that

|a(µ;ϕ, φ)| ≤
(
1 + C2

V max{|µa|, |µb|}
)
‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

i.e., the bilinear form a(µ; · , ·) satisfies (2.2.1a) with β = 1 + max{|µa|, |µb|}C2
V .

Further

a(µ;ϕ,ϕ) = ‖ϕ‖2V + µ ‖ϕ‖2H ≥ ‖ϕ‖
2
V + µa ‖ϕ‖2H for all ϕ ∈ V and µ ∈ D

If µa ≥ 0 holds, then (2.2.1b) is satisfied with κ = 1. In the case µa < 0 we infer
from (B.1) that

a(µ;ϕ,ϕ) ≥ ‖ϕ‖2V + µa ‖ϕ‖2H ≥
(
1 + µaC

2
V

)
‖ϕ‖2V for all ϕ ∈ V and µ ∈ D.

Summarizing, (2.2.1b) holds if κ = 1 +min{0, µaC2
V } > 0 is fulfilled. ♦

The following theorem ensures that (2.2.2) admits a unique solution.

Theorem 2.2.2. Suppose that the parameter dependent bilinear form a(µ; · , ·)
satisfies (2.2.1) and f(µ) ∈ V ′ holds true for any µ ∈ D. Then, there exists a
unique solution y = y(µ) ∈ V to (2.2.2) for every µ ∈ D. Moreover, we have

(2.2.3) ‖y‖V ≤
1

κ
‖f(µ)‖V ′ for every µ ∈ D.

In particular, if the mapping µ 7→ f(µ) ∈ V ′ is in L2(D), y ∈ L2(D;V ) holds.
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Proof. Since the bilinear form a(µ; · , ·) is bounded and coercive on V ×V for
every parameter µ ∈ D, the existence of a unique solution to (2.2.2) follows directly
from the Lax-Milgram lemma; see [8], for instance. Next we prove the a-priori
estimate (2.2.3). For that purpose we take ϕ = y ∈ V in (2.2.2). It follows that

κ ‖y‖2V ≤ a(µ; y, y) = 〈f(µ), y〉V ′,V ≤ ‖f(µ)‖V ′‖y‖V ,
which gives the claim. �

Together with (2.2.2) we will consider a discretized variational problem, where
we apply POD for the discretization of V . For that purpose let y(µ) ∈ V the
associated solution to (2.2.2) for chosen parameter µ ∈ D. We suppose that f ∈
L2(D;V ′) holds, so that y ∈ L2(D;V ) →֒ L2(D;H) by Theorem 2.2.2. Further, X
denotes either the space V or the space H. We define the bounded linear operator
Y : L2(D)→ X by

Yφ =

∫

D

φ(µ)y(µ) dµ for φ ∈ L2(D).

Its Hilbert space adjoint Y⋆ : X → L2(D) is given by
(
Y⋆ψ

)
(µ) = 〈ψ, y(µ)〉X for ψ ∈ X and µ ∈ D.

Furthermore, we find that the bounded, linear, symmetric and nonnegative operator
R = YY⋆ : X → X has the form

(2.2.4) Rψ =

∫

D

〈ψ, y(µ)〉Xy(µ) dµ for ψ ∈ X.

The operator K = Y⋆Y : L2(I)→ L2(D) is given by

(2.2.5)
(
Kφ
)
(µ̄) =

∫

D

〈y(µ), y(µ̄)〉Xφ(µ) dµ for φ ∈ L2(D).

Since the mapping µ 7→ y(µ) ∈ V is in L2(D), we conclude that
∫

D

∫

D

∣
∣〈y(µ), y(µ̄)〉X

∣
∣
2
dµ̄dµ <∞.

This implies that K = Y⋆Y is compact (see Exercise 2.3.1) and, therefore, R = YY⋆
is compact as well. From Theorems A.17 and A.18 it follows that there exists a
complete orthonormal basis {ψi}i∈N for V and a sequence {λi}i∈N of nonnegative
real numbers so that

Rψi = λiψi, λ1 ≥ λ2 ≥ . . . , and λi → 0 as i→∞.
Furthermore,

∫

D

‖y(µ)‖2X dµ =
∞∑

i=1

λi.

Remark 2.2.3 (Methods of snapshots). Analogous to Remark 1.4.4, we find
that the bounded, linear, symmetric and nonnegative operator K (see (2.2.5) has
the same eigenvalues {λi}i∈N as the operator R and the eigenfunctions

φi(t) =
1√
λi

(
Y⋆ψi

)
(µ) =

1√
λi
〈ψi, y(µ)〉V

for i ∈ {j ∈ N : λj > 0} and almost all µ ∈ D. ♦



44 2. THE POD METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

In the following theorem we formulate properties of the eigenvalues and eigen-
functions of R.

Theorem 2.2.4. Let {λi}i∈N and {ψi}i∈N denote the eigenvalues and eigen-
functions, respectively, of R introduced in (2.2.4). Then, for every ℓ ∈ N the first ℓ
eigenfunctions ψ1, . . . , ψℓ ∈ X solve the minimization problem

(2.2.6)
min

ψ̃1,...,ψ̃ℓ∈X

∫

D

∥
∥
∥y(µ)−

ℓ∑

i=1

〈y(µ), ψ̃i〉X ψ̃i
∥
∥
∥

2

X
dµ

s.t. 〈ψ̃j , ψ̃i〉X = δij for 1 ≤ i, j ≤ ℓ.
Moreover,

(2.2.7)

∫

D

∥
∥
∥y(µ)−

ℓ∑

i=1

〈y(µ), ψi〉X ψi
∥
∥
∥

2

X
dµ =

∞∑

i=ℓ+1

λi for any ℓ ∈ N.

Proof. The proof of the claim relies on the fact that the eigenvalue problem

(2.2.8) Rψi = λiψi for i = 1, . . . , ℓ

is the first-order necessary optimality condition for (2.2.6). The proof follows by
similar arguments as the proof of Theorem 2.1.5. �

We call a solution to (2.2.6) a POD basis of rank ℓ. Analogous to Corollary 1.2.1
we have:

ℓ∑

i=1

λi =
ℓ∑

i=1

∫

D

∣
∣〈y(µ), ψi〉X

∣
∣
2
dµ ≥

ℓ∑

i=1

∫

D

∣
∣〈y(µ), χi〉X

∣
∣
2
dµ

for every ℓ ∈ N, where {χi}i∈N is an arbitrary orthonormal basis in X.
In applications the weak solution to (2.2.2) is not known for all parameters

µ ∈ D, but only for a given grid in D. For that purpose let {µj}nj=1 be a grid
in D and let yi = y(µi), 1 ≤ i ≤ n, denote the corresponding solutions to (2.2.2)
for the grid points µi. Here, we only concentrate on the discretization of the
parameter space D. The finite element approximation can be carried analogous
to Section 1.3.1. We define the snapshot set Vn = span {y1, . . . , yn} ⊂ V and
determine a POD basis of rank ℓ ≤ n for Vn by solving

(2.2.9)
min

ψ̃1,...,ψ̃ℓ∈X

n∑

j=1

αj

∥
∥
∥
∥
yj −

ℓ∑

i=1

〈yj , ψ̃i〉X ψ̃i
∥
∥
∥
∥

2

X

s.t. 〈ψ̃j , ψ̃i〉X = δij for 1 ≤ i, j ≤ ℓ
where the αj ’s are nonnegative weights. The solution to (2.2.9) is given by the
solution to the eigenvalue problem

Rnψni = λni ψ
n
i , i = 1, . . . , ℓ,

with

Rnψ =
n∑

j=1

αj 〈yj , ψ〉X yj for ψ ∈ X.

In contrast to R introduced in (2.2.4) the operator Rn and therefore its eigen-
values and eigenfunctions depend on the grid {µj}nj=1. Furthermore, the image
space of Rn has finite dimension dn ≤ n, whereas, in general, the image space of
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the operator R is infinite-dimensional. Since Rn is a linear, bounded, compact,
nonnegative, selfadjoint operator, there exist eigenvalues {λni }d

n

i=1 and orthonormal
eigenfunctions {ψni }ℓi=1 with λ1 ≥ λ2 ≥ . . . ≥ λdn > 0 and

n∑

j=1

αj

∥
∥
∥
∥
yj −

ℓ∑

i=1

〈yj , ψni 〉Xψni
∥
∥
∥
∥

2

X

=

dn∑

i=ℓ+1

λni .

Remark 2.2.5 (Snapshot POD [20]). Let us define the diagonal matrix D =
diag (α1, . . . , αn) ∈ Rn. We supply Rn with the weighted inner product

〈u, v〉D =

n∑

i=1

αiuivi = u⊤Dv for u = (u1, . . . , un)
⊤, v = (v1, . . . , vn)

⊤ ∈ Rn.

If the αi’s are quadrature weights corresponding to the parameter grid {µi}ni=1 then
the inner product 〈· , ·〉D is a discrete version of the inner product in L2(D). We
define the symmetric nonnegative matrix Kn ∈ Rn×n with the elements 〈yi, yj〉X ,
1 ≤ i, j ≤ n, and consider the eigenvalue problem

(2.2.10) Knφni = λni φ
n
i , 1 ≤ i ≤ ℓ and 〈φni , φnj 〉D = δij , 1 ≤ i, j ≤ ℓ ≤ dn.

From singular value decomposition it follows that Kn has the same eigenvalues
{λni }d

n

i=1 as the operator Rn. Furthermore, the POD basis functions are given by
the formula

(2.2.11) ψi =
1

√
λni

n∑

j=1

αj(φ
n
i )jyj for i = 1, . . . , ℓ,

where (φni )j denotes the j-th component of the eigenvector φni ∈ Rn. ♦

2.2. Extension to Nonlinear Elliptic Problems. Let us turn to a certain
nonlinear problem; see [12], for instance. Suppose that for any µ ∈ D the mapping
N (µ; ·) : V → V ′ is a nonlinear, locally Lipschitz-continuous mapping satisfying

(2.2.12) 〈N (µ;φ)−N (µ;ϕ), φ− ϕ〉V ′,V ≥ 0 for all φ, ϕ ∈ V and for all µ ∈ D,

i.e., N (µ; ·) is monotone for any µ ∈ D. Instead of (2.2.2) we consider

(2.2.13) a(µ; y, ϕ) + 〈N (µ; y), ϕ〉V ′,V = 〈f(µ), ϕ〉V ′,V for all ϕ ∈ V.

Example 2.2.6. Let us give an example for a semilinear problem satisfying
(2.2.12). Suppose that Ω ⊂ Rd, d ∈ {1, 2, 3}, is a bounded and open set with
Lipschitz-continuous boundary Γ = ∂Ω. We consider

(2.2.14) −µ1∆y + µ2y + µ3y
3 = g in Ω and µ1

∂y

∂n
+ µ4y = gR on Γ = ∂Ω,

where g ∈ L2(Ω), gR ∈ L2(Γ) and

D =
{
µ = (µ1, . . . , µ4) ∈ R4

∣
∣µa ≤ µi ≤ µb for i = 1, . . . , 4

}

with 0 < µa ≤ µb. A weak solution to (2.2.14) satisfies y ∈ V = H1(Ω) and

(2.2.15)

∫

Ω

µ1∇y · ∇ϕ+
(
µ2y + µ3y

3
)
ϕdx+

∫

Γ

µ4yϕds =

∫

Ω

gϕdx+

∫

Γ

gRϕds
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for all ϕ ∈ V . Next we express (2.2.15) in the form (2.2.13). For that purpose we
utilize the parametrized bilinear form a(µ; · , ·) : V × V → R given by

a(µ;φ, ϕ) =

∫

Ω

µ1∇φ · ∇ϕ+ µ2φϕdx+

∫

Γ

µ4φϕds for φ, ϕ ∈ V and µ ∈ D.

Notice that this bilinear form satisfies (2.2.1). Moreover, let the parameter inde-
pendent right-hand side be given as

〈f, ϕ〉V ′,V =

∫

Ω

gϕdx+

∫

Γ

gRϕds for ϕ ∈ V.

Finally, we define the nonlinearity

〈N (µ;φ), ϕ〉V ′,V =

∫

Ω

µ3y
3ϕdx for φ, ϕ ∈ V and µ ∈ D.

Then a weak solution to (2.2.14) satisfies the variational formulation (2.2.13). Recall
that ϕ ∈ V implies ϕ ∈ L6(Ω). Consequently, ϕ3(Ω) ∈ H = L2(Ω) ⊂ V ′. Let
φ, ϕ ∈ V and χ = φ− ϕ ∈ V . From µ3 ≥ µa > 0 we infer that

〈N (µ;φ)−N (µ;ϕ), χ〉V ′,V =

∫

Ω

µ3

(
φ3 − ϕ3

)
χ dx

= µ3

∫

Ω

(∫ 1

0

3(ϕ+ τχ)2χdτ
)
χ dx

= µ3

∫ 1

0

∫

Ω

(ϕ+ τχ)2χ2dτ dx ≥ 0

holds true. Thus, (2.2.12) is satisfied. ♦

If a solution y(µ) to (2.2.13) is given then a POD basis can be computed as
described above for the linear problem (2.2.2).

Remark 2.2.7. We can also combine the theory of Sections 1 and 2 by con-
sidering parametrized evolution problems. In this case the time variable t as well
as the parameter are the sampling parameters for the POD method, i.e., we set
DT = [0, T ]×D and apply the POD appoach to the set DT . ♦

3. Exercises

Exercise 2.3.1. Let X be a Hilbert space and y ∈ L2(0, T ;X). Prove that the
kernel k(s, t) = 〈y(s), y(t)〉X f.a.a. s, t ∈ [0, T ] belongs to L2((0, T )× (0, T )).

Exercise 2.3.2. Show that for ℓ = 1 the solution ψ1 to (2.1.13) solves (2.1.12).
How can this result be extended to an arbitrary ℓ ≤ dimV?
Exercise 2.3.3. Prove that (2.1.16) has a unique solution ~y ∈ H1(0, T ;Rm).

Exercise 2.3.4. For a diffusion coeffisient c > 0 we consider the linear heat
equation

(2.3.16)

yt(t,x) = c∆y(t,x) for (t,x) ∈ Q = (0, T )× Ω,

y(t,x) = 0 for (t,x) ∈ Σ = (0, T × ∂Ω,
y(0,x) = y◦(x) for x ∈ Ω = (0, 1)× (0, T ) ⊂ R2.

We write x = (x1, x2) for a point in the spatial domain Ω. Derive a semi-discrete
system of the form (2.1.16) by using a discretization with classical finite differences
with equidistant mesh size h = 1/(N + 1) and with m = N2. To solve (2.1.16)
formulate
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1) the explicit and implicit Euler method,
2) the trapezoidal (or Crank-Nolson) method

using the time grid 0 = t1 < t2 < . . . < tn = T with step sizes δj = tj − tj−1 for
2 ≤ j ≤ n.an equidistant time grid. Discuss whether these solutions methods are
well-defined.

Exercise 2.3.5. Implement a code to solve (2.3.16) by the finite difference method
following Exercise 2.3.4. For the time integration utilize the following methods:

1) the implicit Euler method (IE),
2) the Crank-Nicolson scheme (CN) and
3) the Rannacher smoothing method (RS), i.e., four half implicit Euler steps

∆/2 followed by regular Crank-Nicolson steps.

For simplicity use an equidistant time grid. Structure your code as follows:
main . . . main script file, where all parameters are set and the discrete solution is
plotted.
[A,h,X1,X2] = preparation(m) . . . Given the parameter m for the inner spatial
grid points, this function returns the discretization of the Laplace operator, the
spatial mesh size h, the discretization grids X1 and X2 for the x1- and x2 axes
(includung the boudary points).
[Y,t] = solve heat fdm(c,A,h,n,y0,method) . . . Solves the linear heat equa-
tion, where c is the diffusion coeffisient, n the number of time steps, y0 the vector
of the initial condition evaluated at the inner spatial grid points and method clas-
sifies the selected solver (’IE’, ’CN’, ’RS’). The returned values are a matrix
Y ∈ Rm×n, which columns contain the discrete solution to (2.3.16) at the time
instances tj , 1 ≤ j ≤ n, and the vector t of the corresponding time instances.
YFDM = add boundary(Y) . . . Adds the (zero) boundary values to the solution ma-
trix Y.
To test your code choose N = 100, n = 100 and the following setting for c and y◦:

• c = 0.01 and y◦(x) = sin(2πx1) sin(2πx2);
• c = 0.5 and y◦(x) = 1 for all x ∈ Ω1 = (0, 0.25) × (0.25, 0.75), y◦(x) = 0

for all x ∈ Ω \ Ω1;
• c = 0.01 and y◦(x) = 1 ∗ rand(size(x1)) < 0.01.

How does the performance of the three methods differ? What do you observe?

Exercise 2.3.6. In this exercise we want to solve (2.1.20) utilizing snapshots com-
puted from a truth approximation for (2.3.16). The αj ’s are chosen as trapezoidal
weights. Thus, we make use of the code implemented in Exercise 2.3.5. For the
inner products we use the Euclidean inner product (’E’) and the discretized L2(Ω)
inner product (’L2’); see Exercise 1.5.7. Structure your code as follows:
main . . . Main script file, where all parameters are set and the desired results are
plotted.
W = weight matrix(m,wtype) . . . Computes the weighting matrix for the inner
product, i.e., 〈u, v〉W = u⊤Wv for u, v ∈ Rm. The input parameters are the total
number of inner points m = N2 and the weighting matrix type wtype (’E’, ’L2’).
The wighting matrix W for the inner grid points is the return value.
[lambda,Psi,traceK] = pod basis(Y,pod,W,ell) . . . Computes the POD basis
by solving (2.1.20). The input variables are the matrix Y containing the snapshots
(without the boundary points), the method pod for computing the POD basis
(’eig’, ’svd’), the weighting matrixW for the inner product and the number ell
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of desired POD basis vectors. The output arguments are the eigenvalues lambda ∈
Rℓ, the POD basis Psi ∈ Rm×ℓ and the trace traceK of the correlation matrix
Ȳ ⊤Ȳ = D1/2Y ⊤WY D1/2 with the diagonal matrix D = diag {α1, . . . , αn} ∈ Rn×n.
Utilize the Matlab routines eigs or svds in case of pod = ’eig’ or pod = ’svd’,
respectively
To compute the snapshots use the code implemented in Exercise 2.3.5 with the
Rannacher smoothing scheme (method = RS). Further, we set N = 100 and n =
100. For the diffusion coefficient and the initial condition y◦ we choose

• c = 0.01 and y◦(x) = sin(2πx1) sin(2πx2);
• c = 0.5 and y◦(x) = 1 for all x ∈ Ω1 = (0, 0.25) × (0.25, 0.75), y◦(x) = 0

for all x ∈ Ω \ Ω1.

For the two settings plot the decay of the eigenvalues scaled by traceK in a semi-log
scale. What do you observe? How do the two methods compare with respect to their
performance? Note that for the choice ’eigs’ negative and complex eigenvalues
can occur due to numerical issues. Hence only plot the absolute vale of the real
part. Further plot the first four POD basis functions.



CHAPTER 3

Reduced-Order Models for Finite-Dimensional

Dynamical Systems

In Chapter 1 we have introduced the POD basis of rank ℓ in Rm. In particular
in Section 4 of Chapter 1 we discussed its application to the case when the snapshots
are given by the solution to an initial-value problem at certain time instances. In
Section 1 we utilize the POD basis to compute a so-called low-dimensional approx-
imation or a reduced-order model (ROM) for (1.4.1). If a solution to the reduced-
order model is computed, the question arises whether we can estimate the error
between the solution to (1.4.1) and the reduced-order solution. This is the issue of
Section 2.

1. Reduced-Order Modelling

Suppose that we have determined a POD basis {ψj}ℓj=1 of rank ℓ ∈ {1, . . . ,m}
in Rm as described in Section 4 of Chapter 1. Then we make the ansatz

(3.1.1) yℓ(t) =

ℓ∑

j=1

〈yℓ(t), ψj〉W
︸ ︷︷ ︸

=:yℓ
j(t)

ψj for all t ∈ [0, T ],

where the Fourier coefficients yℓj , 1 ≤ j ≤ ℓ, are functions mapping [0, T ] into R.
Since

y(t) =

m∑

j=1

〈y(t), ψj〉W ψj for all t ∈ [0, T ]

holds, yℓ(t) is an approximation for y(t) provided ℓ < d. Inserting (3.1.1) into
(1.4.1) yields

ℓ∑

j=1

ẏℓj(t)ψj =

ℓ∑

j=1

yℓj(t)Aψj + f(t, yℓ(t)), t ∈ (0, T ],(3.1.2a)

ℓ∑

j=1

yℓj(0)ψj = y◦(3.1.2b)

Note that (3.1.2) is an initial-value problem in Rm for ℓ ≤ m coefficient functions
yℓj(t), 1 ≤ j ≤ ℓ and t ∈ [0, T ], so that the coefficients are overdetermined. There-
fore, we assume that (3.1.2) holds after projection on the ℓ dimensional subspace
V ℓ = span {ψj}ℓj=1. From (3.1.2a) and 〈ψj , ψi〉W = δij we infer that

(3.1.3) ẏℓi(t) =
ℓ∑

j=1

yℓj(t) 〈Aψj , ψi〉W + 〈f(t, yℓ(t)), ψi〉W

49
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for 1 ≤ i ≤ ℓ and t ∈ (0, T ]. Let us introduce the matrix

Aℓ = ((aij
))
∈ Rℓ×ℓ with aℓij = 〈Aψj , ψi〉W ,

the vector-valued mapping

yℓ =






yℓ1
...
yℓℓ




 : [0, T ]→ Rℓ

and the nonlinearity f ℓ = (f ℓ1 , . . . , f
ℓ
ℓ )
T : [0, T ]× Rℓ → Rℓ with the components

f ℓi (t, y) =

〈

f

(

t,

ℓ∑

j=1

yjψj

)

, ψi

〉

W

for t ∈ [0, T ] and y = (y1, . . . , yℓ) ∈ Rℓ.

Then, (3.1.3) can be expressed as

(3.1.4a) ẏℓ(t) = Aℓyℓ(t) + f ℓ(t, yℓ(t)) for t ∈ (0, T ]

From (3.1.2b) we derive

(3.1.4b) yℓ(0) = yℓ◦,

where

yℓ◦ =






〈y◦, ψ1〉W
...

〈y◦, ψℓ〉W




 ∈ Rℓ

holds. System (3.1.4) is called the POD-Galerkin projection for (1.4.1). In case
of ℓ ≪ m the ℓ-dimensional system (3.1.4) is a low-dimensional approximation for
(1.4.1). Therefore, (3.1.4) is a reduced-order model for (1.4.1).

2. Error Analysis for the Reduced-Order Model

In this section we focus on error analysis for POD Galerkin approximations.
Let us suppose that y ∈ C([0, T ];Rm) ∩ C1(0, T ;Rm) is the unique solution to
(1.4.1) and {ψi}ℓi=1 the POD basis of rank ℓ solving

(3.2.1)
min

ψ̃1,...,ψ̃ℓ∈Rm

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψ̃i〉W ψ̃i

∥
∥
∥

2

W
dt

s.t. 〈ψ̃j , ψ̃i〉W = δij , 1 ≤ i, j ≤ ℓ.
The reduced-order model for (1.4.1) is given by (3.1.4). We are interested in esti-
mating the error

∫ T

0

‖y(t)− yℓ(t)‖2W dt.

Let us introduce the finite-dimensional space

V ℓ = span {ψ1, . . . , ψℓ} ⊂ Rm

and the mapping Pℓ : Rm → V ℓ by

Pℓψ =

ℓ∑

i=1

〈ψ,ψi〉W ψi for ψ ∈ Rm.



2. ERROR ANALYSIS FOR THE REDUCED-ORDER MODEL 51

Then,

Pℓ
(
αψ + α̃ψ̃

)
=

ℓ∑

i=1

〈αψ + α̃ψ̃, ψi〉W ψi =
ℓ∑

i=1

(

α 〈ψ,ψi〉W + α̃ 〈ψ̃, ψi〉W
)

ψi

= αPℓψ + α̃Pℓψ̃

for all α, α̃ ∈ R and ψ, ψ̃ ∈ Rm so that Pℓ is linear. Further,

(3.2.2)

‖Pℓ‖2L(Rm) = sup
‖ψ‖W=1

‖Pℓψ‖2W = sup
‖ψ‖W=1

ℓ∑

i=1

∣
∣〈ψ,ψi〉W

∣
∣
2

≤ sup
‖ψ‖W=1

m∑

i=1

∣
∣〈ψ,ψi〉W

∣
∣
2
= sup

‖ψ‖W=1

‖ψ‖2W = 1,

i.e., Pℓ is bounded and therefore continuous. From 〈ψi, ψj〉W = δij , 1 ≤ i, j ≤ ℓ we
infer that

(
Pℓ
)2
ψ = Pℓ

(
Pℓψ

)
=

ℓ∑

i=1

〈 ℓ∑

j=1

〈ψ,ψj〉W ψj , ψi

〉

W

ψi = Pℓψ for ψ ∈ Rm,

i.e., Pℓ is a projection; see Definition A.8. It is easy to prove that Pℓ is also
selfadjoint. Thus, Pℓ is an orthogonal projection; see Remark A.9 in the appendix.
Notice that, (3.2.2) and ‖Pℓψ‖W = ‖ψ‖W for any ψ ∈ V ℓ imply ‖Pℓ‖L(Rm) = 1,
which is well-known for any orthogonal projection.

Throughout we shall use the decomposition

(3.2.3) y(t)− yℓ(t) = y(t)− Pℓy(t) + Pℓy(t)− yℓ(t) = ̺ℓ(t) + ϑℓ(t),

where ̺ℓ(t) = y(t)− Pℓy(t) and ϑℓ(t) = Pℓy(t)− yℓ(t). Note that

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψi〉W ψi

∥
∥
∥

2

W
dt =

∫ T

0

‖y(t)− Pℓy(t)‖2W dt =

∫ T

0

‖̺ℓ(t)‖2W dt.

Since {ψi}ℓi=1 is a POD basis of rank ℓ we have

(3.2.4)

∫ T

0

‖̺ℓ(t)‖2W dt =

m∑

i=ℓ+1

λi.

Next we estimate the term ϑℓ(t). Utilizing (1.4.1a) and (3.1.4) we obtain for every
ψℓ ∈ V ℓ and t ∈ (0, T ]

(3.2.5)

〈ϑ̇ℓ(t), ψℓ〉W = 〈Pℓẏ(t)− ẏ(t), ψℓ〉W + 〈ẏ(t)− ẏℓ(t), ψℓ〉W
= 〈Pℓẏ(t)− ẏ(t), ψℓ〉W
+ 〈A(y(t)− yℓ(t)) + f(t, y(t))− f(t, yℓ(t)), ψℓ〉W

We choose ψℓ = ϑℓ(t) ∈ V ℓ. Let
‖A‖ = max

‖ψ‖W=1
‖Aψ‖W

the matrix norm induced by the vector norm ‖ · ‖W . Further,

1

2

d

dt
‖ϑℓ(t)‖2W = 〈ϑ̇ℓ(t), ϑℓ(t)〉W for every t ∈ (0, T ].



52 3. REDUCED-ORDER MODELS FOR FINITE-DIMENSIONAL DYNAMICAL SYSTEMS

holds. Then, we infer from (3.2.5)

(3.2.6)

1

2

d

dt
‖ϑℓ(t)‖2W ≤ ‖A‖

(
‖̺ℓ(t)‖W + ‖ϑℓ(t)‖W

)
‖ϑℓ(t)‖W

+‖f(t, y(t))− f(t, yℓ(t))‖W ‖ϑℓ(t)‖W
+‖Pℓẏ(t)− ẏ(t)‖W ‖ϑℓ(t)‖W .

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e.,
there exists a constant Lf ≥ 0 satisfying

‖f(t, ψ)− f(t, ψ̃)‖W ≤ Lf ‖ψ − ψ̃‖W for all ψ, ψ̃ ∈ Rm and t ∈ [0, T ].

Moreover, we have

‖Pℓẏ(t)− ẏ(t)‖2W =

∥
∥
∥
∥

m∑

i=ℓ+1

〈ẏ(t), ψi〉W ψi

∥
∥
∥
∥

2

W

=

m∑

i=ℓ+1

∣
∣〈ẏ(t), ψi〉W

∣
∣
2

for all t ∈ (0, T ). Consequently, (3.2.6) and (3.2.3) imply

1

2

d

dt
‖ϑℓ(t)‖2W ≤

‖A‖
2

(

‖̺ℓ(t)‖2W + ‖ϑℓ(t)‖2W
)

+ ‖A‖ ‖ϑℓ(t)‖2W
+ Lf ‖̺ℓ(t) + ϑℓ(t)‖W ‖ϑℓ(t)‖W
+

1

2

(

‖Pℓẏ(t)− ẏ(t)‖2W + ‖ϑℓ(t)‖2W
)

≤ ‖A‖
2
‖̺ℓ(t)‖2W +

(
3

2

(
‖A‖+ Lf

)
+

1

2

)

‖ϑℓ(t)‖2W

+ Lf ‖̺ℓ(t)‖W ‖ϑℓ(t)‖W +

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2

≤ ‖A‖+ Lf
2

‖̺ℓ(t)‖2W +

(
3

2

(
‖A‖+ Lf

)
+

1

2

)

‖ϑℓ(t)‖2W

+
m∑

i=ℓ+1

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
.

Consequently,

d

dt
‖ϑℓ(t)‖2W ≤

(

3
(
‖A‖+ Lf

)
+ 1
)

‖ϑℓ(t)‖2W +
(
‖A‖+ Lf

)
‖̺ℓ(t)‖2W

+

m∑

i=ℓ+1

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
.

Now we make use of the following lemma; see Exercise 2.1.

Lemma 3.2.1 (Gronwall’s lemma). For T > 0 let u : [0, T ]→ R be a nonnega-
tive, differentiable function satisfying

u′(t) ≤ ϕ(t)u(t) + χ(t) for all t ∈ [0, T ],

where ϕ and χ are real-valued, nonnegative, integrable functions on [0, T ]. Then

u(t) ≤ exp

(∫ t

0

ϕ(s) ds

)(

u(0) +

∫ t

0

χ(s) ds

)

for all t ∈ [0, T ].

In particular, if
u′ ≤ ϕu in [0, T ] and u(0) = 0
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holds, then u = 0 in [0, T ].

Using Lemma 3.2.1 and (3.2.4) we arrive at

(3.2.7)

‖ϑℓ(t)‖2W ≤ c1
(

‖ϑℓ(0)‖2W +
(
‖A‖+ Lf

)
∫ t

0

‖̺ℓ(s)‖2W ds

)

+ c1

m∑

i=ℓ+1

∫ t

0

∣
∣〈ẏ(s), ψi〉W

∣
∣
2
ds

≤ c2
(

‖ϑℓ(0)‖2W +
m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt
))

where c1 = exp(3(‖A‖+ Lf ) + 1)T ) and c2 = c1 max{‖A‖+ Lf , 1}.

Theorem 3.2.2. Let y ∈ C([0, T ];Rm)∩C1(0, T ;Rm) be the unique solution to
(1.4.1), ℓ ∈ {1, . . . ,m} be fixed and {ψi}ℓi=1 a POD basis of rank ℓ solving (3.2.1).
Let yℓ be the unique solution to the reduced-order model (3.1.4). Then

∫ T

0

‖y(t)− yℓ(t)‖2W dt ≤ C
m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt

)

for a constant C > 0.

Proof. From (3.2.4), (3.2.7) and ϑℓ(0) = Pℓy◦ − yℓ(0) = 0 we find

∫ T

0

‖y(t)− yℓ(t)‖2W dt =

∫ T

0

‖̺ℓ(t) + ϑℓ(t)‖2W dt

≤ 2

∫ T

0

‖̺ℓ(t)‖2W + ‖ϑℓ(t)‖2W dt

≤ 2

m∑

i=ℓ+1

λi + c3

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt

)

with c3 = 2c2. Setting C = 2 + c3 the claim follows directly. �

Remark 3.2.3. The term

m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt

can not be estimated by the sum over the eigenvalues λℓ+1, . . . , λm. If we replace
(3.2.1) by

(3.2.8)

min
ψ̃1,...,ψ̃ℓ∈Rm

∫ T

0

∥
∥
∥y(t)−

ℓ∑

i=1

〈y(t), ψi〉W ψi

∥
∥
∥

2

W

+
∥
∥
∥ẏ(t)−

ℓ∑

i=1

〈ẏ(t), ψi〉W ψi

∥
∥
∥

2

W
dt

s.t. 〈ψi, ψj〉W = δij for 1 ≤ i, j ≤ ℓ,
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we end up with the estimate
∫ T

0

‖y(t)− yℓ(t)‖2W dt ≤ C̃
m∑

i=ℓ+1

λ̃i

for a constant C̃ > 0. In this case the time derivatives are also included in the
snapshot ensemble. Of course, the operator R defined in (2.1.6) has to be replaced.
It turns out that the POD basis {ψi}ℓi=1 is given by the eigenvalue problem

(3.2.9) R̃ψ̃i = λ̃iψ̃i for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0

where the operator R̃ : Rm → Rm is defined by

R̃u =

∫ T

0

〈y(t), ψ〉W y(t) + 〈ẏ(t), ψ〉W ẏ(t) dt

for ψ ∈ Rm; see Exercises 3.4.2 and 3.4.3. ♦

Remark 3.2.4. Suppose that we build the matrix Y ∈ Rm×(2n) using the
column vectors yj ≈ y(tj), 1 ≤ j ≤ n, and yj ≈ ẏ(tj−m), m + 1 ≤ j ≤ 2m. Then,

the discrete variant R̃n of the operator R̃ introduced in Remark 3.2.3 is given by

R̃nψ =
n∑

j=1

αj 〈yj , ψ〉W yj + αj 〈ym+j , ψ〉W ym+j

=

n∑

j=1

αj

(( m∑

k=1

m∑

ν=1

YkjWkνψν

)

Y·,j +
( m∑

k=1

m∑

ν=1

Yk,m+jWkνψν

)

Y·,m+j

)

=

n∑

j=1

m∑

k=1

m∑

ν=1

((

Y·,jDjjY
⊤
jk + Y·,m+jDjjY

⊤
m+j,k

)

Wkνψν

)

= Y

(
D 0
0 D

)

︸ ︷︷ ︸

=:D̃∈R2n×2n

Y ⊤Wψ = Y D̃Y ⊤Wψ

with the diagonal matrix D = diag (α1, . . . , αn) ∈ Rn×n and nonnegative weights

introduced in (P̂n,ℓ
W ). Thus, we have R̃n = Y D̃Y ⊤W ∈ Rm×m, which is of the

same form as in (1.4.6). The discrete version to (3.2.9) is

(3.2.10) Y D̃Y ⊤Wψi = λiψi for 1 ≤ i ≤ m and λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0

Setting ψi =W−1/2ψ̄i in (3.2.10) and multiplying by W 1/2 from the left yield

(3.2.11) W 1/2Y D̃Y ⊤W 1/2ψ̄i = λiψ̄i.

Let Ȳ = W 1/2Y D̃1/2 ∈ Rm×2n. Using W⊤ = W as well as D̃⊤ = D̃ we infer
from (3.2.11) that the solution {ψi}ℓi=1 is given by the symmetric m×m eigenvalue
problem

Ȳ Ȳ ⊤ψ̄i = λiψ̄i, 1 ≤ i ≤ ℓ and 〈ψ̄i, ψ̄j〉Rm = δij , 1 ≤ i, j ≤ ℓ
and ψi =W−1/2ψ̄i. Note that

Ȳ ⊤Ȳ = D̃1/2Y ⊤WY D̃1/2 ∈ R2n×2n.

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots
as follows: First solve the symmetric 2n× 2n eigenvalue problem

Ȳ ⊤Ȳ φ̄i = λiφ̄i, 1 ≤ i ≤ ℓ and 〈v̄i, v̄j〉R2n = δij , 1 ≤ i, j ≤ ℓ.
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Then we set (by SVD)

ψi =W−1/2ψ̄i =
1√
λi
W−1/2Ȳ φ̄i =

1√
λi
Y D̃1/2φ̄i

for 1 ≤ i ≤ ℓ. ♦

From a practical point of view we do not have the information on the whole
trajectory in [0, T ]. Therefore, let ∆t = T/(n − 1) be a fixed time step size and
tj = (j−1)∆t for 1 ≤ j ≤ n a given time grid in [0, T ]. To simplify the presentation
we choose an equidistant grid. Of course, nonequidistant meshes can be treated
analogously [15]. We compute a POD basis {ψni }ℓi=1 of rank ℓ by solving the con-

strained minimization problem (P̂n,ℓ
W ). After the POD basis has been determined,

we derive the reduced-order model as described in Section 1. Thus,

yℓ(t) =

ℓ∑

i=1

yℓi(t)ψ
n
i , t ∈ [0, T ],

solves the POD Galerkin projection of (1.4.1)

〈ẏℓ(t), ψni 〉W = 〈Ayℓ(t) + f(t, yℓ(t)), ψni 〉W , i = 1 . . . , ℓ and t ∈ (0, T ],(3.2.12a)

〈yℓ(0), ψni 〉W = 〈y◦, ψni 〉W , i = 1 . . . , ℓ.(3.2.12b)

To solve (3.2.12) we apply the implicit Euler method. By yℓj we denote an approxi-

mation for yℓ at the time tj , 1 ≤ j ≤ n. Then, the discrete system for the sequence
{yℓj}nj=1 in V ℓn = span {ψn1 , . . . , ψnℓ } looks like

〈
yℓj − yℓj−1

∆t
, ψni

〉

W

= 〈Ayℓj + f(t, yℓj), ψ
n
i 〉W , i = 1 . . . , ℓ, 2 ≤ j ≤ n,(3.2.13a)

〈yℓ1, ψni 〉W = 〈y◦, ψni 〉W , i = 1 . . . , ℓ.(3.2.13b)

We are interested in estimating
n∑

j=1

αj ‖y(tj)− yℓj‖
2

W
.

Let us introduce the projection Pℓn : Rm → V ℓn by

(3.2.14) Pℓn =

ℓ∑

i=1

〈ψ,ψni 〉W ψni for ψ ∈ Rm.

It follows that Pℓn is linear and bounded (and therefore continuous). In particular,
‖Pℓn‖L(Rm) = 1; see Exercise 3.4.4.

We shall make use of the decomposition

y(tj)− yℓj = y(tj)− Pℓny(tj) + Pℓny(tj)− yℓj = ̺ℓj + ϑℓj ,

where ̺ℓj = y(tj)− Pℓny(tj) and ϑℓj = Pℓny(tj)− yℓj . Note that

n∑

j=1

αj

∥
∥
∥y(tj)−

ℓ∑

i=1

〈y(tj), ψni 〉W ψni

∥
∥
∥

2

W
=

n∑

j=1

αj ‖y(tj)− Pℓny(tj)‖
2

W

=
n∑

j=1

αj ‖̺ℓj‖
2

W
.
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Since {ψni }ℓi=1 is the POD basis of rank ℓ, we have

(3.2.15)

n∑

j=1

αj ‖̺ℓj‖
2

W
=

m∑

i=ℓ+1

λni .

Next we estimate the terms ϑℓj . Using the notation ∂ϑℓj = (ϑℓj − ϑℓj−1)/∆t for
2 ≤ j ≤ n we obtain by (1.4.1a) and (3.2.13a)

〈∂ϑℓj , ψni 〉 =
〈

Pℓn
(
y(tj)− y(tj−1)

∆t

)

−
yℓj − yℓj−1

∆t
, ψni

〉

W

= 〈ẏ(tj)− (Ayℓj + f(tj , y
ℓ
j))), ψ

n
i 〉W

+

〈

Pℓn
(
y(tj)− y(tj−1)

∆t

)

− ẏ(tj), ψni
〉

W

= 〈A(y(tj)− yℓj) + f(tj , y(tj))− f(tj , yℓj), ψni 〉W(3.2.16)

+

〈

Pℓn
(
y(tj)− y(tj−1)

∆t

)

− y(tj)− y(tj−1)

∆t
, ψni

〉

W

+

〈
y(tj)− y(tj−1)

∆t
− ẏ(tj), ψni

〉

W

= 〈A(y(tj)− yℓj) + f(tj , y(tj))− f(tj , yℓj) + zℓj + wℓj , ψ
n
i 〉W

for 1 ≤ i ≤ ℓ and 2 ≤ j ≤ n, where

zℓj = Pℓn
(
y(tj)− y(tj−1)

∆t

)

− y(tj)− y(tj−1)

∆t
, wℓj =

y(tj)− y(tj−1)

∆t
− ẏ(tj).

Multiplying (3.2.16) by 〈ϑℓj , ψni 〉W and adding all ℓ equations we arrive at

(3.2.17) 〈∂ϑℓj , ϑℓj〉 = 〈A(y(tj)− yℓj) + f(tj , y(tj))− f(tj , yℓj) + zℓj + wℓj , ϑ
ℓ
j〉W

for j = 2, . . . , n. Note that

2 〈ψ − ψ̃, ψ〉W = 2 ‖ψ‖2W − 2 〈ψ̃, ψ〉W
= ‖ψ‖2W + ‖ψ‖2W − 2 〈ψ̃, ψ〉W + ‖ψ̃‖2W − ‖ψ̃‖

2

W

= ‖ψ‖2W − ‖ψ̃‖
2

W + ‖ψ − ψ̃‖2W
for all ψ, ψ̃ ∈ Rm. Choosing ψ = ϑℓj and ψ̃ = ϑℓj−1 we infer from (3.2.17)

(3.2.18) 2 〈∂ϑℓj , ϑℓj〉 =
1

∆t

(

‖ϑℓj‖
2

W
− ‖ϑℓj−1‖

2

W
+ ‖ϑℓj − ϑℓj−1‖

2

W

)

.

Inserting (3.2.18) into (3.2.17) and using the Cauchy-Schwarz inequality we obtain

‖ϑℓj‖
2

W
≤ ‖ϑℓj−1‖

2

W
+∆t ‖A‖

(
‖̺ℓj‖W + ‖ϑℓj‖W

)
‖ϑℓj‖W

+∆t
(

‖f(tj , y(tj))− f(tj , yℓj)‖W + ‖zℓj‖W + ‖wℓj‖W
)

‖ϑℓj‖W .
Suppose that f is Lipschitz-continuous with respect to the second argument. Then
there exists a constant Lf ≥ 0 such that

‖f(tj , y(tj))− f(tj , yℓj)‖W ≤ Lf ‖y(tj)− y
ℓ
j‖W for j = 2, . . . , n.

Hence, by Young’s inequality we find

‖ϑℓj‖
2

W
≤ ‖ϑℓj−1‖

2

W
+∆t

(

c1 ‖̺ℓj‖
2

W
+ c2 ‖ϑℓj‖

2

W
+ ‖zℓj‖

2

W
+ ‖wℓj‖

2

W

)

,
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where c1 = max{‖A‖, Lf} and c2 = max{3 ‖A‖, 3Lf , 2}. Suppose that

(3.2.19) 0 < ∆t ≤ 1

2c2

holds. With (3.2.19) holding we have

0 ≤ 1− 2c2∆t < 1− c2∆t and 1− c2∆t ≥ 1− 1

2
=

1

2
.

Thus,

(3.2.20)
1

1− c2∆t
=

1− c2∆t+ c2∆t

1− c2∆t
= 1 +

c2∆t

1− c2∆t
. ≤ 1 + 2c2∆t

Using (3.2.20) we infer that

‖ϑℓj‖
2

W
≤ (1 + 2c2∆t)

(

‖ϑℓj−1‖
2

W
+∆t

(
‖zℓj‖

2

W
+ ‖wℓj‖

2

W
+ c1 ‖̺ℓj‖

2

W

))

.

Summation on j yields

‖ϑℓj‖
2

W
≤ (1 + 2c2∆t)

j

(

‖ϑℓ0‖
2

W +∆t

j
∑

k=1

(

‖zℓk‖
2

W + ‖wℓk‖
2

W + c1 ‖̺ℓk‖
2

W

))

.

Note that

(1 + 2c2∆t)
j =

(

1 +
2c2j∆t

j

)j

≤ e2c2j∆t.

Thus,

‖ϑℓj‖
2

W
≤ e2c2j∆t

(

‖ϑℓ0‖
2

W +∆t

j
∑

k=1

(

‖zℓk‖
2

W + ‖wℓk‖
2

W + c1 ‖̺ℓk‖
2

W

))

.

We next estimate the term involving wℓk:

∆t

j
∑

k=1

‖wℓk‖
2

W = ∆t

j
∑

k=1

∥
∥
∥
∥

y(tk)− y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

=
1

∆t

j
∑

k=1

‖y(tk)− y(tk−1)−∆tẏ(tk)‖2W

=
1

∆t

j
∑

k=1

∥
∥
∥
∥

∫ tk

tk−1

(tk−1 − s)ÿ(s) ds
∥
∥
∥
∥

2

W

≤ 1

∆t

j
∑

k=1

∫ tk

tk−1

|tk−1 − s|2 ds
∫ tk

tk−1

‖ÿ(s)‖2W ds

≤ (∆t)2

3

j
∑

k=1

‖ÿ‖2L2(tk−1,tk;Rm) =
(∆t)2

3
‖ÿ‖2L2(0,tj ;Rm).
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The term zℓk can be estimated as follows:

‖zℓk‖
2

W =

∥
∥
∥
∥
Pℓn
(y(tk)− y(tk−1)

∆t

)

− y(tk)− y(tk−1)

∆t

∥
∥
∥
∥

2

W

=

∥
∥
∥
∥
Pℓn
(y(tk)− y(tk−1)

∆t

)

− Pℓnẏ(tk) + Pℓnẏ(tk)−
y(tk)− y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖Pℓn‖
2

L(Rm)

∥
∥
∥
∥

y(tk)− y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

+ 2

∥
∥
∥
∥
Pℓnẏ(tk)− ẏ(tk) + ẏ(tk)−

y(tk)− y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖wℓk‖
2

W + 4 ‖Pℓnẏ(tk)− ẏ(tk)‖
2

W + 4

∥
∥
∥
∥
ẏ(tk)−

y(tk)− y(tk−1)

∆t

∥
∥
∥
∥

2

W

= 4 ‖Pℓnẏ(tk)− ẏ(tk)‖
2

W + 6 ‖wℓk‖
2

W .

Recall that ∆t ≤ 2αk for 1 ≤ k ≤ n. Hence,

∆t

j
∑

k=1

‖zℓk‖
2

W ≤ 8

n∑

k=1

αk ‖Pℓnẏ(tk)− ẏ(tk)‖
2

W + 2(∆t)2 ‖ÿ‖2L2(0,tj ;Rm).

Further, ϑℓ0 = Pℓny◦ − Y1 = 0 and 0 ≤ j∆t ≤ T for j = 0, . . . , n− 1. Summarizing

‖ϑℓj‖
2

W

≤ c3
( n∑

k=1

8αk

(

‖Pℓnẏ(tk)− ẏ(tk)‖
2

W + 2c1 ‖̺ℓk‖
2

W

)

+
7

3
(∆t)2 ‖ÿ‖2L2(0,tj ;Rm)

)

,

where the constant c3 = e2c2T max{7/3, 2c1, 8} is independent of ℓ and {tj}nj=1.

From
∑n
k=1 αk = T and (3.2.15) we infer

(3.2.21)

n∑

j=1

αj ‖ϑℓj‖
2

W
≤ c3T

( n∑

j=1

αj

(

‖Pℓnẏ(tj)− ẏ(tj)‖
2

W + ‖̺ℓj‖
2

W

)

+ (∆t)2 ‖ÿ‖2L2(0,T ;Rm)

)

≤ c4
(

m∑

i=ℓ+1

(

λni +
n∑

j=1

αj
∣
∣〈ẏ(tj), ψni 〉W

∣
∣
2
)

+ (∆t)2

)

with c4 = c3T max{1, ‖ÿ‖2L2(0,T ;Rm)}.

Theorem 3.2.5. Let y ∈ C([0, T ];Rm) ∩ C1(0, T ;Rm) be the unique solution
to (1.4.1) satisfying ÿ ∈ L2(0, T ;Rm) and ℓ ∈ {1, . . . ,m} be fixed. Suppose that

{ψni }ℓi=1 is a POD basis of rank ℓ solving (P̂n,ℓ
W ). Assume that (3.2.13) possesses a

unique solution {yℓj}nj=1. Then there exists a constant C > 0 such that

n∑

j=1

αj ‖y(tj)− yℓj‖
2

W
≤ C

(

(∆t)2 +
m∑

i=ℓ+1

(

λni +
n∑

j=1

αj
∣
∣〈ẏ(tj), ψni 〉W

∣
∣
2
))

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the
second argument.
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Proof. The claim follows directly from (3.2.15), (3.2.21), and

n∑

j=1

αj ‖y(tj)− yℓj‖
2

W
≤ 2

n∑

j=1

αj

(

‖ϑℓj‖
2

W
+ ‖̺ℓj‖

2

W

)

≤ 2c4

(
m∑

i=ℓ+1

(

λni +

n∑

j=1

∣
∣〈ẏ(tj), ψni 〉W

∣
∣
2
)

+ (∆t)2

)

+ 2

m∑

i=ℓ+1

λni

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the
second argument. �

Remark 3.2.6. Compared to the estimate in Theorem 3.2.2 we observe the
term

(3.2.22)

n∑

j=1

αj
∣
∣〈ẏ(tj), ψni 〉W

∣
∣
2

instead of the term

(3.2.23)

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt.

Note that (3.2.22) is the trapezoidal approximation of (3.2.23). Further, the error
O((∆t)2) appears in the estimate of Theorem 3.2.5 due to the Euler method. ♦

Next we address the fact that the eigenvalues {λni }mi=1 and the associated eigen-
vectors {uni } (i.e., the POD basis) depend on the chosen time grid {tj}nj=1. We apply
the asymptotic theory presented in Section 1.3. Then, it follows from Theorem 1.4.5
that there exists a number n̄ ∈ N satisfying

m∑

i=ℓ+1

λni ≤ 2

m∑

i=ℓ+1

λi,

m∑

i=ℓ+1

n∑

j=1

αj
∣
∣〈ẏ(tj), ψni 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt

for n ≥ n̄ provided
∑m
i=ℓ+1 λi 6= 0 and

∫ T

0

∣
∣〈ẏ(t), ψi〉W

∣
∣
2
dt 6= 0 hold. Thus, we

infer from Theorems 3.2.2 and 3.2.5 the following result.

Theorem 3.2.7. Let all hypothesis of Theorems 1.4.5, 3.2.2 and 3.2.5 be satis-

fied. If
∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt 6= 0, then there exists a constant C > 0 and a number

n̄ ∈ N such that

n∑

j=1

αj ‖y(tj)− yℓj‖
2

W
≤ C

(

(∆t)2 +

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ψi〉

∣
∣
2
dt
))

for all n ≥ n̄.
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3. Empirical Interpolation Method for Nonlinear Problem

The ROM introduced in (3.1.4) is a nonlinear system. Hence the problem with
the POD Galerkin approach is the complexity of the evaluation of the nonlinearity.
To illustrate this we have a look at the nonlinearity f ℓ in (3.1.4a). Setting Ψ =
[ψ1 | . . . |ψℓ] ∈ Rm×ℓ we can write

f ℓ(t, yℓ(t)) = Ψ⊤Wf(t,Ψyℓ(t)).

This can be interpreted in the way that the variable yℓ(t) ∈ Rℓ is first expanded
to a vector Uyℓ(t) of dimension m, then the nonlinearity f ℓ(t,Ψyℓ(t)) is evaluated
and at last the result is reduced back to the low dimension ℓ of the reduced-order
model. This is computationally expensive. Further this means that our reduced-
order model is not independent of the full dimension m. Note that when applying
a Newton method to the system (3.1.4) the Jacobian of the nonlinearity is also
needed. For instance, we have

∂f ℓ

∂y
(t,Ψyℓ(t)) = Ψ⊤gℓ(t,Ψyℓ(t))Ψ for t ∈ [0, T ],

where

gℓ(t,Ψyℓ)(t)) =
(〈
fy(t,Ψyℓ(t))ψj , ψi

〉

V ′,V

)

1≤i,j≤m
.

Again the same problem can be observed. Note that here the computation expenses
are larger since the Jacobians are of dimension m×m. Hence not only a vector is
transformed but a matrix of full dimension. To avoid this computational expensive
evaluation the empirical interpolation method (EIM) was introduced [1]. This
method is often used in combination with the reduced basis approach [9]. The
second approach we will investigate here is the discrete empirical interpolation
method (DEIM) as introduced in [3, 5, 4]. While the EIM implementation is
based on a greedy algorithm the DEIM implementation is based on a POD approach
combined with a greedy algorithm. We will now discuss both methods. We define

b(t) = f(t,Ψyℓ(t)) ∈ Rm for t ∈ [0, T ].

Now, b(t) is approximated by a Galerkin ansatz utilizing ℘ linearly independent
functions φ1, . . . , φ℘ ∈ Rm, i.e.

(3.3.1) b(t) ≈
℘
∑

k=1

φkck(t) = Φc(t)

with c(t) = [c1(t), . . . , c℘(t)]
⊤ ∈ R℘ and Φ = [φ1

∣
∣ . . .

∣
∣φ℘] ∈ Rm×℘. Hence we can

write the approximation of f ℓ(t, ·) as
f ℓ(t, yℓ(t)) = Ψ⊤Wf(t,Ψyℓ(t)) = Ψ⊤Wb(t) ≈ Ψ⊤WΦc(t).

The question arising is how to compute the matrix Φ and the vector c(t). Let
~ı ∈ R℘ be an index vector and B ∈ Rm×℘ a given matrix. Then by B~ı we denote the
submatrix consisting of the rows of B corresponding to the indices in ~ı. Obviously,
if we choose ℘ indices then the overdetermined system b(t) = Φc(t) can be solved
by choosing ℘ rows of b(t) and Φ. Here it is assumed that the submatrix Φ~ı ∈ R℘×℘

is invertible.
Assuming we have computed Φ and ~ı by an algorithm. Then we proceed as

follows. For simplicity we introduce here the matrix P = (e~ı1 | . . . | e~ı℘) ∈ Rm×℘,

where e~ıi = (0, . . . , 0, 1, 0, . . . , 0)⊤ ∈ Rm is a vector with all zeros and at the ~ıi-th
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row a one. Note that Φ~ı = P⊤Φ holds. To evaluate the approximate nonlinearity
we need c(t). Since we know Φ and the index vector ~ı we can compute

c(t) =
(
P⊤Φ

)−1
P⊤b(t) =

(
P⊤Φ

)−1
P⊤f(t,Ψyℓ(t)) for t ∈ [0, T ].

Suppose that the matrix P can be moved into the nonlinearity. Then, we obtain

P⊤f(t,Ψyℓ(t)) =
(
f(t,Ψyℓ(t))

)

~ı
= f(t, P⊤Ψyℓ(t)).

An extension for general nonlinearities is shown in [5]. Let us now have a look at
the computational expenses. The matrices P⊤Ψ ∈ R℘×ℓ, (P⊤Φ)−1 ∈ R℘×℘ and
Ψ⊤WΦ ∈ Rℓ×℘ can be precomputed. All the precomputed quantities are indepen-
dent of the full dimension m. Additionally, during the iterations the nonlinearity
only has to be evaluated at the interpolation points, i.e. only at ℘ points. This
allows the reduced-order model to be completely independent of the full dimen-
sion. Note that the used method is an interpolation and therefore is exact at the
interpolation points. For the Jacobian the approach is similar.

Let us now turn to the EIM and DEIM algorithms. When (1.4.1) is solved
the nonlinearity f(t, y(t)) is evaluated for each time step. If these evaluations are
stored the procedure to determine Φ and the index vector ~ı does not involve any
further evaluations of the nonlinearity. We denote by F ∈ Rm×n the matrix with
columns f(ti, y(ti)) ∈ Rm for i = 1, . . . , n. Next let us have a look at the two
algorithms of interest and let us present some numerical results. In the algorithms
‖ · ‖∞ stands for the maximum norm in Rm and the operation ‘argmax’ returns
the index, where the maximum entry occurs. In Algorithm 6 we state the EIM
using a greedy algorithm. Here the basis φi, i = 1, . . . , ℘, is chosen from the

Algorithm 6 (The empirical interpolation method (EIM))

Require: ℘ and matrix F = [f(t1, y(t1)) | . . . | f(tn, y(tn))] ∈ Rm×n;
1: k ← argmaxj=1,...,n ‖f(tj , y(tj))‖∞;
2: ξ ← f(tk, y(tk));
3: idx ← argmaxj=1,...,m |ξj |;
4: φ1 ← ξ/ξ

{idx};

5: Φ = [φ1] and ~ı = idx;
6: for i = 2 to ℓEI do
7: Solve Φ{℘EI}cj = f(tj , y(tj)){℘EI} for j = 1, . . . , n;
8: k ← argmaxj=1,...,n ‖f(tj , y(tj))− Φcj‖∞;
9: ξ ← f(tk, y(tk));

10: idx← argmaxj=1,...,m |(ξ − Φck){j}|;
11: φi ← (ξ − Φck)/(ξ − Φck){idx};

12: Φ← [Φ, φi] and ~ı← [~ı, idx];
13: end for
14: return Φ and ~ı

provided snapshots of f(t, y(t)) by scaling and shifting. The obtained basis is not
orthonormal. The advantage of this method is that the submatrix Φ~ı is an upper
triangular matrix. Hence solving for c(t) is computationally cheap. The drawback
of this method is that the computation of the basis is more expensive than the
DEIM algorithm presented in Algorithm 7. The DEIM algorithm on the other
hand generates the basis using the POD approach. Here the previously introduced
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Algorithm 7 (The discrete empirical interpolation method (DEIM))

Require: ℘ and matrix F = [f(t1, y(t1)) | . . . | f(tn, y(tn))] ∈ Rm×n;
1: Compute POD basis Φ = [φ1, . . . , φ℘] for F ;
2: idx← argmaxj=1,...,m |(φ1){j}|;
3: U = [φ1] and ~ı = idx;
4: for i = 2 to ℘ do
5: u← φi;
6: Solve U~ıc = u~ı;
7: r ← u− Uc;
8: idx← argmaxj=1,...,m |(r){j}|;
9: U ← [U, u] and ~ı← [~ı, idx];

10: end for
11: return Φ and ~ı

POD approach is applied to the snapshots of the nonlinearity b(t) = f(t, y(t)) to
compute Φ. The matrix Φ~ı obtained by the DEIM method has no special structure.
Hence evaluating the nonlinearity using DEIM is more expensive compared to EIM.
The computational cost can be reduced by precomputing a LU decomposition of Φ~ı.
Then the evaluation of the nonlinearity using DEIM involves two solves compared
to one solve for the EIM. Further when comparing the two algorithms it can be
seen that the computation for the EIM basis is more expensive compared to the
DEIM basis. This can be seen when comparing line 7 in Algorithm 6 and line 6
in Algorithm 7. In each iteration of Algorithm 6 one has to solve n linear systems
compared to one linear system in Algorithm 7. The selection for the interpolation
points in both algorithms is similar and is based on a greedy algorithm. The idea
is to successively select spatial points to limit the growth of an error bound. The
indices are constructed inductively from the input data. For more details we refer
the reader to [1, 3].

4. Exercises

Exercise 3.4.1. Prove Gronwall’s lemma; see Lemma 3.2.1.

Exercise 3.4.2. Prove that the first-order necessary optimality condition for
(3.2.8) is given by R̃ũi = λ̃iũi, 1 ≤ i ≤ ℓ.
Exercise 3.4.3. Show that R̃ is linear, bounded, self-adjoint and nonnegative
provided y ∈ H1(0, T ;Rm), i.e.,

∫ T

0

‖y(t)‖2W + ‖ẏ(t)‖2W dt <∞

holds.

Exercise 3.4.4. Show that the operator Pℓn defined in (3.2.14) is linear, bounded
and satisfies ‖Pℓn‖L(Rm) = 1.



CHAPTER 4

Balanced Truncation Method

1. The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic
regulator (LQR) problem. Utilizing dynamic programming necessary optimality
conditions are derived. It turns out that for the LQR problem the state-feedback
solution can be determined by solving a differential matrix Riccati equation. The
presented theory is taken from the book [7].

1.1. The linear-quadratic regulator (LQR) problem. The goal is to find
a state-feedback control law of the form

u(t) = −Kx(t) for t ∈ [0, T ]

with u : [0, T ] → Rmu , x : [0, T ] → Rmx , K ∈ Rmu×mx so that u minimizes the
quadratic cost functional

(4.1.1a) J(x, u) =

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt+ x(T )TMx(T ),

where the state x and the control u are related by the linear initial value problem

(4.1.1b) ẋ(t) = Ax(t) +Bu(t) for t ∈ (0, T ] and x(0) = x0.

In (4.1.1a) the matrices Q, M ∈ Rmx×mx are symmetric, positive semi-definite,
R ∈ Rmu×mu is symmetric, positive definite and in (4.1.1b) we have A ∈ Rmx×mx ,
B ∈ Rmx×mu and x0 ∈ Rmx . The final time T is fixed, but the final state x(T )
is free. Thus, we aim to track the state to the state x̄ = 0 as good as possible.
The terms x(t)TQx(t) and x(T )TMx(T ) are measures for the control accuracy
and the term u(t)TRu(t) measures the control effort. Problem (4.1.1) is called the
linear-quadratic regulator problem (LQR problem).

1.2. The Hamilton-Jacobi-Bellman equation. In this section we derive
first-order necessary optimality conditions for the LQR problem. Since general-
izing the problem to a non-linear problem does not cause more difficulties in the
deviation, we consider the problem to find a state-control feedback control law

u(t) = Φ(x(t), t), t ∈ [0, T ],

such that the cost-functional

(4.1.2a) Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds+ g(x(T ))

is minimized subject to the non-linear system dynamics

(4.1.2b) ẋ(s) = F (x(s), u(s), s) for s ∈ (0, T ] and x(t) = xt.

63
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We suppose that the functions L : Rmx×Rmu×[0, T ]→ [0,∞) and g : Rmx → [0,∞)
satisfy

L(0, 0, s) = 0 for s ∈ [0, T ] and g(0) = 0

Moreover, let F : Rmx × Rmu × [0, T ]→ Rmx be continuous and locally Lipschitz-
continuous with respect to the variable x. Moreover, xt ∈ Rmx holds. To derive
optimality conditions we use the so-called Bellman principle (or dynamic program-
ming principle). The essential assumption is that the system can be characterized
by its state x(t) at the time t ∈ [0, T ] which completely summarizes the effect of
all u(s) for 0 ≤ s ≤ t. The dynamic programming principle was first proposed by
Bellman [2].

Theorem 4.1.1 (Bellman principle). Let t ∈ [0, T ]. If u∗(s) is optimal for
s ∈ [t, T ] and x∗ is the associated optimal state, starting at the state xt ∈ Rmx ,
then u∗(s) is also optimal over the subinterval [t + ∆t, T ] for any ∆t ∈ [0, T − t]
starting at xt+∆t = x∗(t+∆t).

Proof. We show Theorem 4.1.1 by contradiction. Suppose that there exists
a control u∗∗ so that

(4.1.3)

∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds+ g(x∗∗(T ))

<

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds+ g(x∗(T )),

where

ẋ∗(s) = F (x∗(s), u∗(s), s) and ẋ∗∗(s) = F (x∗∗(s), u∗∗(s), s)

hold for s ∈ [t+∆t, T ]. We define the control

(4.1.4) u(s) =

{

u∗(s) if s ∈ [t, t+∆t],

u∗∗(s) if s ∈ (t+∆t, T ].

By x(s) we denote the state satisfying ẋ(s) = F (x(s), u(s), s) for s ∈ [t, T ] and
x(t) = xt. Then we derive from (4.1.3) and (4.1.4) that
(4.1.5)

∫ T

t

L(x(s), u(s), s) ds+ g(x(T ))

=

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds+

∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds+ g(x∗∗(T ))

<

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds+

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds+ g(x∗(T ))

=

∫ T

t

L(x∗(s), u∗(s), s) ds+ g(x∗(T )).

Recall that u∗(s) is optimal for s ∈ [t, T ] by assumption. From (4.1.5) it follows
that the control u given by (4.1.4) yields a smaller value of the cost functional.
This is a contradiction. �
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Next we derive the Hamilton-Jacobi-Bellman equation for (4.1.2). Let V ∗ :
Rmx × [0, T ]→ R denote the minimal value function given by
(4.1.6)

V ∗(xt, t)

= min
u:[t,T ]→Rmu

{

Jt(x, u)
∣
∣ ẋ(s) = F (x(s), u(s), s), s ∈ (t, T ] and x(t) = xt

}

for (xt, t) ∈ Rmx × [0, T ], where

Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds+ g(x(T )).

From the linearity of the integral and (4.1.6) we conclude
(4.1.7)

V ∗(xt, t)

= min
u:[t,t+∆t]→Rmu

{∫ t+∆t

t

L(x(s), u(s), s) ds+ V ∗(x(t+∆t), t+∆t)
∣
∣

ẋ(s) = F (x(s), u(s), s), s ∈ (t, t+∆t] and x(t) = xt

}

for (xt, t) ∈ Rmx × [0, T − ∆t], where we have used the Bellman principle. Thus,
by using the Bellman principle the problem of finding an optimal control over the
interval [t, T ] has been reduced to the problem of finding an optimal control over
the interval [t, t+∆t].

Now we replace the integral in (4.1.7) by L(x(t), u(t), t)∆t, perform a Taylor
approximation for V ∗(x(t + ∆t), t + ∆t) about the point (xt, t) = (x(t), t) and
approximate x(t+∆t)− x(t) by F (x(t), u(t), t)∆t. Then we find

V ∗(xt, t) = min
ut∈Rmu

{

L(xt, ut, t)∆t+ V ∗(xt, t) +
∂V ∗

∂t
(xt, t)∆t

+∇V ∗(xt, t)
TF (xt, ut, t)∆t+ o(∆t)

}

= V ∗(xt, t) +
∂V ∗

∂t
(xt, t)∆t

+∆t min
ut∈Rmu

{

L(xt, ut, t) +∇V ∗(xt, t)
TF (xt, ut, t) +

o(∆t)

∆t

}

for any ∆t > 0. Thus,

−∂V
∗

∂t
(xt, t) = min

ut∈Rmu

{

L(xt, ut, t) +∇V ∗(xt, t)
TF (xt, ut, t) +

o(∆t)

∆t

}

.

Taking the limit ∆t→ 0 and using V ∗(xt, T ) = g(xt) we obtain

(4.1.8a) −∂V
∗

∂t
(xt, t) = min

ut∈Rmu

{
L(xt, ut, t) +∇V ∗(xt, t)

TF (xt, ut, t)
}

for all (xt, t) ∈ Rmx × [0, T ) and

(4.1.8b) V ∗(xt, T ) = g(xt)

for all xt ∈ Rmx .
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To solve (4.1.8) we proceed in two steps. First we compute a solution ut to

u∗(t) = argmin
ut∈Rmu

{
L(xt, ut, t) +∇V ∗(xt, t)

TF (xt, ut, t)
}

and set

(4.1.9) Ψ(∇V ∗(xt, t), xt, t) = u∗(t),

which gives us a control law. Then we insert (4.1.9) into (4.1.8a) and solve

−∂V
∗

∂t
(xt, t) = L(xt,Ψ(∇V ∗(xt, t), xt, t), t)

+∇V ∗(xt, t)
TF (xt,Ψ(∇V ∗(xt, t), xt, t), t)

for all (xt, t) ∈ Rmx × [0, T ). Finally, we can compute the gradient ∇V ∗(xt, t) and
deduce the state-feedback law

u∗(t) = Φ(xt, t) = Ψ(∇V ∗(xt, t), xt, t) for all (xt, t) ∈ Rmx × [0, T ).

Remark 4.1.2. 1) In general, it is not possible to solve (4.1.8) analyti-
cally. However, for the LQR problem we can derive an explicit solution
for the state-feedback law.

2) Note that the Hamilton-Jacobi-Bellman equation are only necessary op-
timality conditions. ♦

1.3. The state-feedback law for the LQR problem. For the LQR prob-
lem we have

L(x, u, t) = xTQx+ uTRu, g(x) = xTMx, F (x, u, t) = Ax+Bu

for (x, u, t) ∈ Rmx × Rmu × [0, T ]. For brevity, we focus on the situation, where
the matrices A, B, Q, R are time-invariant. However, most of the presented theory
also holds for the time-varying case.

First we minimize

xTQx+ uTRu+∇V ∗(x, t)T
(
Ax+Bu

)

with respect to u. First-order necessary optimality conditions are given by

uTRũ+ ũTRu+∇V ∗(x, t)TBũ = 0 for all ũ ∈ Rmu .

By assumption, R is symmetric and positive definite. Then we find

(
2Ru+BT∇V ∗(x, t)

)T
ũ = 0 for all ũ ∈ Rmu

and

(4.1.10) u∗ = −1

2
R−1BT∇V ∗(x, t).

For the minimal value function V ∗ we make the quadratic ansatz

(4.1.11) V ∗(x, t) = xTP (t)x, P (t) ∈ Rmx×mx symmetric.

Then, we have ∇V ∗(x, t) = 2P (t)x so that

u∗ = −R−1BTP (t)x.
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Note that
∂V ∗

∂t
(xt, t) = xTt Ṗ (t)xt,

L(xt,−R−1BTP (t)xt, t) = xTt Qxt + xTt P (t)BR
−1BTP (t)xt

= xTt
(
Q+ P (t)BR−1BTP (t)

)
xt,

F (xt,−R−1BTP (t)xt, t) = Axt −BR−1BTP (t)xt =
(
A−BR−1BTP (t)

)
xt,

∇V ∗(xt, t) = 2P (t)xt.

Consequently,

− xTt Ṗ (t)xt = −
∂V ∗

∂t
(xt, t)

= xTt
(
Q+ P (t)BR−1BTP (t)

)
xt +

(
2P (t)xt

)T (
A−BR−1BTP (t)

)
xt

for all xt ∈ Rmx , which yields

− xTt Ṗ (t)xt
= xTt

(
Q+ P (t)BR−1BTP (t) + 2P (t)A− 2P (t)BR−1BTP (t)

)
xt

= xTt
(
2P (t)A+Q− P (t)BR−1BTP (t)

)
xt

for all xt ∈ Rmx . From P (t) = P (t)T we deduce that

2xTt P (t)Axt = xTt P (t)Axt + xTt A
TP (t)xt = xTt

(
ATP (t) + P (t)A

)
xt.

Using V ∗(xt, T ) = xTt P (T )xt and (4.1.8b) we get

−xTt Ṗ (t)xt = xTt
(
ATP (t) + P (t)A+Q− P (t)BR−1BTP (t)

)
xt, t ∈ [0, T )

(4.1.12a)

xTt P (T )xt = xTt Mxt.

(4.1.12b)

Since (4.1.12) holds for all xt ∈ Rmx we obtain the following matrix Riccati equation

−Ṗ (t) = ATP (t) + P (t)A+Q− P (t)BR−1BTP (t), t ∈ [0, T )(4.1.13a)

P (T ) =M.(4.1.13b)

Finally, the optimal state-feedback is given by

u∗(t) = −K(t)x(t) and K(t) = R−1BTP (t).

Example 4.1.3. Let us consider the problem

min

∫ T

0

|x(t)|2 + |u(t)|2 dt s.t. ẋ(t) = u(t) for t ∈ (0, T ].

Choosing mx = mu = 1, A = M = 0 and B = Q = R = 1 the matrix Riccati
equation has the form

−Ṗ (t) = 1− P (t)2 for t ∈ [0, T ) and P (T ) = 0.

This scalar ordinary differential equation can be solved by separation of variables.
Its solution is

P (t) =
1− e−2(T−t)

1 + e−2(T−t)

with the optimal control u∗(t) = −P (t)x(t). ♦
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2. Balanced truncation

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) for t ∈ (0,∞) and x(0) = x0,(4.2.14a)

y(t) = Cx(t) for t ∈ [0,∞)(4.2.14b)

where x(t) ∈ Rmx is called the system state, x0 ∈ Rmx is the initial condition of
the system, u(t) ∈ Rmu is said to be the system input and y(t) ∈ Rmy is called the
system output. The matrices A, B and C are assumed to have appropriate sizes.

It is helpful to analyze the linear system (4.2.14) through the Laplace transform.

Definition 4.2.4. Let f(t) be a time-varying vector. Then its Laplace trans-
form is defined by

(4.2.15) L[f ](s) =
∫ ∞

0

e−stf(t) dt for s ∈ R.

The Laplace transform is defined for those values of s, for which (4.2.15) converges.

The Laplace transforms of u(t) and y(t) are given by

L[u](s) =
∫ ∞

0

e−stu(t) dt and L[y](s) =
∫ ∞

0

e−sty(t) dt = CL[x](s),

where we have used (4.2.14b). Note that

L[ẋ](s) =
∫ ∞

0

e−stẋ(t) dt = −
∫ ∞

0

(−s)e−stx(t) dt+
(
e−stx(t)

)
∣
∣
∣

s=∞

s=0

= sL[x](s)− x0.
Therefore, the Laplace transform of the dynamical system (4.2.14a) yields

sL[x](s)− x(0) = AL[x](s) +BL[u](s),
which gives

L[x](s) = (sI −A)−1x(0) + (sI −A)−1BL[u](s).
Thus,

(4.2.16) L[y](s) = CL[x](s) = C(sI −A)−1x(0) + C(sI −A)−1BL[u](s).
For x(0) = 0 the expression (4.2.16) reduces to

(4.2.17) L[y](s) = G(s)L[u](s)
where

(4.2.18) G(s) = C(sI −A)−1B

is called the transfer matrix of the system.
Given the initial state x0 and the input u(t), the dynamical system response

x(t) and y(t) for t ∈ [0, T ] satisfy

x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds and y(t) = Cx(t).

If u(t) = 0 holds for all t ∈ [0, T ], we infer that

x(t) = e(t−t1)Ax(t1)

for any t1, t ∈ [0, T ]. The matrix e(t−t1)A acts as a transformation from one state
to another. Therefore, Φ(t, t1) = e(t−t1)A is often called the state transition matrix.
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Definition 4.2.5. The dynamical system (4.2.14a) or the pair (A,B) are called
controllable if for any x0 ∈ Rmx and final state xT ∈ Rmx there exists a (piece-
wise continuous) input u such that the solution to (4.2.14a) satisfies x(T ) = xT .
Otherwise, (A,B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we
refer to [24].

Theorem 4.2.6. The following claims are equivalent:

1) (A,B) are controllable.
2) The controllability gramian

Wc(t) =

∫ t

0

esABBT esA
T

ds

is positive definite for every t > 0.
3) The controllability matrix

C =
[
B AB A2B . . . Amx−1B

]
∈ Rmx×(mxmu)

has full rank.

Definition 4.2.7. 1) The unforced system ẋ(t) = Ax(t) is called stable,
if the eigenvalues of A are in the open left half plane, i.e., ℜeλ < 0 for
every eigenvalue λ . A matrix with this property is said to be stable or
Hurwitz.

2) The dynamical system (4.2.14a) or (A,B) are called stabilizable if there
exists a state-feedback u(t) = −Kx(t) so that A−BK is stable.

The next result, which is proved in [24], is a consequence of Theorem 4.2.6.

Theorem 4.2.8. The following claims are equivalent:

1) (A,B) are stabilizable.
2) The matrix [A − λI B] ∈ Rmx×(mx+mu) has full row rank for all λ ∈ C

with a negative real part, i.e., ℜeλ < 0.

Let us now consider the dual notions of observability.

Definition 4.2.9. The dynamical system (4.2.14) or (A,C) are called observ-
able if for any t1 ∈ (0, T ], the initial condition x0 ∈ Rmx can be determined from
the time history of the input u(t) and the output y(t) in the interval [0, t1] ⊂ [0, T ].
Otherwise, the system or (A,C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [24].

Theorem 4.2.10. The following claims are equivalent:

1) (A,C) is observable.
2) The observability gramian

Wo(t) =

∫ t

0

esA
T

CTCesA ds

is positive definite for every t > 0.
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(3) The observability matrix

O =








C
CA
...

CAmx−1







∈ R(mxmy)×mx

has full rank.

We set

Wc =

∫ ∞

0

esABBT esA
T

ds and Wo =

∫ ∞

0

esA
T

CTCesA ds.

It can be proved that Wc and Wo can be determined numerically by solving the
Lyapunov equations

AWc +WcA
T +BBT = 0 ∈ Rnx×nx ,(4.2.19a)

ATWo +WoA+ CTC = 0 ∈ Rnx×nx .(4.2.19b)

The controllability gramian is a measure to what degree each state is excited by
an input. Suppose that x1, x2 ∈ Rnx are two states with ‖x1‖Rnx = ‖x2‖Rnx . If
xT1Wcx1 > xT2Wcx2 holds, then we say that the state x1 is more controllable than
x2. This means, it takes a smaller input to drive the system from x0 to x1 than to
x2. It can be proved that the gramianWc is positive definite if and only if all states
are reachable with some input u. On the other hand, the observability gramian
Wo is a measure to what degree each state excites future outputs y. Let x0 be an
initial state. If u = 0 holds, we have

‖y‖2L2(0,∞;Rmy ) =

∫ ∞

0

y(s)T y(s) ds =

∫ ∞

0

x(s)TCTCx(s) ds

=

∫ ∞

0

xT0 e
sAT

CTCesAx0 ds = xT0Wox0.

We say that the state x1 is more observable than another state x2 if the correspond-
ing output y1 = Cx1 yields a larger value of the L2-norm than for y2 = Cx2

The gramians depend on the coordinates. Suppose that

(4.2.20) x = T z
where T ∈ Rnx×nx is a regular matrix. Then we obtain instead of (4.2.14) the
system

ż(t) = Ãz(t) + B̃u(t) for t ∈ (0,∞) and z(0) = z0,(4.2.21a)

y(t) = C̃z(t) for t ∈ [0,∞)(4.2.21b)

with

Ã = T −1AT , B̃ = T −1B, C̃ = CT , z0 = T −1x0.

Let Wc solve (4.2.19a). The controllability gramian W̃c for (4.2.21) satisfies

ÃW̃c + W̃cÃ
T + B̃B̃T = 0

i.e.,

(4.2.22) T −1AT W̃c + W̃cT TATT −T + T −1BBTT −T = 0.
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Multiplying (4.2.22) by T from the left and by T T from the right yields

(4.2.23) AT W̃cT T + T W̃cT TAT +BBT = 0.

From (4.2.19a) and (4.2.23) we infer thatWc = T W̃cT T holds. Thus, the coordinate
transformation (4.2.20) implies that the controllability gramian Wc is transformed
as

Wc 7→ W̃c = T −1WcT −T .

Now we suppose thatWo solves (4.2.19b). The observability gramian W̃o for (4.2.21)
satisfies

ÃT W̃o + W̃oÃ+ C̃T C̃ = 0

i.e.,

(4.2.24) T TATT −T W̃o + W̃oT −1AT + T TCTCT = 0.

Multiplying (4.2.22) by T −T from the left and by T −1 from the right yields

(4.2.25) ATT −T W̃oT −1 + T −T W̃oT −1A+ CTC = 0.

From (4.2.19b) and (4.2.25) we infer that Wo = T −T W̃oT −1 holds. Thus, the
coordinate transformation (4.2.20) implies that the observability gramian Wo is
transformed as

Wo 7→ W̃o = T TWoT .
The goal is to find a transformation T such that

(4.2.26) T −1WcT −T = T TWoT = Σ = diag (σ1, . . . , σmx
).

The elements σ1 ≥ σ2 ≥ . . . ≥ σmx
are called Hankel singular values of the system.

They are independent of the coordinate system. It can be shown that a regular ma-
trix T which satisfies (4.2.26) exists if the system is controllable and observable, i.e.,
the matrices Wc and Wo are positive definite. The coordinate transformation T is
said to be a balancing transformation. Computing appropriately scaled eigenvalues
of the product WcWo, the matrix T can be determined. In the balanced coordi-
nates, the states which are least influenced by the input u also have least influence
on the output y. In balanced truncation the least controllable and observable states
having little effect on the input-output performance are truncated.

Instead of (4.2.21) we only consider the system for the first ℓ ∈ {1, . . . ,mx}
components of z:

żℓ(t) = Ãℓzℓ(t) + B̃ℓu(t) for t ∈ (0,∞) and zℓ(0) = z0ℓ,(4.2.27a)

yℓ(t) = C̃ℓzℓ(t) for t ∈ [0,∞),(4.2.27b)

where

Ã =

(
Ãℓ ∗
∗ ∗

)

, B̃ =

(
B̃ℓ
∗

)

, C̃ =
(

C̃ℓ ∗
)
, z0ℓ =

(
z̃0ℓ
∗

)

,

and Ãℓ ∈ Rℓ×ℓ, B̃ℓ ∈ Rℓ×mu , C̃ℓ ∈ Rmy×ℓ and z0ℓ ∈ Rℓ.
One big advantage of balanced truncation is that a-priori error bounds are

known. These bounds are formulated for the transfer function. Suppose that
G(s) = C(sI − A)−1B ∈ Rmy×mu is the transfer function of the system (4.2.14)
and Gℓ(s) = Cℓ(sI − Aℓ)−1Bℓ ∈ Rmy×mu is the transfer function of the reduced
system (4.2.27). Then we have

‖G−Gℓ‖ = max
{

‖(G−Gℓ)u‖L2(0,∞;Rmy ) : ‖u‖L2(0,∞;Rmu ) = 1
}

> σℓ+1
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and

‖G−Gℓ‖ < 2

mx∑

i=ℓ+1

σi.

3. Exercises

Let us consider the one-dimensional heat equation

θt(t, x) = θxx(t, x) + u(t)χ(x) for all (t, x) ∈ Q = (0, T )× Ω,(4.3.28a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ),

(4.3.28b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊂ R,(4.3.28c)

where θ = θ(t, x) is the temperature, u = u(t) the control input, χ = χ(x) a given
control shape function and θ0 = θ0(x) a given initial condition.

Exercise 5.3.1. Apply a classical finite difference approximation for the spatial
variable x (compare Example 1.4.1) and derive the finite-dimensional initial value
problem for the finite difference approximations.

Exercise 5.3.2. Utilizing the trapezoidal rule deduce a discretization for the
quadratic cost functional

J(θ, u) =
1

2

∫

Ω

|θ(T, x)− θT (x)|2 dx+
κ

2

∫ T

0

|u(t)|2 dt,

where θT = θT (x) is a given desired terminal state and κ > 0 denotes a fixed
regularization parameter.

Exercise 5.3.3. Formulate the matrix Riccati equation for the discretized qua-
dratic cost functional — see Exercise 5.3.2 — and the discretized heat equation —
see Exercise 5.3.1.

Exercise 5.3.4. What is the matrix Riccati equation in the case if we apply a
POD Galerkin approximation instead of a finite difference discretization? How can
we solve the matrix Riccati equation numerically?



CHAPTER 5

The Appendix

A. Linear and Compact Operators

Let X and Y denote two real normed linear spaces with norms ‖ · ‖X and ‖ · ‖Y.

Definition A.1. A bounded linear operator A : X→ Y satisfies the following
two conditions

1) A(α1x1 + α2x2) = α1Ax1 + α2Ax2 for all α1, α2 ∈ R and x1, x2 ∈ X;
2) there exists a constant CA > 0 such that ‖Ax‖Y ≤ CA ‖x‖X for all x ∈ X.

The space of all bounded and linear operators from X to Y is denoted by L(X,Y).
We shortly write L(X) for L(X,X).

The following proposition is proved in [19, p. 70].

Proposition A.2. The space L(X,Y) equipped with the norm

‖A‖L(X,Y) = sup
‖x‖X=1

‖Ax‖
Y

for A ∈ L(X,Y)

is a normed linear space. Furthermore, if Y is even a Banach space then L(X,Y) is
a Banach space.

Remark A.3. The smallest constant CA in Definition A.1-b) is given by the
norm ‖A‖L(X,Y). ♦

Definition A.4. Let X and Y be two Banach spaces and A ∈ L(X,Y). The
Banach space adjoint A′ : Y′ → X′ is defined by

〈A′f, x〉
X′,X = 〈f,Ax〉

Y′,Y for all (f, x) ∈ Y′ × X,

where 〈· , ·〉X′,X stands for the dual pairing of X′ and X.

It is proved in [19, p. 186] that ‖A‖L(X,Y) = ‖A′‖L(Y′,X′) for A ∈ L(X,Y). Let
A ∈ L(H) holds and X be a real Hilbert space, then we can introduce the Riesz
isomorhism JX : X→ X′ as follows: for given x1 ∈ X the element JXx1 satisfies

〈JXx1, x2〉X′,X = 〈x1, x2〉X for all x2 ∈ X.

By the Riesz theorem JX is well-defined. Moreover, ‖JX‖L(X,X′) = 1. For more
details we refer the reader to [19, p. 43].

Definition A.5. Let X, Y be two real Hilbert spaces and A ∈ L(X,Y). Then
the Hilbert space adjoint A⋆ : Y→ X is defined by A⋆ = J−1

X
A′JY.

Remark A.6. Let X, Y be two real Hilbert space and A ∈ L(X,Y). From
A′ ∈ L(Y′,X′) and ‖JX‖L(X,X′) = ‖JY‖L(Y,Y′) = 1 we infer that A⋆ ∈ L(Y,Y). In

73
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particular, ‖A⋆‖L(Y,X) = ‖A‖L(X,Y). Further, we have

〈A⋆y, x〉
X
= 〈J−1

X
A′JYy, x〉X = 〈A′JYy, x〉X′,X = 〈JYy,Ax〉Y′,Y

= 〈y,Ax〉
Y

for all (x, y) ∈ X× Y. ♦

The following theorem is proved in [19, pp. 186-187].

Theorem A.7. Let X be a real Hilbert space and A, B ∈ L(X). Then, (AB)⋆ =
B⋆A and (A⋆)⋆ = A.

Definition A.8. Suppose that X is a real Hilbert space and A ∈ L(X). Then,
A is called selfadjoint if A = A⋆ holds true. If A2 = A is valid, A is called a
projection. If a projection A is selfadjoint, then A is an orthogonal projection.

Remark A.9. Suppose that X is a real Hilbert space and A ∈ L(X) is an
orthogonal projection. Then, we have A⋆A = A2 = A. Hence, it follows that for
an arbitrary x ∈ X

〈Ax, x−Ax〉
X
= 〈Ax, x〉

X
− 〈Ax,Ax〉

X
= 〈Ax, x〉

X
− 〈A⋆Ax, x〉

X
= 0.

Thus, the elements Ax and x−Ax are orthogonal in X. ♦

Definition A.10. Let X be a Banach space and A belong to L(X). A complex
number λ is in the resolvent set ρ(A) of A if λI − A is a bijection with bounded
inverse (λI − A)−1. The operator Rλ = (λI − A)−1 is called the resolvent of A
at λ ∈ ρ(A). If λ 6∈ ρ(A), then λ is an element of the spectrum σ(A) of A. Let
x ∈ X \ {0} and λ ∈ C satisfying Ax = λx. Then, λ is called an eigenvalue of A
and x is an associated eigenvector of A. The set of all eigenvalues is said to be the
point spectrum of A.

The following theorem is taken from [19, p. 192].

Theorem A.11. Let X be a Banach space and A ∈ L(X). Then, σ(A) = σ(A′)
holds. Moreover, for any λ ∈ ρ(A) we have Rλ(A′) = Rλ(A)′. If X is a real Hilbert
space, then

σ(A⋆) =
{
λ ∈ C

∣
∣ λ̄ ∈ σ(A)

}

and Rλ(A⋆) = Rλ(A)⋆, where λ̄ denotes the complex conjugate of λ.

Definition A.12. Let X be a Hilbert space. Then, A ∈ L(X) is called a positve
operator if 〈Ax, x〉X ≥ 0 holds for all x ∈ X.

Suppose that X and Y are two real Banach spaces. Recall that a set D ⊂ Y is
called precompact of the closure D of D is compact in Y.

Definition A.13. An operator A ∈ L(X,Y) is called compact if for every
sequence {xn}n∈N ⊂ X the sequence {Axn}n∈N ⊂ Y has a convergent subsequence.

Remark A.14. Let D ⊂ Rd be an open, bounded and convex subset. Then,
X = L2(D) is a Hilbert space. Suppose that k ∈ L2(D × D) is a given kernel
function. It is proved in [23, pp. 67-68] that the linear integral operator

T : L2(D)→ L2(D), v 7→ T v =

∫

D

k(µ, ν)v(ν) dν

is a compact operator. ♦
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The proof of the following results can be found in [19, pp. 199-203], for instance.

Theorem A.15. Let X,Y be two real Banach spaces and A ∈ L(X,Y).
1) If {xn}n∈N ⊂ X converges weakly to an element x ∈ X and A is compact,

then the sequence {Axn}n∈N converges strongly to Ax.
2) If {An}n∈N ⊂ L(X,Y) is a sequence of compact operators with ‖An −
A‖L(X,Y) → 0 for n→∞. Then A is compact as well.

3) If A is a compact operator, then its Banach space adjoint A′ is also com-
pact.

4) If Z is a Banach space and B ∈ L(Y,Z) holds, then BA : X→ Z is compact
if A or B is a compact operator.

Remark A.16. Suppose that X and Y are two Hilbert spaces. If A ∈ L(X,Y)
is compact, its Banach space adjoint A′ ∈ L(Y′,X′) is compact by Theorem A.15-
3). Due to Definition A.5 the associated Hilbert space adjoint is given by A⋆ =
J−1
X
A′JY. Since J−1

X
and JY are isomorphisms, the operator A⋆ is compact by

Theorem A.15-4). ♦

Theorem A.17 (Riesz-Schauder). Let X be a Hilbert space and A ∈ L(X) be
a compact operator. Then the spectrum σ(AA) is a discrete set having no limit
points except perhaps 0. Furthermore, the space of eigenvectors corresponding to
each nonzero λ ∈ σ(A) is finite dimensional.

Theorem A.18 (Hilbert-Schmidt). Let X be a Hilbert space and A ∈ L(X)
compact and selfadjoint. Then, there is a complete orthonormal basis {ψi}i∈N ⊂ X

with

Aψi = λiψi and λi → 0 as i→∞.

B. Function Spaces

Let ∅ 6= Ω ⊂ Rd be an open and bounded set. By
∫

Ω

ϕ(x) dx

we denote the Lebesgue integral of ϕ : Ω→ R. For 1 ≤ p <∞ we define

‖ϕ‖Lp(Ω) =

(∫

Ω

∣
∣ϕ(x)

∣
∣
p
dx

)1/p

and for p =∞ set

‖ϕ‖L∞(Ω) = esssup
{∣
∣ϕ(x)

∣
∣ : x ∈ Ω

}
.

For p ∈ [1,∞] the associated Lebesgue space Lp(Ω) is defined as

Lp(Ω) =
{
ϕ : Ω→ R

∣
∣ϕ is Lebesgue measurable and ‖ϕ‖Lp(Ω) <∞

}
.

We identify two functions ϕ, φ ∈ Lp(Ω) proivided ‖ϕ − φ‖Lp(Ω) = 0 holds true.
It is well-known that Lp(Ω) is a Banach-space for any p ∈ [1,∞]; see [8], for
instance. Further, L2(Ω) is a Hilbert space. By C∞

0 (Ω) we denote the set of all
C∞(Ω) functions with compact support in Ω. Further, the set of locally integrable
functions L1

loc(Ω) is given by

L1
loc(Ω) =

{
ϕ : Ω→ R

∣
∣ϕ ∈ L1(K) for any compact K ⊂ Ω

}
.
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Before we turn to the notion of weak derivatives we introduce some notation. The
d-tupel α = (α1, . . . , αd) is called a multi-index of nonegative integers αi. We set

|α| =
d∑

i=1

αi.

For a function ϕ ∈ C∞(Ω) we set Dα for the partial derivative

∂|α|ϕ

∂xα1

1 . . . ∂xαd

d

.

Moreover, we define xα = xα1

1 . . . xαd

d
for x = (x1, . . . , xd) ∈ Ω.

Definition B.1. Let α = (α1, . . . , αd) be a multi-index of nonegative integers
αi. A function ϕ ∈ L1

loc(Ω) has a weak derivative Dα
wϕ provided there is a function

φ ∈ L1
loc(Ω) satisfying

∫

Ω

φψ dx = (−1)|α|
∫

Ω

ϕDαψ dx for all ψ ∈ C∞
0 (Ω).

If such a function φ exists, we set Dα
wϕ = φ.

Now we define function spaces for weakly differentiable functions.

Definition B.2. Let k be a nonnegative integer and ϕ ∈ L1
loc(Ω). Suppose that

the weak derivative Dα
wϕ exists for all multi-indices α satisfying |α| ≤ k. Then, the

Sobolev norm of ϕ is defined by

‖ϕ‖Wk,p(Ω) =

(
∑

|α|≤k

‖Dα
wϕ‖pLp(Ω)

)1/p

for p ∈ [1,∞),

‖ϕ‖Wk,∞(Ω) = max
|α|≤k

‖Dα
wϕ‖L∞(Ω) for p =∞.

The Sobolev space W k,p(Ω) is given as

W k,p(Ω) =
{
ϕ ∈ L1

loc(Ω)
∣
∣ ‖ϕ‖Wk,p(Ω) <∞

}

for 1 ≤ p ≤ ∞.

Next we introduce the so-called Bochner spaces. Let X be a Banach space and
T > 0.

Definition B.3 (Bochner spaces). 1) We denote by Lp(0, T ;X), 1 ≤
p <∞, the space of (classes of) functions t 7→ ϕ(t) ∈ X satisfying
1a) t 7→ ϕ(t) is measurable for t ∈ [0, T ];

1b) ‖ϕ‖Lp(0,T ;X) =
(∫

Ω

‖ϕ(t)‖p
X
dt
)1/p

<∞.

2) By L∞(0, T ;X) we denote the space of (classes of) functions ϕ : [0, T ]→ X

satisfying 1a)

It is well-known that Lp(0, T ;X), p ∈ [1,∞], is a Banach space provided X is a
Banach space.

Let V and H be two real, separable Hilbert spaces with inner product spaces
〈· , ·〉V and 〈· , ·〉H , respectively. Moreover, we assume that V is dense in H with
compact embedding. Hence, there exists a constant CV > 0 satisfying

(B.1) ‖ϕ‖H ≤ CV ‖ϕ‖V for all ϕ ∈ V.
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By identifying H with its dual space (by using the Riesz theorem) we have

V →֒ H ≃ H ′ →֒ V ′,

where each space is dense in the following one. Then, the space

W (0, T ) =
{
ϕ ∈ L2(0, T ;V )

∣
∣ϕt ∈ L2(0, T ;V ′)

}

equipped with the norm

‖ϕ‖W (0,T ) =
(

‖ϕ‖2L2(0,T ;V ) + ‖ϕt‖
2
L2(0,T ;V ′)

)1/2

, ϕ ∈W (0, T ),

is a Hilbert space. Moreover, W (0, T ) →֒ C([0, T ];H); see [6, p. 473]. Hence, ϕ(0)
and ϕ(T ) are meaningful for an element ϕ ∈ W (0, T ). The integration by parts
formula reads

∫ T

0

〈ϕt(t), φ(t)〉V ′,V dt+

∫ T

0

〈φt(t), ϕ(t)〉V ′,V dt =
d

dt

∫ T

0

〈ϕ(t), ψ(t)〉H dt

= ϕ(T )φ(T )− ϕ(0)φ(0)

for ϕ, φ ∈W (0, T ). Moreover, we have the formula

〈ϕt(t), φ〉V ′,V =
d

dt
〈ϕ(t), φ〉H for (ϕ, φ) ∈W (0, T )× V and f.a.a. t ∈ [0, T ];

see [6, p. 477], for example.

C. Evolution Problems

Let V and H be two real, separable Hilbert spaces with inner product spaces
〈· , ·〉V and 〈· , ·〉H , respectively. Moreover, we assume that V is dense in H with
compact embedding. Then, there exists a constant CV > 0 satisfying (B.1). Sup-
pose that f.a.a. t ∈ [0, T ] the bilinear form a(t; · , ·) : V × V → R satisfies the
following conditions:

1) t 7→ a(t; · , ·) is measurable,
2) there exists a constant β > 0 (independent of t) so that

(C.1)
∣
∣a(t;ϕ, φ)

∣
∣ ≤ β ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V and f.a.a. t ∈ [0, T ],

3) there are constants κ > 0 and η ≥ 0, which are independent of t, with

(C.2) a(t;ϕ,ϕ) ≥ κ ‖ϕ‖2V − η ‖ϕ‖
2
H for all ϕ ∈ V and f.a.a. t ∈ [0, T ].

The bilinear form a(t; · , ·) defines a linear operator A(t) : V → V ′ f.a.a. t ∈ [0, T ]
by

〈A(t)ϕ, φ〉V ′,V = a(t;ϕ, φ) for all ϕ, φ ∈ V and f.a.a. t ∈ [0, T ].

It follows from (C.1) that

‖A(t)‖L(V,V ′) ≤ β f.a.a. t ∈ [0, T ].

The domain of A(t) is defined as

D(A(t)) =
{
ϕ ∈ V

∣
∣A(t)ϕ ∈ H

}
.

The following result is proved in [6, pp. 512-520].
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Theorem C.1. Let the spaces V , H and the bilinearform a(t; · , ·) as introduced
above. Then, for every y◦ ∈ H and f ∈ L2(0, T ;V ′) there exists a unique solution
y ∈W (0, T ) satisfying

d

dt
〈y(t), ϕ〉V ′,V + a(t; y(t), ϕ) = 〈f(t), ϕ〉V ′,V for all ϕ ∈ V and f.a.a. t ∈ [0, T ],

〈y(0), φ〉H = 〈y◦, φ〉H for all φ ∈ H.
Remark C.2. Setting y(t) = exp(ηt)z(t) with η from (C.2) we infer that v(t) =

exp(−ηt)y(t) solves
d

dt
〈v(t), ϕ〉V ′,V + ã(t; v(t), ϕ) = 〈f̃(t), ϕ〉V ′,V for all ϕ ∈ V and f.a.a. t ∈ [0, T ],

〈v(0), φ〉H = 〈y◦, φ〉H for all φ ∈ H
with

ã(t;ϕ, φ) = a(t;ϕ, φ) + 〈v(t), ϕ〉H for all ϕ ∈ V and f.a.a. t ∈ [0, T ]

and f̃(t) = exp(−ηt)f(t) ∈ V ′ f.a.a. t ∈ [0, T ]. Using (B.1), (C.1) and (C.2) we
obtain

∣
∣ã(t;ϕ, φ)

∣
∣ ≤ β ‖ϕ‖V ‖φ‖V + η ‖ϕ‖H‖φ‖H ≤

(
β + ηC2

V

)
‖ϕ‖V ‖φ‖V

for all ϕ, φ ∈ V and f.a.a. t ∈ [0, T ]. Thus, ã(t; · , ·) is a bounded bilinear form.
Moreover,

ã(t;ϕ,ϕ) ≥ κ ‖ϕ‖2V for all ϕ ∈ V and f.a.a. t ∈ [0, T ],

i.e., the bilinear form ã(t; · , ·) is coercive. ♦

Corollary C.3. Let all assumptions of Theorem C.1 be satisfied. In addition,
we have a(t; · , ·) = a(· , ·), i.e., the bilinear form is independent of t. If y◦ ∈ V and
f ∈ L2(0, T ;H) hold, then u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), where the operator
A ∈ L(V, V ′) is given by

〈Aϕ, φ〉V ′,V = a(ϕ, φ) for all ϕ, φ ∈ V.
For a proof we refer the reader to [6, pp. 532-533].

D. Nonlinear Optimization

We consider the problem

(P) min J(x) s.t. e(x) = 0,

where J : Rn → R denotes the cost functional or objective and e : Rn → Rm, m ≤ n
are the equality constraints. A point x ∈ Rn is called admissible provided e(x) = 0
holds true. The set of admissible solutions is defined as

F(P) =
{
x ∈ Rn

∣
∣ e(x) = 0

}
.

Definition D.1. Let x̄ ∈ Rn be given.

1) The point x̄ is called a local solution to (P) if x̄ ∈ F(P) holds and J(x̄) ≤
J(x) for all x ∈ U(x̄) ∩ F(P), where U(x̄) ⊂ Rn is an open, nonempty
neighborhood of x̄.

2) The point x̄ is called a strict local solution to (P) if x̄ ∈ F(P) holds and
J(x̄) < J(x) for all x ∈ U(x̄) ∩ F(P), where U(x̄) ⊂ Rn is an open,
nonempty neighborhood of x̄.
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3) The point x̄ is called a global solution to (P) if x̄ ∈ F(P) holds and J(x̄) ≤
J(x) for all x ∈ F(P).

4) The point x̄ is called a strict global solution to (P) if x̄ ∈ F(P) holds and
J(x̄) < J(x) for all x ∈ F(P).

To characterize solutions to (P) we need the notion of the tangent plane. A
curve in a hyperplane H ⊂ Rn is a family of points x(t) ∈ H, where x : [a, b]→ H is
continuous and a < b holds. The curve x is differentiable in t provided ẋ(t) = d

dtx(t)

exists. If ẍ(t) = d2

dt2x(t) is defined, the curve x is said to be twice differentiable.
We say that the curve x goes through the point x̄ ∈ H if there exists a t̄ ∈ [a, b] so
that x(t̄) = x̄ is satisfied. The set of the tangential vectors ẋ(t̄) of all differentiable
curves going through x̄ is called the tangent plane at x̄.

Definition D.2. A point x̄ ∈ F(P) is called regular with respect to the con-
straint e(x) = 0 if the m gradients {∇ei(x̄)}mi=1 ∈ Rn are linearly independent in
Rn.

For a proof of the following characterization of the tangent plane we refer the
reader to [18].

Theorem D.3. Suppose that x̄ ∈ F(P) is a regular point. Then the tangent
plane at x̄ is equal to the set

ker∇e(x̄) =
{
v ∈ Rn

∣
∣∇e(x̄)v = 0

}
⊂ Rn,

where

∇e(x̄) =






∇e1(x̄)⊤
...

∇em(x̄)⊤




 ∈ Rm×n

is the Jacobian of e at x̄.

Now we can formulate the following first-order necessary optimality conditions
for (P). A proof can be found in [18], for instance.

Theorem D.4 (First-order necessary optimality conditions). Suppose that J
and e are continuously differentiable. Moreover, let x̄ be a local solution to (P)
and a regular point for e(x) = 0. Then, there exists a unique Lagrange multiplier
λ̄ = (λ̄1, . . . , λ̄m) ∈ Rm solving

(D.1) ∇J(x̄) +
m∑

i=1

λ̄i∇ei(x̄) = ∇J(x̄) +∇e(x̄)⊤λ̄ = 0.

Let us introduce the Lagrange function L : Rn × Rm → R by

L(x, λ) = J(x) + 〈λ, e(x)〉
Rm = J(x) + λ⊤e(x).

Then, we can express (D.1) as

(D.2a) ∇xL(x̄, λ̄) = ∇J(x̄) +∇e(x̄)⊤λ̄ = 0 ∈ Rn.

Moreover, the equality constraint is satisfied at x̄, so that we have

(D.2b) ∇λL(x̄, λ̄) = e(x̄) = 0 ∈ Rm.

System (D.2) consists of n + m equations for the unknown vectors x̄ ∈ Rn and
λ̄ ∈ Rm.

If J and e are more regular, we can formulate necessary and sufficient second-
order optimality conditions.
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Theorem D.5 (Second-order necessary optimality conditions). Suppose that J
and e are twice continuously differentiable. Moreover, let x̄ be a local solution to
(P) and a regular point for e(x) = 0. Then, the n× n matrix

∇2
xxL(x̄, λ̄) = ∇2J(x̄) +

m∑

i=1

λ̄i∇2ei(x̄)

is positive semidefinite on the set ker∇e(x̄) ⊂ Rn, i.e.

v⊤∇2
xxL(x̄, λ̄)v ≥ 0 for all v ∈ ker∇e(x̄).

Here, λ̄ = (λ̄1, . . . , λ̄m)⊤ ∈ Rm denotes the unique Lagrange multiplier introduced
in Theorem D.4.

For a proof of Theorem D.5 we refer the reader to [18]. To ensure that a point
x̄ ∈ F(P) is a solution to (P) we have to guarantee sufficient optimality conditions.
A proof of the following second-order condition can be found in [18], for instance.

Theorem D.6 (Second-order sufficient optimality conditions). Suppose that J
and e are twice continuously differentiable. Moreover, let the pair (x̄, λ̄) ∈ Rn×Rm

satisfy the necessary optimality conditions (D.2). Further, x̄ is a regular point for
e(x) = 0. Then the matrix ∇2

xxL(x̄, λ̄) is positive definite on the set ker∇e(x̄) ⊂ Rn,
i.e.

v⊤∇2
xxL(x̄, λ̄)v > 0 for all v ∈ ker∇e(x̄) \ {0}.
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