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CHAPTER 1

The POD Method in R™

In this chapter we introduce the POD method in the Euclidean space R™. For
an extension to the complex space C™ we refer the reader to [22], for instance. The
goal is to find a proper orthonormal basis, the POD basis {1;}i_, of rank ¢, for the
snapshot set spanned by n given vectors (the so-called snapshots) y1,...,y, € R™.
We assume that ¢ < min{m,n} holds true. The POD method is formulated as a
constrained optimization problem that is solved by a Lagrangian frame work in Sec-
tion 1. It turns out that the associated first-order necessary optimality conditions
are strongly related to the singular value decomposition (SVD) of the rectangular
matrix ¥ € R™*™ whose columns are given by the snapshots y;, 1 < j < n. In
Section 2 we present properties of the POD basis. Section 3 is devoted to the ex-
tension of the POD method for the Euclidean space R™ supplied with a weighted
inner product. This is used later in the formulation of the POD method for dis-
cretized partial differential equations; see Section 1.3 on Chapter 2. In Section 4
we focus on m-dimensional systems of ordinary differential equations. We consider
two different variants of the POD method: one variant utilizes the whole solution
trajectory y(t), t € [0,T], the other one makes use of the solution y at certain time
instances 0 < t; < ... < t, <T. The relationship of both variants is investigated.

1. POD and Singular Value Decomposition (SVD)

Let Y = [y1,- .., Yn] be a real-valued m x n matrix of rank d < min{m, n} with
columns y; € R™, 1 < j < n. Consequently,

(1.1.1) j= lzyj

can be viewed as the column-averaged mean of the matrix Y.

Singular value decomposition (SVD) [17] guarantees the existence of real num-
bers 01 > 09 > ... > 04 > 0 and orthogonal matrices ¥ € R™*™ with columns
{;}, and ® € R™*™ with columns {¢;}? ; such that

(1.1.2) vye— (D 9)_xe R™X"
0 0
where D = diag (01, ...,04) € R¥? the zeros in (1.1.2) denote matrices of appro-

priate dimensions and ‘T’ stands for the transpose of a matrix (or vector). Moreover
the vectors {¢;} | and {¢;}L, satisfy

(1.1.3) Yo, =00 and Y o =o0;¢; fori=1,...,d.

They are eigenvectors of YY" and Y 'Y, respectively, with eigenvalues \; = o2 > 0,
i =1,...,d. The vectors {¢;}]";,, and {¢;}7_,., (if d < m respectively d < n)
are eigenvectors of YY" and Y 'Y with eigenvalue 0.
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6 1. THE POD METHOD IN R™

From (1.1.2) we deduce that
Y =05’

It follows that Y can also be expressed as

(1.1.4) Y = viD(@d) "

where the matrices ¥¢ € R™*? and ®¢ € R"*¢ are given by
Ul =0 forl1<i<m, 1<j<d,
ol =d;; for1<i<n, 1<j<d

Setting B = D(®9)T € R™" we can write (1.1.4) in the form

Y = 09B? with B* = D(®%)T € R*™,

Thus, the column space of Y can be represented in terms of the d linearly in-
dependent columns of ¥4, The coefficients in the expansion for the columns Y
j =1,...,n, in the basis {¢;}¢_, are given by the j-th column of B?. Since ¥ is
orthogonal, we find that

d d
Z Bwd, =3 " (D@ "), i =>_ ((¥HTw D@, o
i=1 ! i=1 T ’
(1.14) o AT d ¢
= Z ((\II ) Y)ZJ/IZ} Z Z \Ijk-ZYk] 1/)1 Z /l/}Z?y] Rm™ 1/)17
i=1 i=1 k= i=1
\—/_/
= y;
where I; € R4 stands for the identity matrix and (-,-)gm denotes the canonical

inner product in R™. Thus,

d
(115) Yj :Z<yj7’¢)i>]R"” ¢l fOI‘j = 1,...,7’7,
i=1
Let us now interprete SVD in terms of POD. One of the central issues of POD
is the reduction of data expressing their essential information by means of a few
basis vectors. The problem of approximating all spatial coordinate vectors y; of Y’
simultaneously by a single, normalized vector as well as possible can be expressed
as

. ~ 2
(P1) J}n%x Z ’ Yi, ¥ Rm| subject to (s.t.) ||¢¥|gm =1
e m

where [|¢[|gm = 4/ (1, ¥)rm for i € R™.

Note that (P!) is a constrained optimization problem that can be solved by
considering first-order necessary optimality conditions; see Appendix D. For that
purpose we want to write (P1) in the standard form (P) on page 78. We introduce
the function e : R™ — R by e(¢)) = 1 — ||[¢||3.. for ¢p € R™. Then, the equality
constraint in (P1) can be expressed as e(¢)) = 0. To ensure the existence of Lagrange
multipliers a constraint qualification is needed. Notice that Ve(¢)) = 2¢ " is linear
independent if ¢ # 0 holds. In particular, a solution to (P?!) satisfies 1) # 0. Thus,



1. POD AND SINGULAR VALUE DECOMPOSITION (SVD) 7

any solution to (P!) is a regular point; see Definition D.2. Let £ : R™ x R — R be
the Lagrange functional associated with (P!), i.e

N =S 1w W) [T+ AL~ [0l3)  for (,A) € R™ x R.
j=1

Suppose that ¢ € R™ is a solution to (P!). Since 1 is a regular point, we infer from
Theorem D.4 that there exists a unique Lagrange multiplier A € R™ satisfying the
first-order necessary optimality condition

VL, \) =0 inR™ x R.
We compute the gradient of £ with respect to 1/)'
+A (1 - Z 1/)k>>

o (323w
226(2)@%) i — 20

Jj=1"k=1
j=1 “k=1

(w, A) =

(91/)

n

2y (Z YiiYji w) — 2\
k=1 j=1
———
=YY T )ik

Thus,
(1.1.6) VL@, \) =2(YYTp— M) =0 in R™.
Equation (1.1.6) yields the eigenvalue problem
(1.1.7a) YY) =X in R™.
Notice that YY T € R™*™ is a symmetric matrix satisfying
PTYY =¥ T9) Y = YT la, >0 forall i € R™.

Thus, YY T is positive semi-definite. It follows that YY T possesses m nonnegative
eigenvalues \;y > Ao > ... > \,;; > 0 and the corresponding eigenvectors can be
chosen such that they are pairwise orthonormal.

From %(w, A) < 0 in R we infer the constraint

(1.1.7h) ol = 1.
Due to SVD the vector #; solves (1.1.7) and

S [ i) |
j=1

n

= Z <yja¢1>Rm yjad}l Z ijwl le/pﬂ)ﬁ

Jj=1 j=1
<Z<yja¢l>[gmyja7/}l> <Z(2Yk] 1/11 >%J/’1>
j=1 j=1 k= R

<Z<meﬂ€ 1) ) > (YY1, 1)
k=1 “j=1 R™

= )\1 <1/)171/}1>Rm == >\1 ||1;Z]1H]Rm = )\17
where (1)) denotes the k-th component of the vector ;.
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Note that VyyL(,A) = 2(YY T — AI,,) € R™*™ holds. Let 1) € R™ be
chosen arbitrary. Since YY T is symmetric, there exist m orthonomal eigenvectors
Y1, b € R™ of YY'T satisfying YY T4, = A\ap; for 1 < i < m. Then, we can
write 1 in the form

)= Z U, Yi)gm ¥
=1
At (¢1, A1) we conlude from A; > /\ > ... >\, > 0 that
<¢ vwwﬁ(?/)l, )‘1) >]Rm =2 <¢, (YYT - AlIm)w>Rm

mm

=233 Wi ) W 07T = M)

I
'E\%s N
NERD

s
Il
—

(A = A1) (0, ¥ ) o (0, V5D (P 5 ) o

Il
A

J

(N — )\1)|<¢>¢i>Rm|2 <0.

H
.MS

s
I
-

Thus, (11, A1) satisfies the second-order necessary optimality conditions for a max-
imum, but not the sufficient ones; compare Theorems D.5 and D.6. We next prove
that 1 actually solves (P'). Suppose that 1[) € R™ is an arbitrary vector with
l|¢h|lgm = 1. Since {4;}7, is an orthonormal basis in R™, we have

= (, $i)gm Ui
=1

2

]
=
<
=
i
M:

T

yjaz 1/} % ]Rm >
R?‘VL

i=1

<
Il

—_
<.
Il

—_

I
M:
NE
Ms

<.
Il
—
.
Il
—
=~
Il

N(
(

5 (0, U m Vi) (Ui (0, k) zem Vi) )
Yj

M:
NE
Ms

s wz R™ :Ug ) "l)k>Rm <’(/;7 ’(/}i>]Rm <1/;7 "/’k>Rm)

<.
Il
—
.
Il
o
=~
Il

1

<< Z y]7wz R™ y]awkr> <7;awi>]Rm <17Zawk>]]§m>
RT’VL

NgE
NE

i=1 k=1 j=1
=Xithi
= 207 (a9 ¥ 9 )

©
Il
-
b
Il

1
=Xidik

X [0, idgn P < M YW, 0i)gen | = A1 [l = M

i=1

I
NE

«
Il
-

(5, 1) o |-

M=
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Consequently, ¥ solves (P1) and argmax (P!) = 07 = ;.
If we look for a second vector, orthogonal to ¥ that again describes the data
set {y;}"_; as well as possible then we need to solve

(P?) maxzm, wnl’ st [l = 1 and (1) = 0.

berm £

SVD implies that 1), is a solution to (P?) and argmax (P?) = 03 = Ay. In fact, 9y
solves the first-order necessary optimality conditions (1.1.7) and for

m

Y= <¢ ¢2>Rm 1; € span {¢1}L

we have

Clearly this procedure can be continued by ﬁmte induction. We summarize our
results in the following theorem.

THEOREM 1.1.1. Let Y = [y1,...,yn] € R™*™ be a given matriz with rank
d < min{m,n}. Further, let Y = UX®T be the singular value decomposition of Y,
where W = [ih1,...,0pn] € R™X™ & = [dq,...,d,] € R™*™ are orthogonal matrices

and the matrix ¥ € R™*™ has the form as (1.1.2). Then, for any £ € {1,...,d}
the solution to

(PY) _ max §:§:\ypszm\ st (g, ) gm = 0y for 1 < i j < ¢

e €R™ 7 4

is given by the singular vectors {1;}i_,, i.e., by the first £ columns of V. In (P*)
we denote by 0;; the Kronecker symbol satisfying 0;; = 1 for i = j and 6;5 = 0
otherwise. Moreover,

14 14

(1.1.8) argmax (P%) = Za? = Z i

=1 =1

PROOF. Since (P?) is an equality constrained optimization problem, we intro-
duce the Lagrangian (see Appendix D)

L:R™ x ... x R™ xR*¢
—_————

£-times

4 n
awmmmzz_ywmm+2&]wwwwu

=1 1,7=1

for 1,...,¢ € R™ and A = ((\i;)) € R*‘. First-order necessary optimality
conditions for (P?) are given by

£ (V1,...,e, AN)dthr, =0 for all 6y, € R™ and k € {1,...,¢}.

(1.1.9) o
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From

oL ¢ n

aidjk(wla"ww% 61/}k - 222 yjawl R™ yja(s’(/}k)]Rm ik
i=1 j=1

~

- /\zj<¢za57/}k R™ ]k Z >\Z] 51/}ka1/)J>Rm5kz

7,7=1 7,7=1
n 4
=2 Z <yja"/}k>Rm Y, 51/}16 Z ik + )\kz wzu 5wk>Rm
j=1 i=1
n 4
= <2 Y V) pm Yj — Z (Aik + ki) i, 5¢k>
j=1 i=1 Rm
and (1.1.9) we infer that
n 1 0
(1.1.10) Jz:; (Y Vk)pm Yj = 3 ; (Nik + Agi) i in R™ for all k € {1,...,(}.

Note that
YY Ty = Z (Yj )gm y; for v € R™.
j=1
Thus, condition (1.1.10) can be expressed as

14
1
(1.1.11) YY Ty =5 > (Nik+ M) ¢ in R™ forall k € {1,...,}.

i=1

Now we proceed by induction. For £ = 1 we have k = 1. Tt follows from (1.1.11)
that

(1.1.12) YY Ty = \ipy in R™

with A\; = A11. Next we suppose that for £ > 1 the first-order optimality conditions
are given by

(1.1.13) YY " = Mt in R™ for all k € {1,...,0}.

We want to show that the first-order necessary optimality conditions for a POD
basis {1/11}”1 of rank £ + 1 are given by

(1.1.14) YY "pp = Mpthp, in R™ for all k € {1,...,0+1}.
By assumption we have (1.1.13). Thus, we only have to prove that
(1.1.15) YY "1 = Aep1tep1  in R™.

Due to (1.1.11) we have

£+1
1 .
(1.1.16) YY Ty = 3 Y (N1 + Aesri) ¥ in R™

i=1
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Since {1;}‘*] is a POD basis we have (Ye41,05)rm = 0 for 1 < j < . Using
(1.1.13) and the symmetry of YY T we have for any j € {1,...,¢}

0= )\j <w€+17wj>ﬂ{m = <17Z]Z+17 YYT'(/}j>Rm = <YYT,¢)€+17¢j>Rm
1 {41
=3 Z (Nier1 + Aegri) Wi ¥j)ge = (Ajerr + Aegas) -
i=1
This gives
(1117) /\Z+1,i = _)\i,£+1 for any i € {1,76}

Inserting (1.1.17) into (1.1.16) we obtain

VY Tappyr = (Moot + Aegri) Vi + Xeg1,e01 Vg

DN | =
-

1

K2

(Aier1 = Nier1) Yi + N1 001 Vo1 = Negrev1 Vet

I
DN | =
-

1

o
Il

Setting Agy1 = Arq1,041 we obtain (1.1.15).
Summarizing, the necessary optimality conditions for (P?) are given by the sym-
metric m x m eigenvalue problem

(1.1.18) YY Ty = Ny fori=1,...,0

It follows from SVD that {1;}{_, solves (1.1.18). The proof that {i;}{_, is a
solution to (P*) and that argmax (P¢) = Zle o2 holds is analogous to the proof

(2

for (P1); see Exercise 1.5.5. O

Motivated by the previous theorem we give the next definition. Moreover, in
Algorithm 1 the computation of a POD basis of rank ¢ is summarized.

DEFINITION 1.1.2. For ¢ € {1,...,d} the vectors {1;}_, are called POD basis
of rank 4.

Algorithm 1 (POD basis of rank /)
Require: Snapshots {y; 7—1 CR™, POD rank ¢ < d and flag for the solver;

1: Set Y = [y1,...,Yyn] € R™*™,

2: if flag = 0 then

3:  Compute singular value decomposition [¥, X, ®] = svd (Y);
4 Set =V ;eR™and \; =%% fori=1,...,4

5: else if flag = 1 then

6:  Determine R =YY T € R™x™,

7. Compute eigenvalue decomposition [¥, A] = eig (R);

8: Set1/11:\I/Z€Rm and \; = Ay; fOfizl,...,g;

9: end if

10: return POD basis {¢;}¢_, and eigenvalues {\;}¢_;;
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2. Properties of the POD Basis

The following result states that for every ¢ < d the approximation of the
columns of Y by the first £ singular vectors {¢;}¢_, is optimal in the mean among
all rank ¢ approximations to the columns of Y.

COROLLARY 1.2.1 (Optimality of the POD basis). Let all hypotheses of The-
orem 1.1.1 be satisfied. Suppose that ¥? € R™* denotes a matriz with pairwise
orthonormal vectors v; and that the expansion of the columns of Y in the basis

{@}‘ijzl be given by

Y = UiC?  where C’fj = (@i,yﬁRm for1<i<d,1<j<n.
Then for every £ € {1,...,d} we have
(12.1) I — 0B, < Y - B

In (1.2.1), || - | F denotes the Frobenius norm given by

ZZ |A¢j|2 = y/trace (ATA) for A e R™*",
i=1 j=1
the matriz U¢ denotes the first £ < d columns of ¥, B¢ the first £ rows of B and

similarly for U and C*. Moreover, trace (A) denotes the sum over the diagonal
elements of a given matriz A.

1Al =

PROOF OF COROLLARY 1.2.1. From Exercise 1.4.6 it follows that
d n
R 2 . 2 2 2
Y = ¥C Y = 94(C - Co)l[p = 10 = Cille = D Y |CaI,
i=0+1 j=1
where C§ € R?*™ results from C' € R?*™ by replacing the last d — ¢ rows by 0.
Similarly,

d n
2 2 2 2
Iy = w*B | = |9*(B* = By)llp = |1B* = Bilp = Y > |B

i=L+1 j=1
d n )
= > > i vidgn
i=0+1 =1
(1.2.2) o .
= Z<<ijwi>ﬂ§mij¢i>ﬂgm = Z <YYT1/)Z')LZ}2’>]R"L
i=6+1 j=1 i=t+1
d
= 0'7;2’
i=0+1

By Theorem 1.1.1 the vectors 91, ..., solve (P?). From (1.2.2),
d n
9 . 2 2 2
Y17 = 199CHe = 10 = > Y |CE]
i=1 j=1
and

d n d
IYI2 = w5 = 1B = SN |BE =3 o2
=1

i=1 j=1



2. PROPERTIES OF THE POD BASIS 13

we infer that

¢
Iy — wBY)% = Z o3 —Za —Za?—HYIIF ZZ| I
i=0+1 i=1j=1
I Sp DT AN o Sl IeTI L wp ol "
i=1 j=1 i=1 j=1 i=1 j=1
d n
=3 Y |cd) =y — vt
i=0+1 j=1
which gives (1.2.1). O

Notice that

n m ¢
e =3y YZJ—ZM%\ D IP B TED SIUNTIN £

i=1 j=1 j=11i=1 k=1

n
Z Hy] y]a >]R’”¢k

2

Rm

Analogously,

n )4
) 2
|y — B = =3 i et

Jj=1 k=1
Thus, (1.2.1) implies that

l
<
R Z Hyj . ijwk>mek‘

9] I SRR
Jj=1 k=

Rm™

for any other set {wi}le of ¢ pairwise orthonormal vectors. Hence, it follows from
Corollary 1.2.1 that the POD basis of rank ¢ can also be determined by solving

2

min ZH?JJ yav > i

(1.2.3) D1, e ER™ ST
s.t. <’ll)i;'lz[)j>]Rm - 61’]’ fOI' 1 S 'Lv] S E

REMARK 1.2.2. We compare first-order optimality conditions for (P*) and
(1.2.3). Let {1;}f_, be a given set of orthonormal vectors in R™, i.e.

(1.2.4) (Vis Vi)gm = i for i,k e {1,...,m}.

For any index k € {1,...,¢} and any direction ¥5 € R™ we have
0

87%(62k)w5 aT,ZJ (<wzywk>mm)w5

) Wi ts)gm forie{l,... 03\ {k},
| 2 (Wi, Ys) g for i =k.

R™

0=

Hence

(1.2.5) (i, Ys)gm =0 forie{l,...,£} and s € R™.
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Suppose that y1,...,y, € R™ are the given snapshots. For £ € {1,...,m} we set

L
zj = Zj(¢1,...7’(/Jg) =Y; — Z<yj7¢i>]Rm P; € R™ fOI'j =1,...,n.
i=1
Let
(126) 1/)17~-~,¢€ ZHZJHRW'

Using (1.2.4) we have

L L
2
HZjHQ <Z]72] < Z yjﬂ/}k R™ Zbkuyj Z<ijwi>]1{m ¢z>
k:l R7YL

=1

¢
= (Yj> Yj)gm — 22 (Y, Vidgm (Yjs Vi) gom
=1
¢ ¢
(127) + Z Z <yJa w >]Rm <y]a wk>]1§m <’¢}z7 ’(/}k>]Rm
i=1 k=1
d 2 d 2
= llysllam = 2> [W i |+ D [Wis i) gm|
=1 =1

14

= [lysl1zm = > [y i) |
=1

Combining (1.2.6) and (1.2.7) we derive

¢
(1.2.8) J(h1, .- ) = Z I25l13m = Z <||yj||§m = > s $idgm
i=1

7j=1

)
For any k € {1,...,¢} we will consider the derivatives

0 (Sl n ) 5 s 2
M(; <||y]HRm _ZZZ; |<y]7wl>Rm’ )) and M(;”Z](wl”we)”Rm>

Due to (1.2.8) both derivatives must be the same. Notice that

n

0. ‘
877,/%(1#17‘”71/}6 (Z(kgj']?%m_Z|<yja¢i>Rm|2)>'¢6
n P ) £
:Z%(”yj Rm Z y]vwz R™ ) 5

== 2yj Yk g (U V5) g
j=1

= < 22 y]a/l;bk' Rmy_]vd)6>
j=1 R

m



2. PROPERTIES OF THE POD BASIS 15

for any direction 5 € R™ and for 1 < k < ¢. Note that

n
S i)y =YY T for p € R™.

J=1

Then, we find that

—J(wl, o) = =2YY Ty, for 1 <k </
0y,

On the other hand we have

¢ gy = — (Wi, Vi) gm s — (Yi> Vs )gm WPk = —(Ujs Yk )gm s — (Yjr Vs)gm Vi

for 1 <k < ¢ and 95 € R™. Using (1.2.4) and (1.2.5) we find that

a .
(” ]”RM)wts aw (<Zj7zj>R7n)1z[}5 =2 <Zj7 812{:U6>Rm

¢
=2 <3/j = Wi Vidmm i — (s Yo mm Ok — (W) Yk g ¢5>
=1

¢
—2(Yj, Vs )gm (Yjs Vr)gm + 2 Z Wis Vi) gm Yi> V5)pm Ui Yk )gm
=1
¢
= 2> Vi) g (Ys> V5) g + 2 Z (W i) o (Y Uk ) g (Y5> V5 ) grm

(1.2.9)

R™

i=1

= =2y, Vi) (is Vs gm = (= 205 Uk ) g Yi> V6 ) gm
for any direction ¥s € R™, for j = 1,...,n and for 1 < k < ¢. Summarizing, we
have

J - T

By (V1) = —2 (i Yk 5 = —2YY 4y
j=1

which coincides with (1.2.9). O

REMARK 1.2.3. It follows from Corollary 1.2.1 that the POD basis of rank ¢
is optimal in the sense of representing in the mean the columns {y; };‘l=1 of Y as a
linear combination by an orthonormal basis of rank ¢:

:zj; i >ZZ|%’¢1RW‘

i=1 j=1

n

4
ZZ ijwz Rm

for any other set of orthonormal vectors {1 }¢_;. O

The next corollary states that the POD coefficients are uncorrelated.

COROLLARY 1.2.4 (Uncorrelated POD coefficients). Let all hypotheses of The-
orem 1.1.1 hold. Then.

Z Yjs Vi) g (Yss V) g ZB Bkj—o Oi for 1 <i,k </
j=1
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PRrROOF. The claim follows from (1.1.18) and (4;, ¥g)rm = 0 for 1 < i,k < ¢:

<yj7 ¢Z>Rm <yj, wk>Rm = < Z <yj7 ¢i>]Rmyja ¢k> = <o—i2wia ’l/}k>]Rm = Ji25ik~
R’VYL

j=1

Jj=1

=YY Ty,
O

Next we turn to the practical computation of a POD-basis of rank £. If n < m
then one can determine the POD basis of rank ¢ as follows: Compute the eigenvec-
tors ¢1,..., ¢ € R™ by solving the symmetric n X n eigenvalue problem

(1.2.10) Y'Y¢;=N¢ fori=1,....¢

and set, by (1.1.3),
1

¥ ow
For historical reasons [20] this method of determing the POD-basis is sometimes
called the method of snapshots. On the other hand, if m < n holds, we can obtain
the POD basis by solving the m x m eigenvalue problem (1.1.18).

For the application of POD to concrete problems the choice of £ is certainly of
central importance for applying POD. It appears that no general a-priori rules are
available. Rather the choice of £ is based on heuristic considerations combined with
observing the ratio of the modeled to the total energy contained in the system Y,
which is expressed by

Y, fori=1,...,0

¢
£(t) = iz
Z?:l Ai
Notice that we have 2?21 A\ = trace (YYT) = trace (Y 'Y). Let us mention that

POD is also called Principal Component Analysis (PCA) and Karhunen-Loéve De-
composition. In Algorithm 2 we extend Algorithm 1.

Algorithm 2 (POD basis of rank /)

Require: Snapshots {y; j=1 CR™, POD rank ¢ < d and flag for the solver;
1: Set Y = [y1,...,yn] € R™*™;
2: if flag = 0 then
3:  Compute singular value decomposition [¥, X, ®] = svd (YV);
4 Set; =V ,eR™and \; =%% fori=1,...,4
5: else if flag = 1 then
6: Determine R=YY T € R"™x™,
7
8
9

Compute eigenvalue decomposition [¥, A] = eig (R);

: Set?ﬂi:\l’.’iERmand)\iZAiiforZ‘:L...,f;

: else if flag = 2 then
10:  Determine K =Y TY € R**™;
11:  Compute eigenvalue decomposition [®, A] = eig (K);
12: Set ¢1:Y@7Z/¢X€Rm and \; = Aj; fOI‘i:].,...,&
13: end if
14: Compute £(¢) = Zle i/ Zle i
15: return POD basis {1;}¢_,, eigenvalues {\;}{_, and ratio £(¢);
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3. The POD Method with a Weighted Inner Product
Let us endow the Euclidean space R™ with the weighted inner product
(131) @)y = Wi = @, Wih)gm = (W, )z for ¢,9 € R™,

where W € R™*™ is a symmetric, positive definite matrix. Furthermore, let

lVllw = v/ (¥, )w for v € R™ be the associated induced norm. For the choice
W = I,,,, the inner product (1.3.1) coincides the Euclidean inner product.

ExaMpPLE 1.3.1. Let us motivate the weighted inner product by an example.
Suppose that Q = (0,1) C R holds. We consider the space L*(Q) of square inte-
grable functions on 2:

L*(Q) = {gp : Q) —>R‘ / lo? da < oo}.
Q
Recall that L?(Q) is a Hilbert space endowed with the inner product
(0, @) r2(0) = /ng@ dz for ¢, g € L*(Q)

and the induced norm [|¢||r2(0) = /{p, ©)r2() for ¢ € L?(2). For the step size
h=1/(m —1) let us introduce a spatial grid in Q by

x;=0{—1)h fori=1,...,m.

For any ¢, ¢ € L*() we introduce a discrete inner product by trapezoidal approx-
imation:

hsh Ml h R
(1.3.2) (@) rz ) = h<<p12‘p1 + Y (eter) + wngom)’
i=2
where
9 [h/2
ﬁ/ p(z)dx fori =1,
0
ol = E/ o(x)de fori=2,...,m—1,
9 1
—/ p(z)dx for i =m
h 1—-h/2

and the @!’s are defined analogously. Setting W = diag (h/2,h,...,h,h/2) €
R™>m b = (. oh )T € R™ and @8 = (@7, ..., 50T € R™ we find

(@, P2 (@) = (" 8" )w = (") TWE.

Thus, the discrete L2-inner product can be written as a weighted inner product
of the form (1.3.1). Let us also refer to Exercise 1.5.7, where an extension to a
two-dimensional domain € is investigated. %

Now we replace (P!) by

n ~ 9 _
(Piy) max > [(y;, ¥y " st Y]y =1,
berm £
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Analogously to Section 1.1 we treat (Py;,) as an equality constrained optimization
problem. The Lagrangian £ : R™ x R — R for (P1;,) is given by

LN =D [ ¥ + A0 = [0]5,)  for (¥,)) € R™ xR.
j=1

We introduce the function e : R™ — R by e(¥) = 1 — ||¢[[3n = 1 — T W4 for
¢ € R™. Then, the equality constraint in (P};,) can be expressed as 6(1[)) = 0.
Notice that Ve(y)) = 2¢pTW is linear independent if 1) # 0 holds. Suppose that
¢ € R™ is a solution to (Py,). Then, ¢ # 0 is true, so that any solution 1 is
a regular point for (P};;); compare Definition D.2. Consequently, there exists a
Lagrange multiplier associated with the optimal solution 1, so that the first-order
necessary optimality condition

VL, A) =0 inR™ xR

is satisfied; see Theorem D.4. We compute the gradient of £ with respect to :
Since W is symmetric, we derive

n 2 m m
8 £ (g0 = (Z ZZYIWMW + A(1 - ZZ%MWQ)
Vi j=1"k=1v=1 k=1v=1
=2 (S viwn ) (S v
j=1 “k=1lv=1 u=1
_)\<Zuu uz"‘ZWzkwk)
v=1 k=1
=2 Z Z Z ip Z Y, J‘YjIvalbk - 2)\<Z Wik¢k>
k=1v=1p=1 j=1 k=1
=2 (WYYTT/Vw - AW¢> :
Thus,
(1.3.3) VuL(,\) = 2(WYYTWe — AWy) =0 in R™.

Equation (1.3.3) yields the generalized eigenvalue problem
(1.3.4) (WY)WY)Tp = AW,

Since W is symmetric and positive definite, W possesses an eigenvalue decomposi-
tion of the form W = QDQT, where D = diag (11, .. .,7m) contains the eigenvalues
m>...2 0y >0o0f Wand Q € R™*™ is an orthogonal matrix. We define

W = Qdiag (n7, ... ,nf,“L)QT for a € R.

Note that (W)™t = W~ and W+# = WeW? for a, B € R; see Exercise 1.5.8.
Moreover, we have

W)y = (W2, WY2) e, for b, ) € R™

and [[¢||w = ||[W/2¢||gm for v € R™. Setting i = W) € R™ and ¥ =
W2y € R™*" and multiplying (1.3.4) by W~/2 from the left we deduce the
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symmetric, m x m eigenvalue problem
(1.3.5a) YY) = Aip in R™.
From %% (¥, \) < 0 in R we infer the constraint l¥|lw =1 that can be expressed as

(1.3.5b) [l =1

Thus, the first-order optimality conditions (1.3.5) for (Pj;,) are — as for (P!)
(compare (1.1.7)) — an m x m eigenvalue problem, but the matrix ¥ as well as the
vector 1) have to be weighted by the matrix W1/2,

Notice that V., L(¥,\) = 2(WYY TWep — AWp) € R™*™. Let i) € R™ be
chosen arbitrary. Since YY T is symmetric, there exist m orthonomal (with respect
to the Euclidean inner product) eigenvectors 1y, ..., %, € R™ of YY T satisfying
YY Toh; = My for 1 < i < m. We set 1, = W12, 1 <i < m. Then, {¢;}12,
form an orthonormal (with respect to the weighted inner product) basis in R™ and
WYY TWi; = \;W1p; holds true. We write ¢ in the form

Y= (Vi) ¥
j=1

At (¢1, A1) we conlude from Ay > A > ... > A, > 0 that

YTV L1, M)y =20 T (WYY TW — \ W)y

I
L
NERINGE

Il
-

<w Vi) g (0, V) gm0y (WYY TW — X\ W),

(Aj = A1) (W, i) g (0, 05 g 00 W

I
-

N
Il
_

J

()\] - )\1)|<wawi>Rm ?

|
e

<0.

.
Il
—

Thus, the matrix V4 £(1)1, A1) is negative semi-definite, which is the second-order
necessary optimality condition; compare Theorem D.5. However, analogously to
Section 1 it can be shown (see Exercise 1.4.1)) that

= W2

solves (P{;,), where 4, is an eigenvector of YY T corresponding to the largest eigen-
value Ay with |[¢)1||gm = 1. Due to SVD the vector ¢ can be also determined by
solving the symmetric n X n eigenvalue problem

VY1 =M
where Y'Y = YTWY, and setting

— 1
WY 2y¢1 - =
VA1 VA1
As in Section 1 we can continue by looking at a second vector v € R™ with
(¥,11)w = 0 that maximizes Z?:l |{y;,¥)w|*. Let us generalize Theorem 1.1.1
as follows; see Exercise 1.5.9.

(1.3.6) =W V2 = Y.
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THEOREM 1.3.2. Let Y € R™*™ be a given matriz with rank d < min{m,n},
W a symmetric, positive definite matriz, Y = W2Y and ¢ € {1,...,d}. Further,
let Y = UN®T be the singular value decomposition of Y, where ¥ = [wl, ooy €
R™X™ & = [p1,...,H,] € R™*™ are orthogonal matrices and the matriz > has the
form

@Y@:(ﬁ 8>:zewwm

Then the solution to

(P&) max ZZ\ Ui Vi)w |~ st (i) = 0ij for 1<i,j <(

SIS

is given by the vectors ; = W=Y24;, i =1,...,L. Moreover,

(1.3.7) argmax (P,) Zaf = Z Aie

PRrROOF. Using similar arguments as in the proof of Theorem 1.1.1 one can
prove that {1;}¢_; solves (P%,); see Exercise 1.4.8. O

REMARK 1.3.3. Due to SVD and Y'Y = YTWY the POD basis {¢;}¢_,
of rank ¢ can be determined by the method of snapshots as follows: Solve the
symmetric n X n eigenvalue problem

YTWY(gi = )\1(5Z fOI‘ Z = 1, . )f’
and set

o 1
i =W =

- —1/2(v 7))
=V (Vi) =

fori=1,...,¢. Notice that

1

W71/2W1/2YQ_51' — Y&l

1
Vi

=

VA
For m > n the method of snapshots turns out to be faster than computing the

POD basis via (1.3.5). Notice that the matrix W'/2 is also not required for the
method of snapshots. O

(Wi )y = 0 Wy = for 1 <i,j < /.

In Algorithm 3 we extend Algorithm 2.

4. POD for Time-Dependent Systems

For T > 0 we consider the semi-linear initial value problem

(1.4.1a) (t) = Ay(t) + f(t,y(t)) for t € (0,T),
(1.4.1b) y(0) = yo,

where y, € R™ is a chosen initial condition, A € R™*™ is a given matrix, f : [0, 7] X
R™ — R™ is continuous in both arguments and locally Lipschitz-continuous with
respect to the second argument. It is well known that (1.4.1) has a unique (classical)
solution y € CY(0,T,;R™) N C([0,T,];R™) for some maximal time T, € (0,7].
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Algorithm 3 (POD basis of rank ¢ with a weighted inner product)

Require: Snapshots {y; };’:1 C R™, POD rank ¢ < d, symmetric, positive-definite
matrix W € R™*™ and flag for the solver;
1 Set Y = [y1,...,yn] € R™*™,

2: if flag = 0 then

3. Determine Y = W1/2y € Rm*";

4:  Compute singular value decomposition [¥, 3, ®] = svd (Y);
5. Set ;=W 20 ;e R™and \; = X2 fori=1,....4;

6: else if flag = 1 then

7. Determine Y = W'/2y e R™*";

8 Set R=YYT € Rmxm:

9:  Compute eigenvalue decomposition [, A] = eig (R);

10: Set 1/)1 = W_1/2\i/.’i e R™ and \; = A;; for ¢ = 1,... ,g;

11: else if flag = 2 then

12 Determine K = Y TWY € R**";

13:  Compute eigenvalue decomposition [®, A] = eig (K);

14: Set ¢1=Y‘i)ﬂ/\/>\;LERm and /\IZA” fOI‘iZl,...,E;

15: end if

16: Compute E(¢) = Zle i/ Zle i

17: return POD basis {¢;}¢_,, eigenvalues {\;}¢_, and ratio £(¢);

Throughout we suppose that we can choose T, = T. Then, the solution y to (1.4.1)
is given by the implicit integral representation

t
y(t) = ey, + / =4 f (s, y(s)) ds
with et = 3"°° A" /(n)).

4.1. Application of POD for Time-Dependent Systems. Let 0 < t; <
ty < ... < t, <T be a given time grid in the interval [0,7]. For simplicity of
the presentation, the time grid is assumed to be equidistant with step-size At =
T/(n—1),ie.,t; = (j—1)At. We suppose that we know the solution to (1.4.1) at
the given time instances t;, j € {1,...,n}. Our goal is to determine a POD basis
of rank ¢ < min{m,n} that describes the ensemble

12}
y;j = y(t;) = ey, +/ et f(s,y(s))ds, j=1,...,n,
0

as well as possible with respect to the weighted inner product:
¢

N _ min Zn:aijj—Z@jv@)W%

2
(P3) Yo YeER™ S0y i=1 W
s.t. <1/;’L7’(/’}J>W = 6ij7 1 S Zaj S Ea

where the o;’s denote nonnegative weights which will be specified later on. Note
that for o; =1 for j =1,...,n and W = I,,, problem (f’g‘}[) coincides with (1.2.3).
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EXAMPLE 1.4.1. Let us consider the following one-dimensional heat equation:

(1.4.2a) 0:(t,x) = O,(t, ) for all (t,xz) € @ =(0,T) x Q,
(1.4.2b) 0.(t,0) =0,(t,1) =0 for all t € (0,7),
(1.4.2¢) 0(0,x) = 05(x) forallz € Q= (0,1) C R,

where 6, € C(f) is a given initial condition. To solve (1.4.2) numerically we apply a
classical finite difference approximation for the spatial variable x. In Example 1.3.1
we have introduced the spatial grid {z;}!"; in the interval [0,1]. Let us denote
by y; : [0,7] — R the numerical approximation for (-, z;) for i = 1,...,m. The
second partial derivative 6, in (1.4.2a) and the boundary conditions (1.4.2b) are
discretized by centered difference quotients of second-order so that we obtain the
following ordinary differential equations for the time-dependent functions y;:

_ —2y1(t) + 2y2(t)

(e =~ r 2l
. Yi—1(t) — 2yi(t) + yit1 (¢ .
(1.4.32) s = ¥im® hé) il o e,
. —2ym (t) + 2ym-1(t)
for t € (0,T]. From (1.4.2c) we infer the initial condion
(1.4.3b) ¥i(0) = 0o(z;), i=1,...,m.
Introducing the matrix
-2 2 0
1 -2 1
1 . . . mxXm
A= 72 Ce eR
1 -2 1
0 2 =2
and the vectors
yi(t) 0o(21)
y(t) = fort € 0,7], yo= e R™
Ym(t) 0o (zm)
we can express (1.4.3) in the form
§t) = Ay(t) fort e (0,7),
144
(1.44) y(0) =9

Setting f = 0 the linear initial-value problem coincides with (1.4.1). Note that
now the vector y(t), t € [0,T], represents a function in Q evaluated at m grid
points. Therefore, we should supply R™ by a weighted inner product representing
a discretized inner product in an appropriate function space. Here we choose the
inner product introduced in (1.3.2); see Example 1.3.1. Next we choose a time
grid {t;}7_; in the interval [0,7] and define y; = y(t;) for j = 1,...,n. If we are
interested in finding a POD basis of rank ¢ < min{m, n} that desribes the ensemble
{y;}j=1 as well as possible, we end up with (f’a’/). O
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To solve (f’;}’,@) we apply the techniques used in Sections 1 and 3, i.e., we use
the Lagrangian framework; see Appendix D. Thus, we introduce the Lagrange
functional

L:R™x...x R™"xR> - R

{—times

by

n 4
L(on, o tbe A) = e ||y = Z<yj,wlwwz +ZZAw (i Vi) )

j=1 i=1 j=1

for 1,...,¢ € R™ and A € R with elements Aij, 1 <i,5 <. It turns out that
the solution to (153{’,[) is given by the first-order necessary optimality conditions

(1.4.5a) Vo, L0, .. e, A) =0 inR™, 1<i<,
and

(1.4.5b) (i, ¥i)w = dij, 1<4,5<4
compare Theorem D.4. From (1.4.5a) we derive

(1.4.6) YDY TWip; = Ny fori=1,...,¢,

where D = diag (a1,...,a,) € R™ ™, Inserting 1; = W~/2¢; in (1.4.6) and
multiplying (1.4.6) by W'/2 from the left yield

(1.4.7a) W2y DY TW 24, = M.

From (1.4.5b) we find

(L4TD) iy D) = B by = 0] Wy = (hiy )y = 65, 1<, j < L.
Setting Y = W1/2Y D'/2 € R™*" and usmg W—r W as well as DT = D we infer

from (1.4.7) that the solution {t;}{_, to (P" ) is given by the symmetric m x m
eigenvalue problem

YYThi =Ny, 1 <<€ and  (¥3,9))gm = 05, 1<4,5 < L.
Note that
Y'Y = DV2yTWyDY? e R,
Thus, the POD basis of rank ¢ can also be computed by the methods of snapshots
as follows: First solve the symmetric n X n eigenvalue problem

VY =N, 1<i <l and (i, d))gn = 6ij, 1 <i,j <L
Then we set (by SVD)
. 1 _ 1 _
i =W Y2 = — WY, = —YDY2%;, 1<i<y;
v VA nE R TP 1sis

compare (1.3.6). Note that

(i, i)y = b Wep; =

1 7T Dl/2yTWYD1/2 . >\’i oT 2 Al(szj
NoBY v — % NO YRS i
for 1 <i,5 </, i.e., the POD basis vectors 11, ..., 1, are orthonormal in R™ with
respect to the inner product (-, )w.

In Algorithm 4 the computation of a POD basis of rank ¢ is summarized for
finite-dimensional dynamical systems.
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Algorithm 4 (POD basis of rank ¢ for finite-dimensional dynamical systems)

Require: Snapshots {y; };’:1 C R™, POD rank ¢ < d, symmetric, positive-definite
matrix W € R™*™ diagonal matrix D € R™*™ containing the temporal quad-
rature weights and flag for the solver;

1: Set Y = [y1,...,Yn] € R™*™,

2: if flag = 0 then

3. Determine Y = W/2y D1/2 ¢ Rmxn,

4:  Compute singular value decomposition [¥, %, ®] = svd (Y);
5 Set i, =W 20 ;e R™and \; = X2 fori=1,....,4

6: else if flag = 1 then

7. Determine Y = W1/2Yy D1/2 ¢ Rm*";

8 Set R=YYT c Rmxm,

9:  Compute eigenvalue decomposition [, A] = eig (R);

100 Set ¢ = W=Y2W ; € R™ and \; = Ay; for i = 1,...,4;

11: else if flag = 2 then

12:  Determine K = DY2YTWYD'/? ¢ R**",

13:  Compute eigenvalue decomposition [®, A] = eig (K);

14: Set ¢); = YDY2® ;/\/Ni € R™ and \; = Ay for i = 1,...,4;
15: end if

16: Compute £(¢) = Zle i/ Z?Zl i

17: return POD basis {1;}¢_,, eigenvalues {\;}{_, and ratio £(¢);

4.2. The Continuous Version of the POD Method. Of course, the snap-
shot ensemble {y;}"_; for (153[’,6) and therefore the snapshot set span{y1,...,yn}
depend on the chosen time instances {t; }?:1. Consequently, the POD basis vec-
tors {1;}{_, and the corresponding eigenvalues {\;}{_, depend also on the time
instances, i.e.,

wizlﬁ? and )\l:/\?7 1§’LS€

Moreover, we have not discussed so far what is the motivation to introduce the
nonnegative weights {c;}7_; in (133/) For this reason we proceed by investigating
the following two questions:

e How to choose good time instances for the snapshots?

e What are appropriate nonnegative weights {c;}7_;?
To address these two questions we will introduce a continuous version of POD.
Suppose that (1.4.1) has a unique solution y : [0, 7] — R™. If we are interested to
find a POD basis of rank ¢ that describes the whole trajectory {y(¢) |t € [0,T]} C
R™ as good as possible we have to consider the following minimization problem

T ¢ ~ 2
. Cmin g = D7 w0, By v
(Py) wl,...,wfeuw/o ; v
To solve (f’f/v) we use similar arguments as in Sections 1 and 3. For £ = 1 we obtain
instead of (P%,) the minimization problem

dt

T S =2 ~ 12
(1.48) mmA}MU*MWWWWW&siIWM:L

PerRm
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Suppose that {t;}7, are chosen in such a way that {1, s, ..., 1, } is an orthonor-
mal basis in R™ with respect to the inner product (-, -)y. Then we have

y(t) = (t), D)y ¥+ D {y(t), i)y i for all t € [0,T].
i=2
Thus,
T ~ 12 T m _ 2
| o0 = worin ] ae= [ > ) B
m T B
=30 [ o) Gy
=2
we conclude that (1.4.8) is equivalent with the following maximization problem
T
(1.4.9) max / (), )| dt st (|95 = 1.
PpeR™ Jo

The Lagrange functional £ : R™ x R — R associated with (1.4.9) is given by

T
Ll A) = / () ) Pt + AL~ [4]3) for (,) € R™ x R.

Arguing as in Sections 1 and 3 any optimal solution to (1.4.9) is a regular point;
see Exercise 1.5.10. Consequently, first-order necessary optimality conditions are
given by

VLW, \) =0 inR™ x R.

Therefore, we compute the partial derivative of £ with respect to the i-th component
1; of the vector :

oL ) T m m ) o
a0, N = 55 (/0 ’l;;yk(t)wkuwy dt+)\(1]§;kaku%)>
T m. o m m .
- 2/0 (Z Zyk(t)Wkuwu) D yu(OWys dt — 20> " Wity
pn=1

k=1

K3

T
- 2( | o wyoa- Aww)
0
for i € {1,...,m}. Thus,
T 1
VL) = 2( | woowawa- Aww> L0 iR,
which gives
T
(1.4.10) /O ((8), ¥y Wy(t) dt = AW in R™.

Multiplying (1.4.10) by W~ from the left yields

T
(1.4.11) /O (), )y y(t) dt = Ay in R™,
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We define the operator R : R™ — R™ as

Ry = /0 (y(t), Y)yy y(t)dt  for p € R™.

LEMMA 1.4.2. The operator R is linear and bounded (i.e., continuous). More-
over,

1) R is nonnegative:
(R, ¥)y, >0 for allp € R™.
2) R is self-adjoint (or symmetric):
(R, D)y, = (b, RD)yy  for all .4 € R™.

PRrROOF. For arbitrary ¥, ¥ € R™ and a,@ € R we have

~ T ~
Rlav -+ ) = [ (0.0 -+ a0y u(t)at

-/ " (ault) 0 + 6 e Dy ) wle) e

T T ~
—o / W(t), By y() dt + & / W(t), )y y(t) dt = aRY + GRY,

so that R is linear. From the Cauchy-Schwarz inequality we derive

T T
IRGly < [ @, ¥)hw y@)ly dt = [ @) D]y @l dt
0 0

T T
< | ||y<t>|3v||w|wdt=( / ||y<t>||‘évdt)||wW=||y||izm,T;Rm>||w|W

for an arbitrary ¢ € R™. Since y € C([0,T];R™) C L?*(0,T;R™) holds, the norm
lyllz2(0,7;rm) is bounded. Therefore, R is bounded. Since

T T T
<R¢,w>wz( / <y<t>,w>wy<t>dt) Wo= [ o0 ue W

T
= | 1w onl*ar =0
for all » € R™ holds, R is nonnegative. Finally, we infer from
T ~ T R
(Rl = [ 000000t = { [ 0. B0t v)
0 0

= (RO, V), = (b, ROy
for all 1,7 € R™ that R is self-adjoint. O

w

Utilizing the operator R we can write (1.4.11) as the eigenvalue problem
Ry =X in R™.

It follows from Lemma 1.4.2 that R possesses eigenvectors {1; }'"; and associated
real eigenvalues {\;}7, such that

(1.4.12) Ry = A for 1<i<m and A > >...> )\, >0.
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Note that

/0 (), )y | dt = / () iy w(0), i)y At = (Ribis iy = A el
=\ forie{l,...,m}

so that 1 solves (1.4.8). Proceeding as in Sections 1 and 3 we obtain the following
result; see Exercise 1.5.11.

THEOREM 1.4.3. Suppose that (1.4.1) has a unique solution y : [0,T] — R™.
Then the POD basis of rank ¢ solving the minimization problem (P%,) is given by the
eigenvectors {1;}_, of R corresponding to the ¢ largest eigenvalues Ay > ... > \;.

REMARK 1.4.4 (Methods of snapshots). Let us define the linear and bounded
operator ) : L2(0,T) — R™ by

T
vo= [ oltwar for o€ L20.7).
0
The (Hilbert space) adjoint * : R™ — L2(0,T) satisfying (see Definition A.5)
V0, 0) 200y = (1, V)y,  for all (v, ¢) € R™ x L*(0,T)
is given as
(YV*)(t) = (¥,y(t))y for v € R™ and almost all t € [0, 7.

Then we have

VY = / (W, y(8))y (1) dt = / (1), By y(t) dt = Ry

for all ¥ € R™, i.e., R = YY* holds. Furthermore,

T T
YV Yo)(t) = </0 ¢>(S)y(8)d3,y(t)> :/0 (y(s), y()y o(s) ds =: (Ko)(t)

w

for all ¢ € L?(0,T) and almost all ¢t € [0,7]. Thus, K = Y*Y. It can be shown
that the operator K is linear, bounded, nonnegative and self-adjoint. Moreover, I
is compact. Therefore, the POD basis can also be computed as follows: Solve

T
(1.4.13) ICqbl = /\Z¢l for1<i<¥{, MN>...2Xx>0, / (ﬁl(t)(bj(t) dt = (Sij
0

and set
¢-:1y¢-:1/T¢-(t)y(t)dt fori—=1,...,0
v, vl L ooyl
Note that (1.4.13) is a symmetric eigenvalue problem in the infinite-dimensional
function space L?(0,T). O

In Algorithm 5 the computation of a POD basis of rank ¢ is summarized in the
context of the continuous version of the POD method.
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Algorithm 5 (POD basis of rank ¢ for dynamical systems [continuous version])

Require: Snapshots {y(t)|t € [0,7]} € R™, POD rank ¢ < d, symmetric,
positive-definite matrix W € R™*™ and flag for the solver;
1. if flag = 1 then
2 Set R= [ (y(t), o)w y(t)dt € L(R™);
3:  Solve the eigenvalue problem R; = Ay, 1 < i < ¢, with (¢, ¢;)w = i3
4: else if flag = 2 then
5 Set K= [ (y(s),y())w o ds € L(L*(0,T));
6.
7
8
9

Solve the problem ICgbz = Nii, 1 <0 <L, with (¢4, ¢5) 12(0,7) = diy;
Set ; = fo t)dt/v/ A € R™;

: end if
: Compute E(¢) = Zle i/ Zle i
10: return POD basis {¢;}¢_,, eigenvalues {\;}¢_, and ratio £(¢);

Let us turn back to the optimality conditions (1.4.6). For any ¢ € R™ and
i€ {1,...,m} we derive

Ms

(YDY "TWy), =

ZZ@ Yk]Wku"/JV = Zajmj <yj7w>W
j=1

v j=1 k=1

I
—
<.

[
M:

;i (Yi V) (W)

.
Il
fa

where (y;); stands for the i-th component of the vector y; € R™. Thus,

n
YDY W =3 aj (y;,4)yy; = R"¥.
j=1
Note that the operator R™ : R™ — R™ is linear and bounded. Moreover,

(R™, )y = <Z%‘ (yj’¢>wijw> =0 [ v >0
=1 W=t

holds for all ¢ € R™ so that R"™ is nonnegative. Further,

<Rn¢71;>w = <Zaj <yja1/}>w yj7¢> Zaj Yj, P y]7¢>

=1
<Zaj vir ¥ Wyj,¢> — (R, ¥y = (R )y
Jj=1

for all 1,1 € R™, i.e., R™ is self-adjoint. Therefore, R™ has the same properties as
the operator R. Summarizing, we have

(L4.14a)  R™P? = NP, AT
(1.4.14b) Ry = Nbs, M
Let us note that

(1.4.15) /0||y )5 dt = Z)\_ZA

D T YA}

>
Z--~)\€Z~-~)\d>)\d+1:--~:Am—
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In fact,
T
Rp; = / (y(t), i)y y(t)dt for every i € {1,...,m}.
0

Taking the inner product with wu;, using (1.4.14b) and summing over i we arrive at

d T
> [ o) v e = S (R, i)y ZA - ZA
i=1 i=1
Expanding y(t) € R™ in terms of {,;}, we have
y(t) =Y (y(t), vi)y i
i=1

and hence
T ) m T ) m
JRTCIEES o ORI ot
0 i=170 i=1

which is (1.4.15). Analogously, we obtain

(1.4.16) Zaj lly(t; HW Z A= Z/\? for every n € N;
j=1 =1

see Exercise 1.5.12. For convenience we do not indicate the dependence of a; on n.
Let y € C([0,T];R™) hold. To ensure

(1.4.17) Za] ly(t, ||W—>/ ly()]%, dt as At — 0
Jj=1

we have to choose the «;’s appropriately. Here we take the trapezoidal weights
At At

(1.4.18) = aj=Atfor2<j<n-1, an = —-
Suppose that we have
(1.4.19) hm [R™ = Rl (gm) = lim sup_ ||R”1/J - Ry, =0

O llw

provided y € C1([0,T];R™) is satisfied. In (1.4.19) we denote by L(R™) the Ba-
nach space of all linear and bounded operators mapping from R™ into itself; see
Appendix A. Combining (1.4.17) with (1.4.15) and (1.4.16) we find

(1.4.20) zm:)\f — zm:)\i as n — 0.
i=1 i=1

Now choose and fix
(1.4.21) £ such that Ay # Apy1.

Then by spectral analysis of compact operators [13, pp. 212-214] and (1.4.19) it
follows that

(1.4.22) A=A for1<i</lasn— oo
Combining (1.4.20) and (1.4.22) there exists 7 € N such that

(1.4.23) doAr<2 > A foralln >,
i=0+1 i=f+1
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if ZZ@H Ai # 0. Moreover, for ¢ as above, 7 can also be chosen such that

(1.4.24) ST e P <2 Y [yos i)y forall n > 7,
i=6+1 i=04+1

provided that Y27, [(yo,%i)w|* # 0 and (1.4.19) hold. Recall that the vector
Yo € R™ stands for the initial condition in (1.4.1b). Then we have

(1.4.25) el = 3w vi) i

If ¢t; = 0 holds, we have y, € span {y] _, for every n and

(1.4.26) lyoll3y = Z (o )y |
=1

Therefore, for £ < d(n) by (1.4.25) and (1.4.26)

d(n) d(n)

0
Z | Yo, ¥ Z‘ yOa"/}” Z‘ Yo, ;') W‘ +Z‘ Yo, Vi) |
i=0+1 =1 =1
+ Z ’ymwz Z‘<y07¢z> |
i=1

i=0+1

14 m
Z( ymwz ‘<y07¢?>w|2>+ Z |<y07wi>W ?

i=1 i=0+1

As a consequence of (1.4.19) and (1.4.21) we have lim,,_,o |97 — ¢s|lw = 0 for
i=1,...,¢ and hence (1.4.24) follows.
Summarizing we have the following theorem.

THEOREM 1.4.5. Suppose that (1.4.1) has a unique solution y : [0,T] — R™.
Let {(F, A0}, and {(i, Ni)}2, be the eigenvector-eigenvalue pairs given by
(1.4.14). Suppose that £ € {1,...,m} is fized such that (1.4.21) and

Z Ai 7é 0, Z ’<y07wi>W ’

i=0+1 i=0+1
hold. Then we have

(1.4.27) nh_)rrgo IR™ = Rl ®m) =0
This implies
lim |A} — A\ = lim_ [ = dilly, =0 for1<i<t,

n— oo
Tim. Z (A=) =0 and  Tim S [e vy = D [{we iy |
i=0+1 i=4+1 i=0+1

PROOF. We only have to verify (1.4.27). For that purpose we choose an arbi-
trary ¢ € R™ with ||¢||lw = 1 and introduce fy : [0,T] — R™ by

fo() = (y(t), ¥)yw y(t) for t €[0,T].
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Then, we have f, € C1([0,T];R™) with

Fut) = @), ¥hw y(®) + (), ¥)y 5(t) for t € (0, 7]
By Taylor expansion there exist 7;1(t), 752(t) € [t;,t;41] depending on t

tit1 1 [ti+r .

[ eae=5 [ sult) + dulr(o)e ) ae

t; t;
1

+ 5 /tjw Foltion) + Folrja(D))(t —tj41)dt

S ult) + futran) o5 [ Fulmalne - 1)

J

1 [+,
w3 [ delmae =t ar
Hence,
n T
|R"u — Rul,, = Zajfw(tj)f/0 fw(t)dtH
j= w
At it
S AT RN | fw)dt)H
=1 ti w
n—1
<3 [ Ut Ol le =l + Loy =t o
1 ) (G =)
<5 max ol >ij;( s )L,
ALT :
=7tg[lg>;] IFs(t HwZAt 5 max [ fe @l
AtT
<=5 e @l
ALT .
= 5 fIGT[l(f)i);] H 1/}>W y(t) + <y(t), ¢>W y(t)HW
= AT g (50 Iy < AT Il oy
Consequently,
IR™ RHL(Rm)— I S”UP [R™ ¢ — R¢||W<2At||i‘/||cl(0T J;R™) =0
wel
which is (1.4.27). O

5. Exercises

FEzxercise 1.5.1. Let A € R™*™ m > n, a matrix with rank n. Suppose that
UTAD = ¥ is the singular value decomposition of A with the singular values
01> 09> ...> 0, > 0. Prove the following claims:
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a) Ag; = opp; and ATy = o;¢; for i = 1,...,n, where {y;}*, C R™
and {¢;}"; C R™ denote the columns of ¥ € R™*™ and & € R"*",
respectively.

b) [[Allz = o1.

¢) The matrix AT A is symmetric and prositive definite.

d) The set of all positive singular values of A coincides with the set of square
roots of all positive eigenvalues of AT A.

FEzxercise 1.5.2. Assume that A € R™ " is an invertible matrix and that A =
UYd T is a singular value decomposition on A. What is the singular value decom-
position of A71?

Ezxercise 1.5.3. Compute the singular value decomposition of the matrix

-2 0
A= 0 1
0 -1

Exercise 1.5.4. Show that any optimal solution to (P*) is a regular point.

Exercise 1.5.5. Verify the claim in Theorem 1.1.1 that argmax (P*) = Zle o?

holds true.
FEzxercise 1.5.6. Show that the Frobenius norm is a matrix norm and that

IAB||p < [AllplBllp  for any A, B € R**"

is valid. Suppose that ¥? € R™*? is a matrix with pairwise orthonormal vectors
P; € R™, 1 <4 <d. Prove that

| WAl = ||Allp for any matrix A € R*™.

Ezxercise 1.5.7. We extend Example 1.3.1 to the two-dimensional domain 2 =
(0,1) x (0,1) C R? be given. We choose the trapezoidal quadrature rule with an
equidistant grid size h = 1/(n — 1) in both dimensions. Determine the weighting
matrix W € R™*™_ where m = n? holds, so that the trapezoidal approximation
can be written as the weighted inner product (-, )y .

FEzxercise 1.5.8. Suppose that W € R"*™ is symmetric and positive definite. Let
M > ... > nm > 0 denote the eigenvalues of W and W< = Qdiag (%, ...,n2)Q"
be the eigenvalue decomposition of W. We define

We = Qdiag (n%,...,n%)Q" for a € R.
Show that (W®)~! exists and (W®)~! = W~ Prove that W8 = WeW? holds
for a, 8 € R.
Ezxercise 1.5.9. Verify the claims of Theorem 1.3.2.

a) Ensure a regular point condition, which guarantees the existence of La-
grange multiplieres.

b) Prove that ¢; = W~1/2¢);, 1 < i < £, solves (P{,), where the matrix W
and the vectors 1)1, . .., %, are introduced in Theorem 1.3.2.

¢) Show that (1.3.7) holds.

Ezxercise 1.5.10. Agrue that any optimal solution to (1.4.9) is a regular point.

Ezercise 1.5.11. Prove that uy given by (1.4.12) is a global solution to (1.4.8).
How can this result be extended for (P%,)?

Ezercise 1.5.12. Verify (1.4.16).



CHAPTER 2

The POD Method for Partial Differential
Equations

In this chapter we formulate the POD method for partial differential equations
(PDEs). For that purpose an extension of the approach presented in Chapter 1
to separable Hilbert spaces is needed. Our approach is motivated by the goal to
derive reduced-order models for parabolic and elliptic partial differential equations.
In Section 1 we focus on parabolic PDEs. The presented approach generalizes
the theory presented in Section 4 of Chapter 1. We also discuss the numerical
realization as well as the treatment of nonlinearities. Parametrized elliptic problems
are analyzed in Section 2. Whereas for parabolic problems the time ¢ serves as
the sampling parameter, a variation of the parameter values are used for elliptic
problems to build a POD basis.

Throughout this chapter we make use of the following notations and assump-
tions: Let V and H be real, separable Hilbert spaces and suppose that V' is dense in
H with compact embedding. By (-, )y and (-, -}y we denote the inner products in

V and H with associated norm ||-|lyv = /(-,-)v and || ||g = /(- , ) i, respectively.

1. POD for Parabolic Partial Differential Equations

Now we consider the POD method for linear evolution problems. Then, its nu-
merical approximation is dicussed. Moreover, we explain the extension to nonlinear
evolution problems by using empirical interpolation.

1.1. Linear Evolution Equations. Let 7" > 0 be the final time. For ¢t €
[0,7] we define a time-dependent symmetric bilinear form a(t;-,-) : V.xV — R
satisfying
(2.1.1a) lat; 0, 9)| < Bllelly 1]l
(2.1.1b) alts p,9) > sllelly = el

for all p, v € V and t, t1, t2 € [0,T], where 8,k > 0 and 1 > 0 are constants, which
do not depend on t. By identifying H with its dual H' it follows that

Ve H=H —V,

each embedding being continuous and dense. In Appendix B we introduce the
function space W(0,T), which is a Hilbert space endowed with the common inner
product. When the time ¢ is fixed, the expression ¢(t) stands for the function ¢(¢, )
considered as a function in 2 only.

33
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For y, € H and f € L*(0,T; V') we consider the linear evolution problem
d
7 W) o) g +altiy(t), @) = (f(8), )y v Laa. t€[0,T], Yo eV,

(), Py = (Wo,0)y Vo EV.
Throughout we write ‘f.a.a.” for ‘for almost all’.

EXAMPLE 2.1.1. Suppose that Q C RY, d € {1,2,3}, is an open and bounded
domain with Lipschitz-continuous boundary I' = 9. For T > 0 we set Q =
(0,7) x Qand ¥ = (0,T) x I'. Let H = L*(Q) and V = H*(Q). Then, for given
Yo € H, f € L*(0,T;H) and g € L*(0,T;L*(I'c)), we consider the linear heat
equation

(2.1.2)

yi(t @) = V- (c(t, ) Vy(t, @) + alt, z)y(t, @) = f(t,z), (t,z) € Q,
(2.1.3) o(t, s)gy (t,s) = g(t,s), (ts)e€x,
y(0,2) = yo(x), =€,

where ¢ € C([0,T); L*>(Q?)) satisfying c(t,z) > ¢, > 0 fa.a. (t,x) € Q, a €
C([0,T); L>(Q2)) and b € L>(0,T;L>*(I'¢)). For t € [0,T] a.e. we introduce the
bilinear form a(t;-,) : V x V — R by

altip.v) = [ OV Vo atpude for b€V
Q
and the linear, bounded functional f € L*(0,7;V"’) by

), vy = (E), 00 + / g(t)pds for t € [0,7] ae. and g, 4 €V,

where “a.e.” stands for “almost everywhere”. Then, it follows that the weak formu-
lation of (2.1.3) can be expressed in the form (2.1.2). From ¢, a € C([0,T]; L>(£2))
we infer that the time-dependent bilinear form a(¢;-,-) satisfies (2.1.1). O

EXAMPLE 2.1.2. Let us present a further example for (2.1.2). Suppose that —
as in Example 2.1.1 — the set  C R9, d € {1,2,3}, is an open and bounded domain
with Lipschitz-continuous boundary I' = 9. For T' > 0 we set @ = (0,7) x Q and
Y =(0,T) xI'. Let H=L*(Q) and V = H}(Q2). Then, for given initial condition
Yo € H we consider the linear heat equation
(2140) (@) = V- (et 2)Vy(t,@)) + alt, )y(t,@) = (L@),  (4@) € Q,
(2.1.4Db) y(t,s) =0, (t,s) € %,
(2.1.4c) y(0,2) = yo(x), x€.

In (2.1.4a) we suppose that ¢, a and f satisfies the same assumptions as in Exam-

ple 2.1.1. Introducing the bilinear form a(¢;-,:) : V. x V — R for every ¢t € [0,7]
by

alt; o, 9) = /QC(t,w)VsO(m) V(@) +alt, z)p(x)p(z) de for g,y €V

it follows that the weak formulation of (2.1.4) can be written in the form (2.1.2).0

It follows from Theorem C.1 that for every f € L2(0,7;V’) and y, € H
there exists a unique weak solution y € W(0,T) satisfying (2.1.2). Moreover, if
f € L*0,T;H), a(t;-,-) = a(-,-) (independent of t) and y, € V hold, we even
have y € C’([O,T], V); see Corollary C.3.
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1.2. The Continuous POD Method for Linear Evolution Equations.
Let f € L?(0,T;V') and y, € V be given arbitrarily so that the solution y €
W(0,T) to (2.1.2) belongs to C([0,T); V) — C([0,T]; X), where X denotes either
the space V or the space H. Then,

(2.1.5) V =span{y(t)|t € [0,T]} CV C X.

If yo # 0 holds, then V # {0} and d = dimV € [1,00], but V may have infinite
dimension. Now we proceed similar as in Remark 1.4.4. We define a bounded linear
operator Y : L?(0,T) — X by

T
Vo = / (t)y(t)dt for ¢ € L*(0,T).
0
Its Hilbert space adjoint Y* : X — L2(0,T) satisfying

<y907 1p>X = <907 y*w>L2(O,T) for ((,0, ’l/J) € LQ(O, T) x X

is given by (V*¥)(t) = (¥,y(t))x for ¢ € X and fa.a. ¢ € [0,7]. The linear
operator R = YY* : X — V C X has the form

(2.1.6) Rep = / W, y(t))  y(t)dt for ¢ € X.

Moreover, let K = Y*Y : L?(0,T) — L?(0,T) be defined by

eLD) K80 = [ Wb ds e 20.T)

LEMMA 2.1.3. Let X denote either the space V' or the space H andy € W(0,T)
hold. Then, the linear operator R is bounded, compact, nonnegative and symmetric.

PrOOF. Applying the Cauchy—SchwarZ inequality we infer that

T
IRy < |<w, O x| @Ol dt < el [ Iy dt
0 0

2
= yllz20,7.x) I¥llx  forv € X

holds. By assumption, y € W(0,7) C L?*(0,T;X). Thus, from (2.1.8) we infer
that R is bounded. Again using y € W(0,7) C L*(0,T;X) the kernel k(s,t) =
(y(t),y(s))x of K is square integrable over (0,7) x (0,T); see Exercise 2.3.1. By
Remark A.14 we conclude that the integral operator K is compact. Remark A.16
implies that R = K* is compact as well. From

(R, ) x = </O (1, y(t)) x y(t) dt,w>X = /0 (0, y(1)) ¢ |* dt > 0 for all ¢ € X

we infer that R is nonnegative. Finally, we have

®odh = " () 0 dmﬁ>x -/ 0 (1), )

(2.1.8)

) /OT (6, (D), 5)  y(®) e = <¢, /OT (y(), ) x y(t )dt>

= (), Rap) i for all ¢, € X.
Hence, the operator R is selfadjoint. O
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From Theorems A.17 and A.18 it follows that there exists a complete orthonor-
mal basis {¢;}52, for X and a sequence {);}$2; of nonnegative real numbers such
that
(219) R’L/)Z = /\Z’L/J“ )\1 Z )\2 Z ey and hm )\1 =0.

1— 00
The spectrum of R is a pure point spectrum except for possibly 0. Each nonzero
eigenvalue of R has finite multiplicity and 0 is the only possible accumulation point
of the spectrum of R. Let us note that

T oo
/0 Iy dt = ZA and ol = 3 (s ) ¢ [

i=1
REMARK 2.1.4. 1) Analogously to the theory of singular value decom-
position for matrices, we find that the linear, bounded, compact and self-

adjoint operator K has the same eigenvalues {)\;}%_, as the operator R.
For all A\; > 0 the corresponding eigenfunctions of K are given by

1 1
¢i(t) = Moy (Vi) (t) = Moy (i, y(t)) x faa. t€[0,T] and 1 < i < L.
2) Notice that — independent of the choice for X — V C V implies ¢; € V
for 1 <i </ O

In the following theorem we formulate properties of the eigenvalues and eigen-
vectors of R.

THEOREM 2.1.5. Let {\;}2, and {1;}5°, denote the eigenvalues and eigen-
functions, respectively, of R. Then, for every £ € N the first £ eigenfunctions
Y1, ..., € X solve the minimization problem

T 14 ~
(21.10) i - UCRDR

s.t. <1/)i,7/~1j>x =0;; for1 <14,5 < 4.

-2
i dt
X

Moreover,

[RICE STCRANE RS oEt

i=1 ={+1

PROOF. We proceed as in the proof of Theorem 1.1.1. First note that (2.1.10)
is equivalent to

> 2
max i de
(2.1.11) F1po, w[exz/ 0:¥idx]

s.t. <¢ia¢j>X =0;; for 1 <4,5 < L.
We define the Lagrange function
L:X x ... x X xR
———

£-times

by
l

T
‘C(d)lv---ﬂ/}bA) = Z/ |< 1/% +Z)\z] ij ¢i7wj>x)

i=1"0
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for ¢1,...,1%; € X and A = ((N\;;)) € R, To derive first-order optimality con-
ditions we show a constraint qualification for (2.1.11). For that purpose let us
introduce the mapping

£xl 7 n T
GSXX...XX%RX, 6(1/11,...,’[/)@):5ij—<1/}i,’(/)j>x
{-times

Then, we have e(@l, e ,1@) = e(qzl, e ,wg)T. This reflects the fact that we can
replace the constraints in (2.1.11) by (1/)“1/)J>X =dj forl<i<fand1<j <
Moreover, introducing the set of feasible solutions

ad_ {(’(/}1,...,1/;@)”4/;1,...,1;@ € X and 6(’(/;1,...,’(/;() :OERZXZ}

problem (2.1.11) can be expressed as

4 T ~ ) ~ ~
(2.1.12) maxZ/O (@), Vi) x|” st (Wr,....00) € X5y

To derive first-order optimality conditions we show a constraint qualification for
the set X 5:1' The Fréchet derivative of e is given by

6/(1/)1’ cee 7w€)(¢?7- . aw?) = (( - <w?7wj>x - <¢iaw?>x))1§i’j§g

for given directions 9,...,9% € X. Suppose that {1;}{_, satisfies (¢;, ;) x = 0y
for 1 <i,7 < ¢ and that A = ((a”)) € R** is a symmetric matrix. Then a con-
straint qualification holds at {1/11} _; provided there exists an ¢-tupel (¥2,... ,1/12)
such that

6/(wla"'7w5)(w?a"'awg) =A
Choosing 9 = — Zi:l a;xYr/2 for 1 <14 < £ and using (¢;,v;) x = d;; we have

4
—@2, ) — (o) = 5 3 (antn ) x + ol e x )

k=1

N = N =

(aij + aji) = Qjj for ,j € {1, - ,é}

Thus, {dh‘}le satisfies a constraint qualification so that first-order necessary op-
timality conditions are given by setting the Fréchet derivative of the Lagrangian
equal to zero; see Theorem D.4 in the Appendix. Instead of (1.1.10) we get

L

T

i=1
Therefore, we can follow the lines of the proof of Theorem 1.1.1 and conlude that
Aip = —Ag; for 1 <4 < {£—1. Setting \; = \;; for all s € {1, < i < ¢} the first-order
necessary optimality conditions for (2.1.12) — and hence also for (2.1.10) — are given
by
(2.1.13) Rip; =My, in X forallie{1,...,¢}.

It follows that {v;}¢_; solves (2.1.13). The proof that {¢;}_, is a solution to
(2.1.12) and that argmax (2.1.12) = Zle A? holds is analogous to the proof for
(P1); see Exercise 2.3.2. O
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1.3. The Truth Approximation for Linear Evolution Problems. To
compute the POD basis {¢;}¢_, as described in Section 1.2 we need the snapshots
y(t) for t € [0,T). This is realized numerically by computing approximations for
y(t) using a spatial and temporal discretization method. First, we consider the case
that the snapshots are given by finite element approximations. In a second step we
turn to the temporal discretization.

1.3.1. Spatial discretization. Let usintroduce a spatial discretization for (2.1.2).
For m € N the functions ¢1, ..., ¢, denote m linearly independent nodal basis
functions. Then we define the m-dimensional subspace

Vh:span{gal,...,gam} cV

endowed with the topology in V. We apply a standard Galerkin scheme for (2.1.2).
Thus, we look for a function y" € L2(0,T; V") N H(0,T;V}) satisfying

d

(2.1.14) dt W (1), ") g +altsy" (1), ¢") = (F(), 0"y, t€10,T), Vo' € VP,

@"(0),¢" g = Wo, ") iy vl e Vi,

Since y"(t) € V" holds, we make the Galerkin ansatz of the form

(21.15) ROEDIHOD

and define the modal coefficient vector
0"(t) = (07(8)) e,y fort€[0,T).

From (2.1.14) we derive the linear system of ordinary differential equations

(2.1.16) My (t) + A(t)y" (t) = b(t) fa.a. t € [0,T], My"(0) =1,
with

Mi; = (@), ¢i) > (A(t))ij = alt; @, %i),

(6)i = (Yos Pi) s (b)) = (f@), i)y v

for 1 <i,7 <mandt € [0,T]. System (2.1.16) is referred to as the truth approzi-
mation for (2.1.2). Note that (2.1.16) can then be solved by using an appropriate
method for the time discretization. System (2.1.16) can be written in the form
(1.4.1) with A = 0 and

Flt,n) = M7H(b(t) = A@t)y), (t.y) € [0,T] x R™.

From (2.1.1) it follows that (2.1.16) has a unique solution y € H'(0,T;R™); see
Exercise 2.3.3. If f € C([0,T];V’) holds and ¢ — a(t; ¢, ¢) is continuous for any
,9 € V, then y € C(]0,T]; R™) and we can proceed as in Section 4.2 of Chapter 1.

REMARK 2.1.6. Suppose that u = (4;)1<;<m and v = (v;)1<;<m are two arbi-
trary vectors in R™. Then,

ul(z) = Zuiwi(x) and v"(z) = Z 00 (x)
=1 i=1

are elements in the finite element space V. We have

(", v") gy = (w,0)yy and g = fully
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with W = M, where the symmetric, positive definite mass matrix has been intro-
duced above. Analogously,we obtain

h ,h h
(" 0"y = (u,0)y, and  lu” |y = [Jully,
with W = S, where the symmetric, positive definite stiffness matrix is given by
Sij = <<pj,<pi>v for 1 S i,j S m

Summarizing, the weighted inner product (-, -}y is used to replace the inner prod-
ucts in the m-dimensional finite element space V" by an inner product in R™ for

the finite element nodal coefficients. O
Let V = span{p"(t)|t € [0,T]} € R™ and d = dimV < m. For any
¢ e {1,...,d} we construct a low-dimensional orthonormal basis by solving the
optimization problem
T . ¢ ~ 2
min t) — ), 0w il dt
o ¢MMWAW<>§mmmeW

s.t. <1/;l71;]>w =65 for 1 <4,5 < /L.

The solution to (2.1.17) is given by the theory presented in Section 4.2 of Chapter 1.
Thus, let us define the linear, bounded, nonnegative and selfadjoint operator R :
R™ — R™ by

R = / )y v () dt for i € R™.
Now the solution to (2.1.17) is given by the eigenvectors corresponding to the d
largest (positive) elgenvalues A1 > X > ... > Ag > 0 solving the symmetric m x m
eigenvalue problem
(2.1.18) RMpy = Ny fori=1,....d.

Again, we can quantify the POD approximation error as follows

T ¢
A LECED SR “y

i=0+1
1.3.2. Temporal discretization. In real computations we do not have the whole
trajectory " (t) € R™ (or y"(t) € V) for t € [0, T]. For this purpose let 0 = t; <
ty <...<t, =T beagiven grid in [0, 7] with step sizes §; = t;—t;_; for 2 < j <n.
To solve (2.1.16) we apply an implicit Euler method for the time integration. Of
course, other time intergation schemes can be used; see Exercises 2.3.4 and 2.3.5.
The sequence {U?}?:1 in R™ is the solution to

(2.1.19) (M + 0t A(ty))nl = My}, +6t;b(t;) for 2< j <n, My" =y,.
REMARK 2.1.7. We set

m

yp=> (i e V" for1<j<n

i=1

the Galerkin functions yf are approximations for the solution y" to (2.1.14) at time
t =t;. Then, {y? | C V" satisfies

05y, +altysy), @") = (£(t;), ")y, for 2 <j<n, V" eV,
Wt "y = W, "y Vo' e VI
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where gjyjh = (y;l — yjh_l)/étj € V" stands for the backward difference quotient. ¢

Analogous to Section 1.3.1 we set V = span {U] [1 < j <n} CR™and
d = dimV < min(m,n). For any ¢ € {1,...,d} we construct a low-dimensional
orthonormal basis by solving the optimization problem

_ min Zn:aan?fZ@Mm
o :

(2.1.20) P1yenny P ER™ = p
s.t. @iﬂzﬂﬁw =65 for 1 <4,5 < /L.

2

%
w

The solution to (2.1.20) is given by the theory presented in Section 4.1 of Chapter 1.
Asin (2.1.6), let us define the linear, bounded, nonnegative and selfadjoint operator
REmR™ — R™ by

RMMp = "ay (ph ) for ¢ € R™.

j=1

Now the solution to (2.1.20) is given by the eigenvectors corresponding to the d
largest (positive) eigenvalues Ay > Ay > ... > Ag > 0 solving the symmetric m X m
eigenvalue problem

REmpy = Napy fori=1,...,d.

Again, we can quantify the POD approximation error as follows

iaj [on - S Wity Z Ai

j=1 i=1
In Exercise 2.3.6 a POD basis is computed for the truth approximation of the heat
equation.

REMARK 2.1.8. In [15] an asymptotic analysis is carried analogously to the
approach presented in Section 4.2 in Chapter 1. O

1.4. POD for Nonlinear Evolution Equations. The application of the
POD method can easily be extended for nonlinear evolution problems. Let A :
[0,T] x V — V' be a given nonlinearity and y, € H. Instead of (2.1.2) we consider

d
— (y(t ty(t), ) = (¢, y(t v, € 0,7, s
((0);0)yr = (Yor P Vo eV.

We suppose that (2.1.21) possesses a unique solution y € W(0,7T). In the following
example we present two applications considered in the literature.

REMARK 2.1.9. 1) A monotonous nonlinearity: Let the bilinear form a
be independent of ¢, i.e., a(t;-,:) = a(-,-). Moreover B : V — V' is a
continuous nonlinear operator satisfying

a(e, @) + (B(@). o)y v > Ellelly —nllely forallgeV

for constants k > 0 and 7 > 0. For f € L*(0,T;V’) we set N(t,¢) =
f(t) = B(p) € V' fa.a. t € [0,T] and for ¢ € V. Then, the POD method
problem for (2.1.21) is considered in [14], for instance.
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2) A general equation in fluid dynamics [21]: Let the bilinear form a be
independent of ¢, i.e., a(t;-,-) = a(-,-). As in Appendix C we define the
linear bounded operator A: V — V' by

<Ag07 ¢>V’)V = a((pa d)) fOI‘ <)07 (]S S V

The domain of A is given by the set D(A) = {¢ € V | Ap € H}. Further,
let us introduce the continuous operator B : V' — V', which maps D(A)
into H and satisfies
-5
IBell < Cs el " [ Aplly  for all p € D(A),
(B, o)y v| < Collely™™ gl forall g € V

for a constant Cg > 0 and for 01,02 € [0,1). We also assume that A+ B
satisfies

(2.1.23) a(p,0) + (B, o)y y > kllely —nliel? forallpeV

with constants x > 0 and n > 0. Moreover, let C : V x V — V' be
a bilinear continuous operator mapping from D(A) x D(A) into H such
that there exist constants Ce > 0 and d3, 04,95 € [0, 1) satisfying

(Cle,9), )y vy =0,
[(C(p, )Yy v | < Ce el Tallelly NlSe 1132 b1l
1C(@, Xl + 1€ @)l < Ce Nl Il 1A%,
ICCe, ) < Ce llel 3 ey el I Ax 153
for all p,¢,1 € V and for all x € D(A). Setting
(2.1.25) N(t,0) = f(t) —Bo —C(p,p) fa.a. te]0,T]and for p € V

problem (2.1.21) is studied in [15, 16]. In particular, it is proved in [21]
that the two-dimensional Navier-Stokes equations can be expressed in the
form (2.1.21) taking the nonlinearity (2.1.25). O

(2.1.22)

(2.1.24)

Let y € W(0,T) be a solution to (2.1.21). For the snapshot set V = {y(t) |t €
[0,7]} a POD basis of rank ¢ can be determined as described in Section 1.2. Pro-
ceeding as in Section 1.3 we can also compute a POD basis for the aproximate
solutions to the nonlinear equations. For later reference we state here the spa-

tial discretization following the arguments in Section 1.3.1. Instead of (2.1.14) the
solution y" € L2(0,T; V") N H'(0,T;V}) satisfies

il

7 W0, ")+ alty" (1), 6") = V(Y1) ")y v
(2.1.26) fa.a. te[0,T], Vol € V",

W"(0), 0™ 1 = (Yo, ™)y V" € V.

To derive a system of ordinary differential equations for the coefficients y(t) € R™
of the Galerkin ansatz y"(t) = > i~ 97(t)¢; € V" we introduce the nonlinearity
§:10,T] x R™ — R™ as follows:

f(tan) = (<N<t7yh)7(pi>V’,V)l<,< ’ (t’U) € [O’T] X Rm’

sSism
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where we set y = Yo 0 € V" and v; denotes the i-th component of the vector
y. Now, (2.1.26) leads to the following system (compare (2.1.16))

(2.1.27) My"(t) + A(t)w" (t) = §(t,n"(t)) f.a.a. t € [0,T], Myp"(0) =vs,.

2. POD for Parametrized Elliptic Partial Differential Equations

In this section we concentrate on the POD method for parametrized elliptic
PDEs. We explain briefly the numerical implementation, which is similar as de-
scribed in Section 1.3.1. Let us also refer to [12].

2.1. Linear Elliptic Equations. Let D C R” be a bounded and closed
subset. Suppose that for 4 € D the parameter dependent bilinear form a(y;--) :
V x V — R satisfies

(2212)  |awie.6)| < Bllelylol,  forall g, ¢ €V and for u e D,
(2.2.1b) a(p;p,p) > K ||<p||‘2/ for all p € V and for p € D

for positive constants 3,x. Further, for u € D let f(u) € V' be a parameter
dependent right-hand side. For given parameter u € D we consider the variational
problem: find y = y(u) € V solving

(2.2.2) a(p;y, 0) = (f(w), @)y forallpeV.

ExXAMPLE 2.2.1. For pig, pup € R with pg < pp we define the parameter subset
D = [ptas tp). Then we define the parameter dependent bilinear form a(y;-,-) :
VxV —>Ras

a(p;p, @) = (@, d)y + pip,¢)y for p,¢ €V and p € D.
For any p € D we infer from (B.1) that

la(ps 0, ) < (1+ CF max{|pal, [usl}) lellyllgll,  for all ¢,¢ €V,

i.e., the bilinear form a(y;-,-) satisfies (2.2.1a) with 8 = 1 + max{|ua|, || }CE.
Further

2 2 2 2
a(ps e, 0) = llelly +ellely > llely + pallelly forallp € Vand peD

If pe > 0 holds, then (2.2.1b) is satisfied with k = 1. In the case p, < 0 we infer
from (B.1) that

a(p; 0.9) 2 llly + pa el = (L4 1aCP)ll¢lly, forall p € V and p € D.
Summarizing, (2.2.1b) holds if x = 1 + min{0, u,C%} > 0 is fulfilled. O
The following theorem ensures that (2.2.2) admits a unique solution.

THEOREM 2.2.2. Suppose that the parameter dependent bilinear form a(u;-,-)
satisfies (2.2.1) and f(u) € V' holds true for any u € D. Then, there exists a
unique solution y = y(u) € V to (2.2.2) for every u € D. Moreover, we have

1
(2:2.3) 1yl < —If @iy, for every p € D.

In particular, if the mapping p v+ f(u) € V' is in L*(D), y € L*(D; V) holds.
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PROOF. Since the bilinear form a(y; -, ) is bounded and coercive on V x V for
every parameter u € D, the existence of a unique solution to (2.2.2) follows directly
from the Lax-Milgram lemma; see [8], for instance. Next we prove the a-priori
estimate (2.2.3). For that purpose we take ¢ = y € V in (2.2.2). It follows that

2
Ellylly < alusy,y) = (F) vy < 1WAyl
which gives the claim. ([
Together with (2.2.2) we will consider a discretized variational problem, where
we apply POD for the discretization of V. For that purpose let y(u) € V the
associated solution to (2.2.2) for chosen parameter p € D. We suppose that f €
L?(D; V') holds, so that y € L?(D; V) — L*(D; H) by Theorem 2.2.2. Further, X

denotes either the space V or the space H. We define the bounded linear operator
Y :L*D)— X by

Vo = / d(u)y(u)dp  for ¢ € L*(D).

Its Hilbert space adjoint Y* : X — L?(D) is given by
(y*z/)) (1) = (W, y(p))x foryp € X and p € D.

Furthermore, we find that the bounded, linear, symmetric and nonnegative operator
R =YY*: X — X has the form

(2.2.4) R = [ u) vl e for v € X
The operator K = Y*Y : L*(T) — L?*(D) is given by
(2.2.5) (K¢xm:3égymxyw»x¢uwdu for ¢ € L(D).

Since the mapping p — y(u) € V is in L?(D), we conclude that

/ / [y (), y(1)) x| didp < oo

This implies that IC = Y*) is compact (see Exercise 2.3.1) and, therefore, R = YY*
is compact as well. From Theorems A.17 and A.18 it follows that there exists a
complete orthonormal basis {1); };en for V' and a sequence {\;};en of nonnegative
real numbers so that

R = Nithi, A >A2>..., and \; = 0as¢— oo.

Furthermore,

Amwﬁw:g»
=1

REMARK 2.2.3 (Methods of snapshots). Analogous to Remark 1.4.4, we find
that the bounded, linear, symmetric and nonnegative operator K (see (2.2.5) has
the same eigenvalues {\; };cn as the operator R and the eigenfunctions

@@:%4rmw:jTMva

fori € { e N: X; >0} and almost all y € D. O
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In the following theorem we formulate properties of the eigenvalues and eigen-
functions of R.

THEOREM 2.2.4. Let {\;}ien and {9; }ien denote the eigenvalues and eigen-
functions, respectively, of R introduced in (2.2.4). Then, for every £ € N the first ¢
eigenfunctions Y1, ...,%y € X solve the minimization problem

2d
O

(2.2.6) m:ﬁex/ H - 1 (“)vi’ﬁxlzi

st (g, = iy for 1 <i,j < L.

Moreover,

2 [ o600 - >~

PROOF. The proof of the claim relies on the fact that the eigenvalue problem

2 o0
i Xdu: Z Ai  for any ¢ € N.
i=0+1

is the first-order necessary optimality condition for (2.2.6). The proof follows by
similar arguments as the proof of Theorem 2.1.5. (]

We call a solution to (2.2.6) a POD basis of rank £. Analogous to Corollary 1.2.1
we have:

ZA *Z/ | (y( 1/J1X} dﬂ>2/ |(y( Xi>x|2du

for every ¢ € N, where {x; }ien is an arbitrary orthonormal basis in X.

In applications the weak solution to (2.2.2) is not known for all parameters
p € D, but only for a given grid in D. For that purpose let {y;}"_; be a grid
in D and let y; = y(p;), 1 < i < n, denote the corresponding solutions to (2.2.2)
for the grid points p;. Here, we only concentrate on the discretization of the
parameter space D. The finite element approximation can be carried analogous
to Section 1.3.1. We define the snapshot set V" = span{yi,...,yn} C V and
determine a POD basis of rank ¢ < n for V" by solving

n 0

min Y ag |y — D (s i) x i

(2.2.9) eex = P
s.t. <1/)j,1/)1'>X = 5ij for 1 S Z,] Sg

where the «;’s are nonnegative weights. The solution to (2.2.9) is given by the
solution to the eigenvalue problem

R = AP, i=1,... 1,

2

X

with
R™Mp = Zaj <yj71/)>ij for v € X.

j=1
In contrast to R introduced in (2.2.4) the operator R™ and therefore its eigen-
values and eigenfunctions depend on the grid {u; j=1. Furthermore, the image
space of R"™ has finite dimension d" < n, whereas, in general, the image space of
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the operator R is infinite-dimensional. Since R™ is a linear, bounded, compact,
nonnegative, selfadjoint operator, there exist eigenvalues {\?}¢", and orthonormal
eigenfunctions {z/J" _q With Ay > A > ... > Agn >0 and

-

X i=0+1

L

Yi — Z (yjﬂﬁ

=1

n

P

j=1

REMARK 2.2.5 (Snapshot POD [20]). Let us define the diagonal matrix D =
diag (a1, ..., a,) € R™. We supply R™ with the weighted inner product

n
(u,v)p, = Zaiuivi =u' Dv foru= (ul,...,un)T,v = (vl,...,vn)T c R".
i=1

If the a;’s are quadrature weights corresponding to the parameter grid {u;}?; then
the inner product (-,-)p is a discrete version of the inner product in L?(D). We
define the symmetric nonnegative matrix X" € R™*" with the elements (y;,y;)x,
1 <14,5 < n, and consider the eigenvalue problem

(2.2.10) K"l =A'¢l, 1 <i<{ and ( ?,¢§L>D =0, 1 <4, <e<d.
From singular value decomposition it follows that ™ has the same eigenvalues
{\?}4", as the operator R™. Furthermore, the POD basis functions are given by

the formula

(2.2.11) Vi = \/,\TZO‘J )jy; fori=1,....4,

where (¢7'); denotes the j-th component of the eigenvector ¢ € R”. %

2.2. Extension to Nonlinear Elliptic Problems. Let us turn to a certain
nonlinear problem; see [12], for instance. Suppose that for any p € D the mapping
N(u;+) : V — V' is a nonlinear, locally Lipschitz-continuous mapping satisfying

(2.2.12) (N(16) — N(150),6 — @)y >0 forall 6, € V and for all € D,
i.e., N'(u;-) is monotone for any u € D. Instead of (2.2.2) we consider

(2.2.13) a(p;y, @) + N (), @)y y = (f()s )y forallpe V.

EXAMPLE 2.2.6. Let us give an example for a semilinear problem satisfying
(2.2.12). Suppose that @ C R4, d € {1,2,3}, is a bounded and open set with
Lipschitz-continuous boundary I" = 9€2. We consider

. 0
(22.14)  —mAy+ poy +psy® =g in Q@  and ,u18% + pay = gr on I' = 0Q2,

where g € L%(Q), gr € L?(T") and
D:{M:(Ml,...,ﬂ4) G]R4|Nla S/U'ZS,U'b fori:la"'a4}
with 0 < pa < pp. A weak solution to (2.2.14) satisfies y € V = H'(Q2) and

(2.2.15) /M1Vy~V<P+ (u2y+u3y3)¢dm+/u4y<pd5:/gwder/gwds
Q r Q T
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for all ¢ € V. Next we express (2.2.15) in the form (2.2.13). For that purpose we
utilize the parametrized bilinear form a(u;-,-) : V x V — R given by

a(i0.¢) = [ Vo Vot padpds+ [ puopds for .o €V and e D.
Q T

Notice that this bilinear form satisfies (2.2.1). Moreover, let the parameter inde-
pendent right-hand side be given as

<f7<p>vf,v=/g<pdx+/gm0ds for p € V.
Q T

Finally, we define the nonlinearity

N (5 0),0)yr = /Qusy?’sodfv for ¢, € V and p € D.

Then a weak solution to (2.2.14) satisfies the variational formulation (2.2.13). Recall
that ¢ € V implies p € L5(2). Consequently, ©3(2) € H = L?(Q) C V’'. Let
o, peVand x =¢ — ¢ € V. From us > pg > 0 we infer that

N(50) = N(1:0),X) vy = /ng(d)g —¢°)xdz

=u3/9 (/1 3(p 4+ 7X)*xd7) x dz

0
1
= ug/ /(%7 +7x)*x%drdz > 0
0 Q

holds true. Thus, (2.2.12) is satisfied. O

If a solution y(u) to (2.2.13) is given then a POD basis can be computed as
described above for the linear problem (2.2.2).

REMARK 2.2.7. We can also combine the theory of Sections 1 and 2 by con-
sidering parametrized evolution problems. In this case the time variable ¢ as well
as the parameter are the sampling parameters for the POD method, i.e., we set
Dr =1[0,T] x D and apply the POD appoach to the set Dr. O

3. Exercises

Ezercise 2.3.1. Let X be a Hilbert space and y € L?(0,T; X). Prove that the
kernel k(s,t) = (y(s),y(t))x f.a.a. s,t € [0,7] belongs to L*((0,T) x (0,T)).
Ezercise 2.3.2. Show that for ¢ = 1 the solution 17 to (2.1.13) solves (2.1.12).
How can this result be extended to an arbitrary ¢ < dim V?

Ezercise 2.3.3. Prove that (2.1.16) has a unique solution 7 € H*(0, T; R™).

Ezxercise 2.3.4. For a diffusion coeffisient ¢ > 0 we consider the linear heat
equation

ye(t, @) = cAy(t,x) for (t,x) € @ = (0,T) x Q,
(2.3.16) y(t,x) =0 for (t,x) € ¥ = (0,T x 09,

y(0,x) = yo(x) for x € Q = (0,1) x (0,T) C R?.
We write & = (21, x2) for a point in the spatial domain €. Derive a semi-discrete
system of the form (2.1.16) by using a discretization with classical finite differences

with equidistant mesh size h = 1/(N + 1) and with m = N2. To solve (2.1.16)
formulate
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1) the explicit and implicit Euler method,

2) the trapezoidal (or Crank-Nolson) method
using the time grid 0 = ¢; <t < ... < t, =T with step sizes §; = t; — t;_; for
2 < j < n.an equidistant time grid. Discuss whether these solutions methods are
well-defined.

Ezercise 2.3.5. Implement a code to solve (2.3.16) by the finite difference method
following Exercise 2.3.4. For the time integration utilize the following methods:

1) the implicit Euler method (IE),

2) the Crank-Nicolson scheme (CN) and

3) the Rannacher smoothing method (RS), i.e., four half implicit Euler steps
A/2 followed by regular Crank-Nicolson steps.

For simplicity use an equidistant time grid. Structure your code as follows:

main ... main script file, where all parameters are set and the discrete solution is
plotted.
[A,h,X1,X2] = preparation(m) ... Given the parameter m for the inner spatial

grid points, this function returns the discretization of the Laplace operator, the
spatial mesh size h, the discretization grids X1 and X2 for the z;- and xo axes
(includung the boudary points).
[Y,t] = solve_heat_fdm(c,A,h,n,y0,method) ... Solves the linear heat equa-
tion, where c is the diffusion coeffisient, n the number of time steps, yO the vector
of the initial condition evaluated at the inner spatial grid points and method clas-
sifies the selected solver (?IE’, CN’, *RS’). The returned values are a matrix
Y € R™*", which columns contain the discrete solution to (2.3.16) at the time
instances tj, 1 < j < n, and the vector t of the corresponding time instances.
YFDM = add_boundary(Y) ... Adds the (zero) boundary values to the solution ma-
trix Y.
To test your code choose N = 100, n = 100 and the following setting for ¢ and y,:

o ¢ =0.01 and yo(x) = sin(27z;) sin(27x2);

e c=0.5and yo(x) =1 for all ® € Q3 = (0,0.25) x (0.25,0.75), yo(x) =0

for all x € O\ Q;
e ¢=0.01 and yo(x) = 1 * rand(size(x1)) < 0.01.

How does the performance of the three methods differ? What do you observe?

Ezercise 2.3.6. In this exercise we want to solve (2.1.20) utilizing snapshots com-
puted from a truth approximation for (2.3.16). The «;’s are chosen as trapezoidal
weights. Thus, we make use of the code implemented in Exercise 2.3.5. For the
inner products we use the Euclidean inner product (’E’) and the discretized L?(12)
inner product (’L27); see Exercise 1.5.7. Structure your code as follows:

main ... Main script file, where all parameters are set and the desired results are
plotted.
W = weight matrix(m,wtype) ... Computes the weighting matrix for the inner

product, i.e., (u,v)w = u' Wu for u,v € R™. The input parameters are the total
number of inner points m = N? and the weighting matrix type wtype (’E’, ’L27).
The wighting matrix W for the inner grid points is the return value.

[lambda,Psi,tracek] = pod_basis(Y,pod,W,ell) ... Computes the POD basis
by solving (2.1.20). The input variables are the matrix Y containing the snapshots
(without the boundary points), the method pod for computing the POD basis
(’eig’, ’svd’), the weighting matrixW for the inner product and the number ell
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of desired POD basis vectors. The output arguments are the eigenvalues lambda €
R?, the POD basis Psi € R™** and the trace traceK of the correlation matrix
Y'Y = DY2Y Twy D'/? with the diagonal matrix D = diag {1, ...,a,} € R™*™,
Utilize the MATLAB routines eigs or svds in case of pod = ’eig’ or pod = ’svd’,
respectively
To compute the snapshots use the code implemented in Exercise 2.3.5 with the
Rannacher smoothing scheme (method = RS). Further, we set N = 100 and n =
100. For the diffusion coefficient and the initial condition y, we choose

o ¢ =0.01 and yo(x) = sin(27x;) sin(27xs);

e c=0.5and yo(x) =1 for all ® € Q3 = (0,0.25) x (0.25,0.75), yo(x) =0

for all z € Q\ Q.

For the two settings plot the decay of the eigenvalues scaled by traceK in a semi-log
scale. What do you observe? How do the two methods compare with respect to their
performance? Note that for the choice ’eigs’ negative and complex eigenvalues
can occur due to numerical issues. Hence only plot the absolute vale of the real
part. Further plot the first four POD basis functions.



CHAPTER 3

Reduced-Order Models for Finite-Dimensional
Dynamical Systems

In Chapter 1 we have introduced the POD basis of rank ¢ in R™. In particular
in Section 4 of Chapter 1 we discussed its application to the case when the snapshots
are given by the solution to an initial-value problem at certain time instances. In
Section 1 we utilize the POD basis to compute a so-called low-dimensional approx-
imation or a reduced-order model (ROM) for (1.4.1). If a solution to the reduced-
order model is computed, the question arises whether we can estimate the error
between the solution to (1.4.1) and the reduced-order solution. This is the issue of
Section 2.

1. Reduced-Order Modelling

Suppose that we have determined a POD basis {t; }le of rank ¢ € {1,...,m}
in R™ as described in Section 4 of Chapter 1. Then we make the ansatz

V4
(3.1.1) v(1) = W0, )y ¢ forall t €0,T],
=t ::t)e.(t)

where the Fourier coefficients t)?, 1 < j < ¢, are functions mapping [0,7] into R.

Since
m

y(t) =Y (w(t). )y ¥y forall t € [0, 7]
j=1
holds, y(t) is an approximation for y(t) provided ¢ < d. Inserting (3.1.1) into

(1.4.1) yields

4 0
(3.1.2a) SO0t =D 0i(t) A + f(ty (1), € (0,T],
j=1 j=1
4
(3.1.2b) Z 05(0)¢; = yso

Note that (3.1.2) is an initial-value problem in R™ for ¢ < m coefficient functions
Uf (t), 1 <j<{andte][0,T], sothat the coefficients are overdetermined. There-
fore, we assume that (3.1.2) holds after projection on the ¢ dimensional subspace
V% = span {¢;}{_,. From (3.1.2a) and (5, ¢;)w = 6;; we infer that

4
(3.1.3) b (t) = ZUf(t) (A, i)y + (F(E 55 (), i)y

49
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for 1 <i</{¢andte (0,7]. Let us introduce the matrix

AL = ((ai;)) € R with  af; = (Ag;, ¥i)yy,

the vector-valued mapping

ni

=1 : |:[0.7] > R"
b
and the nonlinearity = (f{,..., f))T : [0,T] x R* — R with the components

¢
fi(ty) = <f(t72‘)j¢j>,¢i> for t € [0,T] and v = (y1,...,9¢) € R".
Jj=1 w

Then, (3.1.3) can be expressed as

(3.1.4a) né(t) = A% (t) + fA(t,v'(t)) for t € (0,T)
From (3.1.2b) we derive
(3.1.4b) v(0) = s,
where
<y05 w1>W
e = : R’
<y07 ’(/}Z>W

holds. System (3.1.4) is called the POD-Galerkin projection for (1.4.1). In case
of £ < m the {-dimensional system (3.1.4) is a low-dimensional approximation for
(1.4.1). Therefore, (3.1.4) is a reduced-order model for (1.4.1).

2. Error Analysis for the Reduced-Order Model

In this section we focus on error analysis for POD Galerkin approximations.
Let us suppose that y € C([0,T]);R™) N C1(0,T;R™) is the unique solution to
(1.4.1) and {¢;}{_, the POD basis of rank ¢ solving

4

y(t) = > (),

i=1

2

D Vi w dt

=

min

T
(321) 1Z1,...,Q/JgERm/O H
st (g, i)y = 6ij, 1 <

<i,j<t
The reduced-order model for (1.4.1) is given by (3.1.4). We are interested in esti-
mating the error

T
02
| 1) =@l
Let us introduce the finite-dimensional space

VY =span {¢1,...,1} CR™
and the mapping P¢: R™ — V¢ by

4
Pl =" (i, i)y b for  €R™.

i=1



2. ERROR ANALYSIS FOR THE REDUCED-ORDER MODEL 51

Then,
¢

L
(o) + @) Zawam b= (o i)y + G (W i)y ) v
=1

=aP %+a7>f¢

for all a, @ € R and 1,7 € R™ so that P* is linear. Further,

1P 1 gy = S 1P HW—Wsup wal wl’

= =1
(3.2.2) ol lw=15=1
< sup szm = swp ¢l =1,
el =15=7 ¢l =1

i.e., P’ is bounded and therefore continuous. From {(1;,1;)w = 6;j, 1 <i,5 < £ we
infer that

4 4
(P =P (Ply) = < > (W i) wj,wi> i =P for p €R™,
w

i=1 \j=1

e., P’ is a projection; see Definition A.8. It is easy to prove that P’ is also
selfadjoint. Thus, P is an orthogonal projection; see Remark A.9 in the appendix.
Notice that, (3.2.2) and |[P%|lw = [[¢|w for any ¢ € V* imply [Pl @m) = 1,
which is well-known for any orthogonal projection.

Throughout we shall use the decomposition

(3.2.3) y(t) — ' (t) = y(t) = Py(t) + Ply(t) — y'(t) = o' (t) +9°(1),
where of(t) = y(t) — Pfy(t) and 9*(t) = P'y(t) — y*(t). Note that
¢

/OT () = 3 ), vy

i=1

2 T , 9 T , 9
= [0 - Pyl de= [l ar
0 0

Since {v;}¢_, is a POD basis of rank £ we have

T
(3.2.4) /O||Q P, dt = Z/\

i=0+1

Next we estimate the term 9¥*(¢). Utilizing (1.4.1a) and (3.1.4) we obtain for every
Yt e VEiand t € (0,T]

(), 0 )y = (PUy(t) — 9(t), ")y + @) — 5 (1), ¥ )y
(3.2.5) = (P9(t) — 9(t), ¥ )y
+ (Ay(t) — ¥ (1) + F(tyt) — F(E Y (1), )y

We choose ¢ = 9(t) € V*. Let

A max ||A
Al = nax A%y

the matrix norm induced by the vector norm | - ||w. Further,

th L0t @I = (940),0(B)yy  for every ¢ € (0,7



52 3. REDUCED-ORDER MODELS FOR FINITE-DIMENSIONAL DYNAMICAL SYSTEMS
holds. Then, we infer from (3.2.5)

= dt Ciot oI, < 11 Ol + 19Ol 950
(3.2.6) FIE (1) — £y ) L 194E)
HIPLg(E) = 5y 198 -

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e.,
there exists a constant Ly > 0 satisfying

1F () = f(t )y < Lyl = dllyy  for all , € R™ and ¢ € [0, 7.

Moreover, we have

m 2 m
1P =g = || S @ vaw s = 3 1@, vl
i=0+1 W =41
for all ¢ € (0,T). Consequently, (3.2.6) and (3.2.3) imply
s Lol < AL (@i, + o) + 14,
+Lf 0(2) + 9 (E) 198
+ 5 (P90 — 30y + 1901
A
< u|| Ol + (5 0141+ 27) + 3 )19l
LI Ol 1Ol + 32 10,0
i=0+1
A
< BEE o, + (5 041+ £9) + 5 )10l
DI TORT
i=0+1
Consequently,

SOl < (30141 + L) +1) WOl + (141 + L)l Dl

+ 30 @) v

i=C+1
Now we make use of the following lemma; see Exercise 2.1.

LEMMA 3.2.1 (Gronwall’s lemma). For T > 0 let u : [0,T] — R be a nonnega-
tive, differentiable function satisfying

u'(t) < e(t)u(t) + x(t)  for all t € [0,T],
where ¢ and x are real-valued, nonnegative, integrable functions on [0,T]. Then
t t
u(t) < exp (/ ©(s) ds) (u(O) +/ x(s) ds) for allt €10,T).
0 0

In particular, if
v < ouin0,T] and u(0)=0



2. ERROR ANALYSIS FOR THE REDUCED-ORDER MODEL 53

holds, then uw =0 in [0,T].

Using Lemma 3.2.1 and (3.2.4) we arrive at

19 Ol < e (IW(O)II; + (Il +Lf)/0 10" ($) I dS)

(3.2.7) ta Z /| Wil ds

1=0+1

(W Mo + Z ()\ +/ (t),z/)¢>W|2dt>>

i=0+1
where ¢; = exp(3(||A]| + Ly) + 1)T') and ¢o = ¢y max{||A|| + Ly, 1}.

THEOREM 3.2.2. Lety € C([0,T];R™)NCY(0,T;R™) be the unique solution to
(1.4.1), £ € {1,...,m} be fized and {1;}_, a POD basis of rank ¢ solving (3.2.1).
Let y* be the unique solution to the reduced-order model (3.1.4). Then

/OT ly(t) — v (1)l dt < C Z (A +/T|<y(t),¢i>w|2dt)

=041

for a constant C > 0.

PrROOF. From (3.2.4), (3.2.7) and 9¢(0) = Py, — y*(0) = 0 we find
T 2 T 2
/ ly(t) = y* ()]l At = / [0 (t) + 0 (1)llyy dt
0 0
T 2 2
<2 / o (6) 3+ 19 Ce) -
<2 Z A + 3 Z ()\ +/ (t)’wi>w|2dt>

i=0+1 1=0+1

with ¢3 = 2¢y. Setting C' = 2 + c3 the claim follows directly. O

REMARK 3.2.3. The term
Sl MTORBI
1=0+1

can not be estimated by the sum over the eigenvalues Ag41,..., Ay If we replace
(3.2.1) by

T ¢
min w0 - 3 w0, v v

Y1, €R™ JO i1

(3.2.8) 2

(]~
—~
<
—~

o~

+ o - >

s.t. (i, ¥5)y, = 0 for 1.<4,5 </,
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we end up with the estimate

m

T
/Ouyos) ()l dt < & Z

for a constant C' > 0. In this case the time derivatives are also included in the
snapshot ensemble. Of course, the operator R defined in (2.1.6) has to be replaced.
It turns out that the POD basis {Q/Ji}le is given by the eigenvalue problem

(3.2.9) R = Nth; for 1 <i<m and A >X>...> X, >0
where the operator R : R — R™ is defined by

. T
Ru:/o (y(t), V) y(t) + (1), Y)Yy y(t) di

for ¢ € R™; see Exercises 3.4.2 and 3.4.3. O

REMARK 3.2.4. Suppose that we build the matrix ¥ € R™*(") ysing the
column vectors y; =~ y(t;), 1 < j <n, and y; = §(tj—m), m+1 < j < 2m. Then,
the discrete variant R™ of the operator R introduced in Remark 3.2.3 is given by

R =" (U5, V)b + & Yms s )y Ymts

j=1
SII(09) SFAISER( 9) SIS Ny
Jj=1 k=1v=1 k=1v=1
n m m
=30 (VP + Ve ¥ Wit
j=1lk=1v=
—Y 10) 10) > Y Wy =YDY Wy
—_——
7‘D€R2n><2n
with the diagonal matrix D = diag (ozl, ..., ap) € R™™ and nonnegative weights

introduced in (P”’ ). Thus, we have R" = YDYTW € R™ "™ which is of the
same form as in (1.4.6). The discrete version to (3.2.9) is

(3.210)  YDY Wi =AMy for 1<i<m and A >Xa>...> Ay, >0
Setting v; = W~1/24¢); in (3.2.10) and multiplying by W/2 from the left yield
(3.2.11) WYy DY TWY 24 = Niah;.

Let Y = W2y DY2 € R™*2" Using W' = W as well as DT = D we infer
from (3.2.11) that the solution {1;}¢_; is given by the symmetric m x m eigenvalue
problem

VYT =Nthi, 1<i <l and (i, ) = 855, 1 <,5 <4
and ¢; = W~1/24;. Note that
YTY — Dl/QyTwybl/Q c R2n><2n.
Thus, the POD basis of rank ¢ can also be computed by the methods of snapshots
as follows: First solve the symmetric 2n x 2n eigenvalue problem
YTY(gl = /\i(gi, 1<¢</¢ and <17i,17j>R2n = (51']', 1<4,5 < /.
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Then we set (by SVD)
— 1 - 1 -
i:W71/2 ;= W71/2Y ;= YD1/2 ;
v T v ) v
for 1 <i <. %
From a practical point of view we do not have the information on the whole
trajectory in [0,7]. Therefore, let At = T'/(n — 1) be a fixed time step size and
t; = (j—1)Atfor 1 < j <n agiven time grid in [0, T]. To simplify the presentation
we choose an equidistant grid. Of course, nonequidistant meshes can be treated
analogously [15]. We compute a POD basis {17 }¢_, of rank ¢ by solving the con-
strained minimization problem (f’TVLVZ) After the POD basis has been determined,
we derive the reduced-order model as described in Section 1. Thus,

¢
(1) =D viwy, te(0,T),
i=1

solves the POD Galerkin projection of (1.4.1)

(3:2120) (5(6),0%)y = (Ay(t) + F(t, 5 (D), W)y i =1...,0 and t € (0,
(3.2.12b) (y*(0), %)y = (Yo, ¥7) i=1....0

To solve (3.2.12) we apply the implicit Euler method. By y§ we denote an approxi-

mation for y* at the time ¢;, 1 < j < n. Then, the discrete system for the sequence
{y5}7—y in V,f = span {7, ..., 9y} looks like

[y
(3:2.13a) <%A’fl,w> = (Ayf+ F(y), 0y, =10 2 <,
w
(3213b) <yf7wzn>W = <y07w;'n>W7 t=1... 76'

We are interested in estimating
- 2
> aylly(ts) = yily-
j=1

Let us introduce the projection P: : R™ — V! by
¢

(3.2.14) Prn=> (00w f fory e R™.

i=1
It follows that P! is linear and bounded (and therefore continuous). In particular,
[P Lrm) = 1; see Exercise 3.4.4.
We shall make use of the decomposition
y(ts) = y5 = y(t;) = Pay(ty) + Puy(t) — i = of + 95,
where gﬁ = y(t;) — Ply(t;) and 195 =Ply(t;) — yf. Note that

3o e 32 tte) i v

ji= =1

2 n 9
= 225 llut) = Pry())ly
j=1

- 2
=l
j=1
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Since {¢"}¢_, is the POD basis of rank ¢, we have
n 9 m N
(3.2.15) D ajllehl, = D A
j=1 i=0+1

Next we estimate the terms 19?. Using the notation 519§ = (19§ - ﬁgfl)/At for
2 < j < n we obtain by (1.4.1a) and (3.2.13a)

a0ty = { P y(t) —y(t; )\ Y Y- Loy
@) = (P (Wl lmd) Dot )
= (y(t;) (ij + f( Jayj)) i)y

() ),

(3.2.16) = (A(y(t;) — v)) +f tjyy(tg f( myj) Yy
+<P (y tj) — )) (tj— 1),W>W
<y ) —y(tj)7¢?>w

= (A(y(t;) — yj)+f(y, (t;)) = F(t5,05) + 25 + wj, ),
for 1 <i</fand 2 < j <n, where

(t;) —y(tj-1) (t;) —y(tj-1) (t;) —y(tj-1)
fzpf;(y AZ )_y AZ Cwp=? Az — ().

Multiplying (3.2.16) by (19?, P w and adding all ¢ equations we arrive at

for j =2,...,n. Note that

2(0 — P, )y = 2|% )15 — 2 (&, )y
2 e 2 e i
= 112 — 1515 + ¢ — Fll
for all ¢,7) € R™. Choosing ¢ = % and ¢ = ¥%_, we infer from (3.2.17)

1 2 2 2
G218 200508 = 5 (W0, — WLl 195 - 05y )
Inserting (3.2.18) into (3.2.17) and using the Cauchy-Schwarz inequality we obtain
2 2
19511 < 19511l + AtLAN 051y + 19511 ) 19511
+ A (175, 5(5)) = £ty Ly + 126y + Tl )19

Suppose that f is Lipschitz-continuous with respect to the second argument. Then
there exists a constant Ly > 0 such that

15, 9(8)) = £, 9y < Lr lly(t) = w5l forj=2,....n
Hence, by Young’s inequality we find

02 ¢ 2 02 ¢ ¢ ¢
19415, < 1% ally, + At (enlloblly, + ez 9415, + 12615, + il ),
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where ¢; = max{||Al|, Ly} and c; = max{3||A]|,3L¢,2}. Suppose that

1
3.2.19 0< At < —
( ) < - 262

holds. With (3.2.19) holding we have

1 1
OS1—2CQAt<1—C2At and 1-02At21—§:§
Thus,
1 1-— CgAt + CzAt CQAt
3.2.20 = = <14 2cAt
( ) 1-— CgAt 1-— CgAt 1— CgAt =1+ €2

Using (3.2.20) we infer that
2 2 2 2 2
1915 < (1 + 2e280) (1194 1 + At(l1=511, + lwfly, + xS, ) )-

Summation on j yields

J
2 . 2 2 2 2
19515 < 0+ 2ea)? (10415, + 803 (Il + Tkl -+ ekl ) )-

k=1
Note that
. 2c97 AL\’ .
(14 20At) — (1 n Czﬂ) < (e
J
Thus

)

J

2 i 2 2 2 2

19515, < €23 (U051, + e 35 (1l + Ikl + ea Ikl ) )-
k=1

We next estimate the term involving wy:

J J
2
Ati ||w£||W:At§ :
=1 k=1

2

y(tr) _A?i(tkfl) — i)

w

_ é > lly(te) — ylteor) — Atg(t) 1%

k=1
1 J tr 2
= — (tr—1 — 8)¥(s)ds
At ; /tkl w
1 J tr tr 5
<2 [ e sPds [ el ds
k=17 tk—1 te—1
(A2 I~ s (A1)?
< 3 Z Hy”m(tk,l,tk;RM) = 3 ||y||L2(0’tjiRm)'

k

=

57
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The term zﬁ can be estimated as follows:

 ry(t) —ylteo)y  y(te) — ylte-1) ||
P[( kAtk )_ kAtk

’ w

) = Phit) + Phi(te) -

Il = |

e (y(tk) —y(tr-1) ‘
w

At N
02 y(te) —y(tr_1) . 2
2
j - , th) — y(tn_
+2 ‘ PLy(te) — i(tk) + 9(tr) — %i(kl) ’

w

2
2 . . 2 . t _ te
< 2wl + 4IPLi(t) — 5ty + 4 Hy@k) _ 9ltn) = vite-)

w

. . 2 2
= 4| Pra(t) — 9(ti) Iy + 6 llwillyy-
Recall that At < 2qy, for 1 < k < n. Hence,

2 .12
Atz I#£ Il < 82% 1Pra(te) — 5ty + 20802 517204, -

Further, 9§ = Py, — Y1 =0 and 0 < jAt < T for j =0,...,n — 1. Summarizing
2
195115,
- . 2 2 7 i
<ol s (1At~ tu) oy + 260 k1) + 5 (AO7 il ).
k=1

where the constant ¢z = > max{7/3,2¢,,8} is independent of ¢ and {t;}7_,
From >"}_, oy, = T and (3.2.15) we infer

" 2 - . . 2 2
>y 95y, < 03T<Zaj (PEatts) = eIy +11eS s, )
j=1 j=1

.2
(3.2.21) + (At)? IIyILZ(O,T;Rm))

<c4<zm: (A”+Zaj ), ) W|> 2)

i=0+1
with ¢4 = ¢3T max{1, ||y||%2(07T;Rm)}.
THEOREM 3.2.5. Let y € C([0,T];R™) N CY(0,T;R™) be the unique solution

to (1 4.1) satisfying ij € L*(0,T;R™) and ¢ € {1,...,m} be fived. Suppose that
{4"}e_| is a POD basis of rank { solving (Pl “). Assume that (3.2.13) possesses a

unique solution {y }i_1. Then there exists a constant C' > 0 such that
. n n 2
>t~ sl < (@07 + 3 (x +Za] )
j=1 i=6+1

provided At is sufficiently small and f is szschztz-contmuous with respect to the
second argument.
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PRrROOF. The claim follows directly from (3.2.15), (3.2.21), and
. 2 - 2 2
> asllytts) = vl <27 a5 (19515, + 1S s, )
j=1 j=1

s2c4< > (A?+Z|<y‘(tj>,w?>wl2> +(At)2>

i=l+1
m
+2 ) A7
i=C+1
provided At is sufficiently small and f is Lipschitz-continuous with respect to the

second argument. O

REMARK 3.2.6. Compared to the estimate in Theorem 3.2.2 we observe the
term

(3.2.22) Zaj [((t3), gy |

instead of the term

T
(3.2.23) /O [(9(8), i)y | it

Note that (3.2.22) is the trapezoidal approximation of (3.2.23). Further, the error
O((At)?) appears in the estimate of Theorem 3.2.5 due to the Euler method. ¢

Next we address the fact that the eigenvalues {A?}7; and the associated eigen-
vectors {u]'} (i.e., the POD basis) depend on the chosen time grid {¢;}7_,. We apply
the asymptotic theory presented in Section 1.3. Then, it follows from Theorem 1.4.5
that there exists a number 7 € N satisfying

i A?SQZm: Ai

i=0+1 i=0+1
m n 9 m T 9
DD WATOREMELED SN I ORI
i=0+1 j=1 i=t+170

for n > @ provided }7, ; A; # 0 and fOT ’(y(t),m)W‘th # 0 hold. Thus, we
infer from Theorems 3.2.2 and 3.2.5 the following result.

THEOREM 3.2.7. Let all hypothesis of Theorems 1.4.5, 3.2.2 and 3.2.5 be satis-

fied. If fOT ’(y(t),ui>W’2 dt # 0, then there exists a constant C > 0 and a number
n € N such that

jzzaj ly(t;) — yﬁ”fﬂ, <C ((At)2 + iél (>\i n /OT |<y(t),¢z‘>|2dt)>

for alln > n.
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3. Empirical Interpolation Method for Nonlinear Problem

The ROM introduced in (3.1.4) is a nonlinear system. Hence the problem with
the POD Galerkin approach is the complexity of the evaluation of the nonlinearity.
To illustrate this we have a look at the nonlinearity f* in (3.1.4a). Setting ¥ =
[1] ... |e] € R™* we can write

FAt0 (1) = WTWF(t, Uy'(1)).

This can be interpreted in the way that the variable y’(t) € R is first expanded
to a vector Uy’ (t) of dimension m, then the nonlinearity f¢(¢, Un’(t)) is evaluated
and at last the result is reduced back to the low dimension ¢ of the reduced-order
model. This is computationally expensive. Further this means that our reduced-
order model is not independent of the full dimension m. Note that when applying
a Newton method to the system (3.1.4) the Jacobian of the nonlinearity is also
needed. For instance, we have

ife ¢ _ T ¢

gy LYV (0) =¥ gt Uy ()Y for t €[0,T],
where

o' (6,09 (0) = (Aot W O vy )

Again the same problem can be observed. Note that here the computation expenses
are larger since the Jacobians are of dimension m x m. Hence not only a vector is
transformed but a matrix of full dimension. To avoid this computational expensive
evaluation the empirical interpolation method (EIM) was introduced [1]. This
method is often used in combination with the reduced basis approach [9]. The
second approach we will investigate here is the discrete empirical interpolation
method (DEIM) as introduced in [3, 5, 4]. While the EIM implementation is
based on a greedy algorithm the DEIM implementation is based on a POD approach
combined with a greedy algorithm. We will now discuss both methods. We define

b(t) = f(t, Un'(t)) € R™ for t € [0,T].

Now, b(t) is approximated by a Galerkin ansatz utilizing g linearly independent
functions ¢1,...,¢, € R™, ie.

P
(3.3.1) b(t) ~ Y drex(t) = De(t)

k=1
with ¢(t) = [c1(t),...,co(t)]T € R® and @ = [¢1 | ... | ¢y € R™*¥. Hence we can

write the approximation of f¢(t,-) as
£ 0 (1) = WTWF(, Uy (1) = WTWh(E) = U TWoc(t).

The question arising is how to compute the matrix ® and the vector ¢(t). Let
7€ R® be an index vector and B € R™*# a given matrix. Then by By we denote the
submatrix consisting of the rows of B corresponding to the indices in 7. Obviously,
if we choose p indices then the overdetermined system b(t) = ®c(t) can be solved
by choosing g rows of b(t) and ®. Here it is assumed that the submatrix ®; € R#*#
is invertible.

Assuming we have computed ® and ’ by an algorithm. Then we proceed as
follows. For simplicity we introduce here the matrix P = (e |...[ez,) € R™*¥,
where ez, = (0,...,0,1,0,...,0)T € R™ is a vector with all zeros and at the 7;-th
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row a one. Note that ®; = PT® holds. To evaluate the approximate nonlinearity
we need c(t). Since we know ® and the index vector 7 we can compute

c(t) = (PT®) " PTo(t) = (PT®) " PTf(t,Wn'(t)) fort e [0,T].
Suppose that the matrix P can be moved into the nonlinearity. Then, we obtain

PTf( Uy (1)) = (F(, 09" (1)), = F(t. P70y (1)).

An extension for general nonlinearities is shown in [5]. Let us now have a look at
the computational expenses. The matrices PTW¥ € R®*¢ (PT®)~! € R®X¢ and
UTW® € RE*® can be precomputed. All the precomputed quantities are indepen-
dent of the full dimension m. Additionally, during the iterations the nonlinearity
only has to be evaluated at the interpolation points, i.e. only at p points. This
allows the reduced-order model to be completely independent of the full dimen-
sion. Note that the used method is an interpolation and therefore is exact at the
interpolation points. For the Jacobian the approach is similar.

Let us now turn to the EIM and DEIM algorithms. When (1.4.1) is solved
the nonlinearity f(¢,y(t)) is evaluated for each time step. If these evaluations are
stored the procedure to determine ® and the index vector 7 does not involve any
further evaluations of the nonlinearity. We denote by F' € R™*™ the matrix with
columns f(t;,y(t;)) € R™ for i = 1,...,n. Next let us have a look at the two
algorithms of interest and let us present some numerical results. In the algorithms
Il - oo stands for the maximum norm in R™ and the operation ‘arg max’ returns
the index, where the maximum entry occurs. In Algorithm 6 we state the EIM
using a greedy algorithm. Here the basis ¢, i = 1,...,p, is chosen from the

Algorithm 6 (The empirical interpolation method (EIM))

Require: p and matrix F' = [f(t1,y(t1)) |- .. | f(tn, y(tn))] € R™*™;
k< argmaxj—1,..n [|f(t;,y(t;))lloo;
& f(tr,y(tr));
idx < argmax;j—1,__m |&l;
1 f/g{idx}§
® = [¢p!] and 7= idx;
for i =2 to ¢F! do
Solve ‘I){gJEI}Cj = f(tj,y(tj)){pﬁsz} forj=1,...,mn;
k< argmax;—1,..a [[f(t;,y(t;)) — c;lloo;
£ fte,y(tr));
idx¢— argmax;—1,...m [(§ — Pcx) (53]
¢ = (€ — Per) /(€ — Pek) (idxy
O « [®,¢'] and 7« [7; idx];
: end for
return ® and 7

_= = = =
B 29

provided snapshots of f(¢,y(t)) by scaling and shifting. The obtained basis is not
orthonormal. The advantage of this method is that the submatrix ®; is an upper
triangular matrix. Hence solving for ¢(t) is computationally cheap. The drawback
of this method is that the computation of the basis is more expensive than the
DEIM algorithm presented in Algorithm 7. The DEIM algorithm on the other
hand generates the basis using the POD approach. Here the previously introduced
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Algorithm 7 (The discrete empirical interpolation method (DEIM))

Require: p and matrix F' = [f(t1,y(t1)) |- .. | f(tn, y(tn))] € R™*™;
1: Compute POD basis ® = [¢1,...,¢,] for F;
2: idx¢— argmax;—1, . m [(#1) (1 ];

3: U = [¢1] and 7= idx;

4: for i =2 to p do

5. U< @y
6
7
8
9

Solve Uzc = ug;
r<u—"Uc
idx¢— argmax;j—1 . m |(r) 35
. U+ [U,u] and 7+ [7,idx];
10: end for
11: return ¢ and ¥

POD approach is applied to the snapshots of the nonlinearity b(t) = f(¢,y(t)) to
compute ®. The matrix &7 obtained by the DEIM method has no special structure.
Hence evaluating the nonlinearity using DEIM is more expensive compared to EIM.
The computational cost can be reduced by precomputing a LU decomposition of ®;.
Then the evaluation of the nonlinearity using DEIM involves two solves compared
to one solve for the EIM. Further when comparing the two algorithms it can be
seen that the computation for the EIM basis is more expensive compared to the
DEIM basis. This can be seen when comparing line 7 in Algorithm 6 and line 6
in Algorithm 7. In each iteration of Algorithm 6 one has to solve n linear systems
compared to one linear system in Algorithm 7. The selection for the interpolation
points in both algorithms is similar and is based on a greedy algorithm. The idea
is to successively select spatial points to limit the growth of an error bound. The
indices are constructed inductively from the input data. For more details we refer
the reader to [1, 3].

4. Exercises

Ezxercise 3.4.1. Prove Gronwall’s lemma; see Lemma 3.2.1.

Ezercise 3.4.2. Prove that the first-order necessary optimality condition for
(3.2.8) is given by R, = A\, 1 <1 < L.

Exercise 3.4.3. Show that R is linear, bounded, self-adjoint and nonnegative
provided y € H*(0, T; R™), i.e.,

T
/0 ly@IZ + @12 dt < 0o

holds.

Exercise 3.4.4. Show that the operator P! defined in (3.2.14) is linear, bounded
and satisfies | P%||p@&m) = 1.



CHAPTER 4

Balanced Truncation Method

1. The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic
regulator (LQR) problem. Utilizing dynamic programming necessary optimality
conditions are derived. It turns out that for the LQR problem the state-feedback
solution can be determined by solving a differential matrix Riccati equation. The
presented theory is taken from the book [7].

1.1. The linear-quadratic regulator (LQR) problem. The goal is to find
a state-feedback control law of the form
u(t) = —Kux(t) fortel0,T]

with w : [0,7] - R™, z : [0,T] — R, K € R™«*™= 50 that u minimizes the
quadratic cost functional

(4.1.1a) J(z,u) = /OT ()T Qx(t) + u(t)T Ru(t) dt + z(T)T Mz (T),

where the state z and the control u are related by the linear initial value problem
(4.1.1b) &(t) = Ax(t) + Bu(t) for t € (0,7] and z(0) = zo.

In (4.1.1a) the matrices Q, M € R™=*™M= are symmetric, positive semi-definite,
R € Rmuw*™u ig gymmetric, positive definite and in (4.1.1b) we have A € R™= %"=
B € R™M=>*™u and zp € R™=. The final time T is fixed, but the final state z(T")
is free. Thus, we aim to track the state to the state = 0 as good as possible.
The terms x(t)7Qx(t) and x(T)T Mz(T) are measures for the control accuracy
and the term u ()" Ru(t) measures the control effort. Problem (4.1.1) is called the
linear-quadratic requlator problem (LQR problem).

1.2. The Hamilton-Jacobi-Bellman equation. In this section we derive
first-order necessary optimality conditions for the LQR problem. Since general-
izing the problem to a non-linear problem does not cause more difficulties in the
deviation, we consider the problem to find a state-control feedback control law

u(t) = @(x(t),t), tel[0,T],
such that the cost-functional
T
(4.1.2a) Ji(z,u) = / L(z(s),u(s),s)ds + g(z(T))
t
is minimized subject to the non-linear system dynamics
(4.1.2b) #(s) = F(x(s),u(s),s) for s € (0,T] and z(t) = ;.

63
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We suppose that the functions L : R™= xR™= x [0, T] — [0, 00) and g : R™= — [0, 00)
satisfy

L(0,0,s) =0for s €[0,7] and g¢(0)=0

Moreover, let F': R™= x R™ x [0,T] — R™= be continuous and locally Lipschitz-
continuous with respect to the variable x. Moreover, x; € R™= holds. To derive
optimality conditions we use the so-called Bellman principle (or dynamic program-
ming principle). The essential assumption is that the system can be characterized
by its state x(t) at the time ¢ € [0,7] which completely summarizes the effect of
all u(s) for 0 < s < t. The dynamic programming principle was first proposed by
Bellman [2].

THEOREM 4.1.1 (Bellman principle). Let t € [0,T]. If u*(s) is optimal for

€ [t,T] and z* is the associated optimal state, starting at the state x; € R™=,

then u*(s) is also optimal over the subinterval [t + At, T for any At € [0,T — {]
starting at xiyar = (6 + At).

PrROOF. We show Theorem 4.1.1 by contradiction. Suppose that there exists
a control u** so that

T
/ L(z™(s),u™(s), ) ds + g(«™*(T))

t+ AL .
</ L(a*(s),u"(s), s) ds + g(«*(T)),
t+At

(4.1.3)

where
@ (s) = F(2"(s),u™(s),s) and @™ (s) = F(z™"(s),u™ (s), )
hold for s € [t + At, T]. We define the control

u*(s) if s € [t,t+ At],
(4.1.4) u(s) = ]
u*(s) ifse (t+ At T).
By z(s) we denote the state satisfying &(s) = F(x(s),u(s),s) for s € [t,T] and
(t) . Then we derive from (4.1.3) and (4.1.4) that
4.1.

8

—~

5
/ s)ds + g(a(T))
t+At T
- / L(*(s),u*(s),5)ds + / L(z™*(s), u™*(s), 5) ds + g(a**(T))

t+At

t+At T
< /t L(z*(s),u*(s),s)ds + / L(z*(s),u*(s),s)ds + g(z*(T))

t+At

T
:/t L(z*(s),u*(s), 5) ds + g(z*(T)).

Recall that u*(s) is optimal for s € [t,T] by assumption. From (4.1.5) it follows
that the control u given by (4.1.4) yields a smaller value of the cost functional.
This is a contradiction. O
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Next we derive the Hamilton-Jacobi-Bellman equation for (4.1.2). Let V* :
R™= x [0,T] — R denote the minimal value function given by
(4.1.6)

1% (l’t, t)

= min {Jt(x, w) | @(s) = F(a(s),u(s), ), s € (t,T] and a(t) = zt}

for (zy,t) € R™= x [0,T], where

T
Ji(e,u) = / L(x(s), u(s), s)ds + g(x(T)).

From the linearity of the integral and (4.1.6) we conclude
(4.1.7)
V* (l't, t)

t+At
- i L * A A
A e ]

#(s) = F(z(s),u(s),s), s € (t,t+ At] and z(t) = xt}

for (z¢,t) € R™= x [0,T — At], where we have used the Bellman principle. Thus,
by using the Bellman principle the problem of finding an optimal control over the
interval [t,T] has been reduced to the problem of finding an optimal control over
the interval [t, ¢t + At].

Now we replace the integral in (4.1.7) by L(z(t), u(t),t)At, perform a Taylor
approximation for V*(z(t + At),t + At) about the point (z:,t) = (z(t),t) and
approximate z(t + At) — z(t) by F(xz(t), u(t),t)At. Then we find

*

V*(a¢,t) = min {L(:vt,ut,t)At + V(2. t) + oz

t) At
wp ER™Mu 8t ('Ttv )

+ VV* (2, )T F (24, ug, t) At + O(At)}

*

= V*(xt,t) —+ W(l’t,t)At
. N o( At
+ At Jnin {L(xt, g, t) + VV* (e, )T F (e, u, t) + (At)}
for any At > 0. Thus,
2% . . o( At

—W(xht) =, min {L(xt,ut,t) + VV* (@4, )T F (24, ug, ) + (At ) }

Taking the limit At — 0 and using V*(x;,T) = g(x:) we obtain
V*

(4.1.8a) —% (x4, ) = Iél]é{ln {L(:vt,ut,t) + VV*(xt,t)TF(mt,ut,t)}
for all (z¢,t) € R™= x [0,T") and
(4.1.8b) V¥ (2, T) = g(¢)

for all z; € R™=,
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To solve (4.1.8) we proceed in two steps. First we compute a solution u; to

u*(t) = argmin {L(xs, u,t) + VV* (21, 8)" F(20,u4,1) }

uy ER™u
and set
(4.1.9) U(VV* (x4, 1), m, t) = u*(t),
which gives us a control law. Then we insert (4.1.9) into (4.1.8a) and solve
ov*
- ot (l't, t) = L(xt, \I/(VV* (xh t), T, t), t)

+ VV*(.’Et, t)TF(xh \I/(VV*((Et, t)7 T, t)7 t)

for all (x¢,t) € R™= x [0,T). Finally, we can compute the gradient VV*(x4,t) and
deduce the state-feedback law

u*(t) = O(xy, t) = U(VV* (24, 1), 24, t) for all (x,,t) € R™ x [0,T).

REMARK 4.1.2. 1) In general, it is not possible to solve (4.1.8) analyti-
cally. However, for the LQR problem we can derive an explicit solution
for the state-feedback law.

2) Note that the Hamilton-Jacobi-Bellman equation are only necessary op-
timality conditions. O

1.3. The state-feedback law for the LQR problem. For the LQR prob-
lem we have

L(z,u,t) = 27 Qz + v Ru, g(z) = 2" Mz, F(z,u,t)= Az + Bu

for (z,u,t) € R™= x R™« x [0,T]. For brevity, we focus on the situation, where
the matrices A, B, @, R are time-invariant. However, most of the presented theory
also holds for the time-varying case.

First we minimize

2" Qz + u" Ru+ VV*(z,t)" (Az + Bu)

with respect to u. First-order necessary optimality conditions are given by

u?' Rii+ 4" Ru + VV*(x,t)TBi =0 for all & € R™~.
By assumption, R is symmetric and positive definite. Then we find

(2Ru+ BTVV*(z,8)) @ =0 forall @€ R™
and
(4.1.10) T —% R'BTVV*(x,t).
For the minimal value function V* we make the quadratic ansatz
(4.1.11) V*(z,t) = 2T P(t)z, P(t) € R™=*™= symmetric.
Then, we have VV*(x,t) = 2P(t)x so that
u* = —-R'BTP(t)z.



1. THE LINEAR-QUADRATIC CONTROL PROBLEM 67

Note that
3{;* (z4,t) = xtTP(t)xt,
L(x, —R™'BTP(t)xs,t) = 2] Qs + 2] P()BR™*BT P(t),
=2/ (Q+ Pt)BR'BTP(t))x,
F(zy,—R™'B"P(t)zs,t) = Axy — BR'BTP(t)z; = (A— BR™'BTP(t))a,
VV* (x4, t) = 2P(t)2;.

Consequently,

*

. ov
— x?P(t)xt = _W(xt’t)

=2} (Q@+Pt)BR'B"P(t))x: + (2P(t)xt)T (A—BR'BTP(t))x,
for all x; € R™=, which yields
— 2l P(t)x,
=7 (Q+ P(t)BR'B"P(t) + 2P(t)A — 2P(t)BR'BT P(t)),
=z (2P(t)A+Q — P()BR™'B"P(t))x,
for all z; € R™=. From P(t) = P(t)T we deduce that
2 P(t)Azy = of P(t)Axy + o AT P(t)z, = o} (AT P(t) + P(t)A)z.
Using V* (x4, T) = ] P(T)z; and (4.1.8b) we get
(4.1.12a)
—a{ P(t)z, = af (ATP(t) + P(t)A+ Q — P)BR'B"P(t))x,, t€[0,T)
(4.1.12b)
2l P(T)xy = x M.

Since (4.1.12) holds for all z; € R™= we obtain the following matriz Riccati equation

(4.1.13a) —P(t) = ATP(t) + P(t)A+Q — P(t)BR™'BTP(t), t€0,7T)
(4.1.13b) P(T)= M.
Finally, the optimal state-feedback is given by

u*(t) = —K(t)z(t) and K(t)= R 'BTP(t).

EXAMPLE 4.1.3. Let us consider the problem
T
min/ lz(t)|? + [u(t)|?dt  s.t.  @(t) = u(t) for t € (0,T).
0

Choosing m;; = m, =1, A= M =0 and B =@ = R = 1 the matrix Riccati
equation has the form
—P(t)=1—P(t)? fort € [0,T) and P(T)=0.

This scalar ordinary differential equation can be solved by separation of variables.

Its solution is
1— 672(T7t)

PO = 1=
with the optimal control u*(t) = —P(t)x(t). O
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2. Balanced truncation

Let us consider the linear time-invariant system
(4.2.14a) &(t) = Ax(t) + Bu(t) for t € (0,00) and z(0) = zo,
(4.2.14Db) y(t) = Cx(t) for t € [0, 0)

where z(t) € R™= is called the system state, zo € R™ is the initial condition of

the system, u(t) € R™« is said to be the system input and y(t) € R™v is called the

system output. The matrices A, B and C' are assumed to have appropriate sizes.
It is helpful to analyze the linear system (4.2.14) through the Laplace transform.

DEFINITION 4.2.4. Let f(t) be a time-varying vector. Then its Laplace trans-
form is defined by

(4.2.15) L[fl(s) = /OOO e "' f(t)dt for s € R.

The Laplace transform is defined for those values of s, for which (4.2.15) converges.
The Laplace transforms of u(t) and y(t) are given by

Llu)(s) = /000 e *tu(t)dt and Ly](s) = /000 e *ty(t) dt = CL[z](s),
where we have used (4.2.14b). Note that
Cli(s) = /0 e~ Li(t) dt = — /O (—s)e~"ta(t) dt + (e~*ta(t))|
= sL[z](s) — zo.

Therefore, the Laplace transform of the dynamical system (4.2.14a) yields
sL[x](s) — x(0) = AL[z](s) + BL[u](s),

which gives
L[z](s) = (sI — A) " z(0) + (sI — A) " BL[u](s).
Thus,
(4.2.16) L[y](s) = CL[z](s) = C(sI — A)"'2(0) + C(sI — A)" ' BL[u](s).
For x(0) = 0 the expression (4.2.16) reduces to

(4.2.17) Lly](s) = G(s)L[u](s)
where
(4.2.18) G(s)=C(sI-A)'B

is called the transfer matriz of the system.
Given the initial state xg and the input wu(¢), the dynamical system response
x(t) and y(t) for ¢t € [0, T] satisfy

t
x(t) = et +/ e(tfs)ABu(s) ds and y(t) = Cx(t).
0

If u(t) = 0 holds for all ¢ € [0,T], we infer that
z(t) = e A(ty)

for any t;, t € [0,T]. The matrix e "%1)4 acts as a transformation from one state
to another. Therefore, ®(t,t;) = e(*~11)4 is often called the state transition matriz.
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DEFINITION 4.2.5. The dynamical system (4.2.14a) or the pair (A, B) are called
controllable if for any xo € R™= and final state xr € R™= there erists a (piece-
wise continuous) input u such that the solution to (4.2.14a) satisfies x(T) = xr.
Otherwise, (A, B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we
refer to [24].
THEOREM 4.2.6. The following claims are equivalent:

1) (A, B) are controllable.
2) The controllability gramian

t
We(t) =/ eABBT A" ds
0

is positive definite for every t > 0.
3) The controllability matrix

C=[B AB A’B ... A™=~1B] e Rm=*(mama)
has full rank.

DEFINITION 4.2.7. 1) The unforced system @(t) = Ax(t) is called stable,
if the eigenvalues of A are in the open left half plane, i.e., Reh < 0 for
every eigenvalue A . A matriz with this property is said to be stable or
Hurwitz.

2) The dynamical system (4.2.14a) or (A, B) are called stabilizable if there
exists a state-feedback u(t) = —Kxz(t) so that A— BK is stable.

The next result, which is proved in [24], is a consequence of Theorem 4.2.6.

THEOREM 4.2.8. The following claims are equivalent:

1) (A, B) are stabilizable.
2) The matriz [A — X\ B] € R™=>*(Metmu) has full row rank for all X € C
with a negative real part, i.e., ReA < 0.

Let us now consider the dual notions of observability.

DEFINITION 4.2.9. The dynamical system (4.2.14) or (A, C) are called observ-
able if for any t1 € (0,T], the initial condition o € R™= can be determined from
the time history of the input u(t) and the output y(t) in the interval [0,t1] C [0,T].
Otherwise, the system or (A,C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [24].

THEOREM 4.2.10. The following claims are equivalent:

1) (A, C) is observable.
2) The observability gramian

t
Wo(t):/ A" 0T CesA ds
0

is positive definite for every t > 0.
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(3) The observability matriz

C
CA

o= ] c R(mlmy)xmx
CAM=—1
has full rank.
We set

o0 o0
W, = / eABBTesA" ds  and W, = / AT 0T CesA ds.
0 0

It can be proved that W, and W, can be determined numerically by solving the
Lyapunov equations

(4219&) AI/VC + WCAT + BBT =0e Rnl.an’
(4219]:)) ATWO + WOA + CTC =0€ R X7

The controllability gramian is a measure to what degree each state is excited by
an input. Suppose that z1, o € R™ are two states with [|z1|gr. = ||z2||gre. If
xlTchl > szchg holds, then we say that the state x; is more controllable than
2. This means, it takes a smaller input to drive the system from x( to x; than to
Zo. It can be proved that the gramian W, is positive definite if and only if all states
are reachable with some input u. On the other hand, the observability gramian
W, is a measure to what degree each state excites future outputs y. Let g be an
initial state. If u = 0 holds, we have

19112 0 o = / y()Ty(s) ds = / £(5)TCT Cix(s) ds
= / :rgeSATC'TCBSAxO ds = ngoxo.
0

We say that the state x;1 is more observable than another state x5 if the correspond-
ing output y; = Cx; yields a larger value of the L?-norm than for y» = Czs
The gramians depend on the coordinates. Suppose that

(4.2.20) x=Tz

where 7 € R™*"= is a regular matrix. Then we obtain instead of (4.2.14) the
system

(4.2.21a) 2(t) = Az(t) + Bu(t) for t € (0,00) and z(0) = zo,
(4.2.21b) y(t) = Cz(t) for ¢ € [0, 00)
with

A=T7'AT, B=T'B, C=CT, z=T 'a.
Let W, solve (4.2.19a). The controllability gramian W, for (4.2.21) satisfies
AW, + W, AT + BBT =0
i.e.,

(4.2.22) T ATW. + W.TTATT T+ T 'BB"T T =0,
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Multiplying (4.2.22) by T from the left and by 77 from the right yields
(4.2.23) ATW, 7T+ TW.TT AT + BBT = 0.

From (4.2.19a) and (4.2.23) we infer that W, = TW,T " holds. Thus, the coordinate
transformation (4.2.20) implies that the controllability gramian W, is transformed
as

Wers Wo =T 'W.TT.
Now we suppose that W, solves (4.2.19b). The observability gramian W, for (4.2.21)

satisfies o o
ATW, +W,A+CTC =0

lLe.,

(4.2.24) TTATT "W, + W, T AT + TTCTCT =0.

Multiplying (4.2.22) by 7~7 from the left and by 7! from the right yields
(4.2.25) ATT "W, T+ T "W, T A+ CTC = 0.

From (4.2.19b) and (4.2.25) we infer that W, = 7-TW,7~! holds. Thus, the

coordinate transformation (4.2.20) implies that the observability gramian W, is
transformed as }
W, W, =T W,T.
The goal is to find a transformation 7 such that
(4.2.26) T W, T T =T"W,T =% =diag (01,...,0m,).

The elements o1 > 09 > ... > oy, are called Hankel singular values of the system.
They are independent of the coordinate system. It can be shown that a regular ma-
trix 7 which satisfies (4.2.26) exists if the system is controllable and observable, i.e.,
the matrices W, and W, are positive definite. The coordinate transformation 7 is
said to be a balancing transformation. Computing appropriately scaled eigenvalues
of the product W.W,, the matrix 7 can be determined. In the balanced coordi-
nates, the states which are least influenced by the input u also have least influence
on the output y. In balanced truncation the least controllable and observable states
having little effect on the input-output performance are truncated.

Instead of (4.2.21) we only consider the system for the first £ € {1,...,m,}
components of z:

(4.2.27a) 20(t) = Agze(t) + Byu(t) for t € (0,00) and  2z(0) = 2o,
(4.2.27b) ye(t) = Coze(t) for t € [0, 00),
where

5 Ay | * ~ B ~ ~ Z
A:(*e *)7 B:(*€)7 C:(CZ‘*)7 Z0€:(>?f>7

and A, € R B, e R ™u €y € R™ % and 2y, € RE.

One big advantage of balanced truncation is that a-priori error bounds are
known. These bounds are formulated for the transfer function. Suppose that
G(s) = C(sI — A)7'B € R™*™u ig the transfer function of the system (4.2.14)
and Gy(s) = Cy(sI — Ay)"1B, € R™ ™ is the transfer function of the reduced
system (4.2.27). Then we have

|G = Gell = maX{H(G - Gf)u”m(o,oo;uamy) : ||u||L2(07oo;Rmu) = 1} > 0e+1
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and

IG =Gl <2 > o

i=0+1
3. Exercises

Let us consider the one-dimensional heat equation
(4.3.28a) 0i(t,x) = O (t, ) +u(t)x(xz)  forall (¢,z) € @ =(0,T) x 9,

(4.3.28b)
0.:(t,0) =0,(t,1)=0 for all t € (0,7),
(4.3.28c¢) 0(0,x) = Oy(x) forallz € Q= (0,1) C R,

where 0 = (¢, ) is the temperature, u = u(¢) the control input, x = x(x) a given
control shape function and 6y = 6y(z) a given initial condition.

Ezxercise 5.3.1. Apply a classical finite difference approximation for the spatial
variable z (compare Example 1.4.1) and derive the finite-dimensional initial value
problem for the finite difference approximations.

Ezercise 5.3.2. Utilizing the trapezoidal rule deduce a discretization for the
quadratic cost functional

J(0,u) = %/QW(T,x)—eT(g;)Fng/O Ju(t)| dt,

where 0 = 6rp(z) is a given desired terminal state and x > 0 denotes a fixed
regularization parameter.

Exercise 5.3.3. Formulate the matrix Riccati equation for the discretized qua-
dratic cost functional — see Exercise 5.3.2 — and the discretized heat equation —
see Exercise 5.3.1.

Ezxercise 5.3.4. What is the matrix Riccati equation in the case if we apply a
POD Galerkin approximation instead of a finite difference discretization? How can
we solve the matrix Riccati equation numerically?



CHAPTER 5

The Appendix

A. Linear and Compact Operators

Let X and Y denote two real normed linear spaces with norms || - ||x and | - ||y.
DEFINITION A.1. A bounded linear operator A : X — Y satisfies the following
two conditions

1) Alarxy + asxs) = a1 Azy + asAzy for all ar,as € R and x1, 22 € X;
2) there exists a constant C 4 > 0 such that || Az|ly < Cy ||z||x for all xz € X.

The space of all bounded and linear operators from X to Y is denoted by L(X,Y).
We shortly write L(X) for L(X,X).

The following proposition is proved in [19, p. 70].

PROPOSITION A.2. The space L(X,Y) equipped with the norm
Al Lx,y) = sup_ [Azlly  for A€ L(X,Y)

|zl o=

is a normed linear space. Furthermore, if Y is even a Banach space then L(X,Y) is
a Banach space.

REMARK A.3. The smallest constant C4 in Definition A.1-b) is given by the
norm || Al (x,y)- 0

DEFINITION A.4. Let X and Y be two Banach spaces and A € L(X,Y). The
Banach space adjoint A’ : Y — X' is defined by

(A'f2)qr = (f, Ax)y gy for all (f,z) €Y x X,
where (-,-)xr x stands for the dual pairing of X' and X.

It is proved in [19, p. 186] that || Al Lx,yy = [|A'||Lyr, ) for A € L(X,Y). Let
A € L(H) holds and X be a real Hilbert space, then we can introduce the Riesz
isomorhism Jy : X — X’ as follows: for given x; € X the element Jyz satisfies

<jxx1,x2>x,7x = (x1,72)y for all z; € X.

By the Riesz theorem Jx is well-defined. Moreover, ||Jx|/(x,x/y = 1. For more
details we refer the reader to [19, p. 43].

DEFINITION A.5. Let X, Y be two real Hilbert spaces and A € L(X,Y). Then
the Hilbert space adjoint A* : Y — X is defined by A* = JilA'jy.

From

REMARK A.6. Let X, Y be two real Hilbert space and A € L(X,Y).
(,Y). In

A e L(Y,X') and [|Tx||pcx,xy = [[TyllLey,yy = 1 we infer that A* €

73
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particular, ||A*||Ly,x) = [AllLcx,y). Further, we have
(A*y,2) = (T " A Tyy, 1)y = (A Tyy, @) 0 = (Tyy, Ay,
= <y7 Ax>y
for all (z,y) € X x Y. O

The following theorem is proved in [19, pp. 186-187].

THEOREM A.7. Let X be a real Hilbert space and A, B € L(X). Then, (AB)* =
B*A and (A*)* = A.

DEFINITION A.8. Suppose that X is a real Hilbert space and A € L(X). Then,
A is called selfadjoint if A = A* holds true. If A> = A is valid, A is called a
projection. If a projection A is selfadjoint, then A is an orthogonal projection.

REMARK A.9. Suppose that X is a real Hilbert space and A € L(X) is an
orthogonal projection. Then, we have A*A = A? = A. Hence, it follows that for
an arbitrary x € X

(Az,x — Ax) = (Az,z)y — (Az, Az)y = (Az,2)y — (A" Az, 2)o = 0.
Thus, the elements Ax and x — Az are orthogonal in X. %

DEFINITION A.10. Let X be a Banach space and A belong to L(X). A complex
number X\ is in the resolvent set p(A) of A if \T — A is a bijection with bounded
inverse (AT — A)~1. The operator Ry = (\I — A)~! is called the resolvent of A
at X € p(A). If X € p(A), then X is an element of the spectrum o(A) of A. Let
x € X\ {0} and A € C satisfying Az = Ax. Then, X is called an eigenvalue of A
and x is an associated eigenvector of A. The set of all eigenvalues is said to be the
point spectrum of A.

The following theorem is taken from [19, p. 192].

THEOREM A.11. Let X be a Banach space and A € L(X). Then, o(A) = o(A)
holds. Moreover, for any A € p(A) we have Ry(A") = RA(A)'. If X is a real Hilbert
space, then B

oA ={reC|reo(A)}
and R(A*) = Ra(A)*, where X denotes the complex conjugate of .

DEFINITION A.12. Let X be a Hilbert space. Then, A € L(X) is called a positve
operator if (Az,x)x > 0 holds for all x € X.

Suppose that X and J are two real Banach spaces. Recall that a set D C Y is
called precompact of the closure D of D is compact in Y.

DEFINITION A.13. An operator A € L(X,Y) is called compact if for every
sequence {xn }nen C X the sequence { Ay tnen CY has a convergent subsequence.

REMARK A.14. Let D c RY be an open, bounded and convex subset. Then,
X = L?(D) is a Hilbert space. Suppose that k € L?*(D x D) is a given kernel
function. It is proved in [23, pp. 67-68] that the linear integral operator

T :L*(D) = L*(D),v— Tv = / k(u, v)v(v)dv
D

is a compact operator. O
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The proof of the following results can be found in [19, pp. 199-203], for instance.

THEOREM A.15. Let X,Y be two real Banach spaces and A € L(X,Y).

1) If {xn}nen C X converges weakly to an element x € X and A is compact,
then the sequence { Azxp tnen converges strongly to Ax.

2) If {An}tneny C L(X,Y) is a sequence of compact operators with ||A, —
AllLx,y)y = 0 forn — oo. Then A is compact as well.

3) If A is a compact operator, then its Banach space adjoint A’ is also com-
pact.

4) IfZ is a Banach space and B € L(Y,2) holds, then BA : X — Z is compact
if A or B is a compact operator.

REMARK A.16. Suppose that X and Y are two Hilbert spaces. If A € L(X,Y)
is compact, its Banach space adjoint A" € L(Y',X’) is compact by Theorem A.15-
3). Due to Definition A.5 the associated Hilbert space adjoint is given by A* =
Ty 1A’jy. Since Jyo L and Jy are isomorphisms, the operator A* is compact by
Theorem A.15-4). O

THEOREM A.17 (Riesz-Schauder). Let X be a Hilbert space and A € L(X) be
a compact operator. Then the spectrum o(AA) is a discrete set having no limit
points except perhaps 0. Furthermore, the space of eigenvectors corresponding to
each nonzero A € o(A) is finite dimensional.

THEOREM A.18 (Hilbert-Schmidt). Let X be a Hilbert space and A € L(X)
compact and selfadjoint. Then, there is a complete orthonormal basis {1;}ien C X
with

A, = N, and Ay — 0 as i — oo.
B. Function Spaces
Let 0 # Q c RY be an open and bounded set. By

/ng(x) dz

we denote the Lebesgue integral of ¢ :  — R. For 1 < p < oo we define
» 1/p
Iellney = ( ] lotl"ao)

||50||Loo(Q) = esssup{|gp(x)| S Q}

and for p = oo set

For p € [1, 00] the associated Lebesgue space LP(£2) is defined as
LP(Q) = {¢ : @ — R| ¢ is Lebesgue measurable and el o) < o0}

We identify two functions ¢, ¢ € LP(Q) proivided [|¢ — ¢[l1r() = 0 holds true.
It is well-known that LP(Q) is a Banach-space for any p € [1,00]; see [8], for
instance. Further, L?(Q2) is a Hilbert space. By C§°(f2) we denote the set of all
C*>(Q) functions with compact support in . Further, the set of locally integrable
functions L () is given by

Li, () = {¢:Q = R|p € L'(X) for any compact X C Q}.
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Before we turn to the notion of weak derivatives we introduce some notation. The
d-tupel o = (v, ..., aq) is called a multi-index of nonegative integers ;. We set

d
la| = Z Q.
i=1

For a function ¢ € C*(Q2) we set D* for the partial derivative

olely
Ot .. Qg
Moreover, we define ® = a7 ... a3 for = (21,...,2q4) € Q.
DEFINITION B.1. Let a = (a1, ...,aq4) be a multi-index of nonegative integers

a;. A function ¢ € Ll (Q) has a weak derivative D%y provided there is a function
¢ € Li () satisfying

/ o dz = (_1)|O‘| / eDdx  for all ¢ € C5°(Q).
O Q

If such a function ¢ exists, we set DS p = ¢.

w

Now we define function spaces for weakly differentiable functions.

DEFINITION B.2. Let k be a nonnegative integer and o € Li (). Suppose that

loc
the weak derivative D% exists for all multi-indices a satisfying || < k. Then, the

Sobolev norm of ¢ is defined by

1/p
lellwer@) = 1Dl Jorp e[l 00),
(2) (©)
lor| <k
||90||Wk,oo(9) = lr(il‘fg]i ||D3;‘P||Loo(9) for p = oo.

The Sobolev space W*P(Q) is given as
WEP(Q) = {¢ € Line(Q) | llllyrnoy < o0}
for 1 <p < 0.

Next we introduce the so-called Bochner spaces. Let X be a Banach space and
T > 0.

DEFINITION B.3 (Bochner spaces). 1) We denote by LP(0,T;X), 1 <
p < 00, the space of (classes of ) functions t — p(t) € X satisfying
la) t+— (t) is measurable fort € [0,T];

1/p
1b) el o,y = / el ar) " < oe.

2) By L*>(0,T;X) we denote the space of (classes of ) functions ¢ : [0,T] — X
satisfying 1a)

It is well-known that LP(0,T;X), p € [1,00], is a Banach space provided X is a
Banach space.

Let V and H be two real, separable Hilbert spaces with inner product spaces
(-,)v and (-,-) g, respectively. Moreover, we assume that V is dense in H with
compact embedding. Hence, there exists a constant Cy > 0 satisfying

(B.1) lelly < Cvllelly, forall peV.
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By identifying H with its dual space (by using the Riesz theorem) we have
Ve HeH <V,
where each space is dense in the following one. Then, the space
W(0,T) = {¢ € L*(0,T;V) | ¢ € L*(0,T; V") }
equipped with the norm

/2

2 2
Ielw oy = (a0, + 90 m0n) % € WO,T),

1
is a Hilbert space. Moreover, W(0,T) — C([0,T]; H); see [6, p. 473]. Hence, ¢(0)
and ¢(T') are meaningful for an element ¢ € W(0,T). The integration by parts
formula reads

T T T
| 000y at+ [ ey de =5 [ o000 0

=@(T)o(T) — ¢(0)$(0)
for ¢, ¢ € W(0,T). Moreover, we have the formula

d
(pe(t) D)y y = % (p(t), ¢y for (p,¢) € W(0,T) x V and fa.a. t € [0,T];

see [6, p. 477], for example.

C. Evolution Problems

Let V and H be two real, separable Hilbert spaces with inner product spaces
(-,yv and (-,-) g, respectively. Moreover, we assume that V is dense in H with
compact embedding. Then, there exists a constant Cy > 0 satisfying (B.1). Sup-
pose that f.a.a. ¢ € [0,T] the bilinear form a(¢;-,-) : V x V. — R satisfies the
following conditions:

1) t— a(t;-,-) is measurable,
2) there exists a constant 8 > 0 (independent of ¢) so that

(C.1) la(t; 0, 8)| < Bllelly ¢l for all ¢, ¢ € V and f.a.a. t € [0,T],
3) there are constants x > 0 and 7 > 0, which are independent of ¢, with
(C.2) a(t; 0, 0) > kel — 0@l for all o € V and fa.a. ¢ € [0,T].
The bilinear form a(¢;-,-) defines a linear operator A(t) : V — V' faa.a. t € [0,T]
by
(A)p, @)y yy = alt;p,¢) forall p,¢ € V and faa. t €[0,T].
It follows from (C.1) that
ANy < B faa te[0,T]
The domain of A(t) is defined as
D(A(t) ={p eV |A(t)p € H}.
The following result is proved in [6, pp. 512-520].
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THEOREM C.1. Let the spaces V., H and the bilinearform a(t;-,-) as introduced
above. Then, for every yo € H and f € L?(0,T; V") there exists a unique solution
y € W(0,T) satisfying

d
3 WO vy +alty(t),0) = (F(t),@)y.y forallp €V and fa.a. t€[0,T],
<y(0)a¢>H:<y0a¢>H for all ¢ € H.

REMARK C.2. Setting y(t) = exp(nt)z(t) with n from (C.2) we infer that v(t) =
exp(—nt)y(t) solves

d
— (W), o)y v +atot), o) = (f(t),p)y,y forallp €V and faa. t € (0,71,

dt
<U(0)7¢>H = <y0a¢>H for all € H
with
a(t;p,¢) = alt;,¢0) + (v(t), )y forall p € V and fa.a. t € [0,T]
and f(t) = exp(—nt)f(t) € V' fa.a. t € [0,T]. Using (B.1), (C.1) and (C.2) we
obtain
|a(t; 0, 0)| < Bllelly 8l +nllelxloly < (B+nC%) el I8l
for all ¢, ¢ € V and fa.a. t € [0,7]. Thus, a(¢;-,-) is a bounded bilinear form.
Moreover,
a(t; 0, 0) > k@l for all p € V and fa.a. ¢ € [0,7],

i.e., the bilinear form a(¢;-, ) is coercive. %

COROLLARY C.3. Let all assumptions of Theorem C.1 be satisfied. In addition,
we have a(t;-,-) = a(-,-), i.e., the bilinear form is independent of t. If yo € V and

f € L*0,T; H) hold, then u € L>(0,T;V) N L?(0,T; D(A)), where the operator
A e L(V,V') is given by

<A§07 ¢>V’7V = a(% ¢) fO’f‘ CL” 903 ¢ € V
For a proof we refer the reader to [6, pp. 532-533].

D. Nonlinear Optimization

We consider the problem
(P) minJ(z) s.t. e(x) =0,

where J : R™ — R denotes the cost functional or objective and e : R™ — R™, m <n
are the equality constraints. A point x € R™ is called admissible provided e(x) = 0
holds true. The set of admissible solutions is defined as

F(P) = {z e R"|e(x) =0}.
DEFINITION D.1. Let ¥ € R™ be given.

1) The point T is called a local solution to (P) if T € F(P) holds and J(z) <
J(x) for all x € W(Z) N F(P), where U(T) C R™ is an open, nonempty
neighborhood of T.

2) The point T is called a strict local solution to (P) if € F(P) holds and
J(Z) < J(x) for all x € W(Z) N F(P), where UW(T) C R™ is an open,
nonempty neighborhood of T.
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3) The point T is called a global solution to (P) if T € F(P) holds and J(Z) <
J(z) for all x € F(P).

4) The point T is called a strict global solution to (P) if & € F(P) holds and
J(Z) < J(x) for all z € F(P).

To characterize solutions to (P) we need the notion of the tangent plane. A
curve in a hyperplane H C R" is a family of points z(t) € H, where z : [a,b] — H is
continuous and a < b holds. The curve z is differentiable in ¢ provided &(t) = L z(t)
exists. If Z(t) = ;—;x(t) is defined, the curve z is said to be twice differentiable.
We say that the curve x goes through the point Z € H if there exists a ¢ € [a, b] so
that z(t) = T is satisfied. The set of the tangential vectors z(¢) of all differentiable
curves going through 7 is called the tangent plane at .

DEFINITION D.2. A point T € F(P) is called regular with respect to the con-
straint e(z) = 0 if the m gradients {Ve;(Z)}2, € R™ are linearly independent in
R™.

For a proof of the following characterization of the tangent plane we refer the

reader to [18].

THEOREM D.3. Suppose that T € F(P) is a regular point. Then the tangent
plane at T is equal to the set

ker Ve(z) = {v € R" ’ Ve(z)v =0} C R",

where
Vel (CZ') T

Ve(z) = : e Rm™Mx”
Ven(7) T
is the Jacobian of e at T.

Now we can formulate the following first-order necessary optimality conditions
for (P). A proof can be found in [18], for instance.

THEOREM D.4 (First-order necessary optimality conditions). Suppose that J
and e are continuously differentiable. Moreover, let T be a local solution to (P)
and a regular point for e(x) = 0. Then, there exists a unique Lagrange multiplier
A= (A1,..., Am) € R™ solving

(D.1) VJ(z) + i \iVei(z) = VJ(z) + Ve(z) "X = 0.

Let us introduce the Lagrange function £ : R™ x R™ — R by
L(x,\) = J(x) + (N e(x))gm = J(@) + ATe(z).

Then, we can express (D.1) as

(D.2a) V.L(Z,\) =VJ(Z)+ Ve(z)" A =0 R"
Moreover, the equality constraint is satisfied at , so that we have
(D.2b) VAL(Z,A\) = e(Z) =0 € R™.

System (D.2) consists of n + m equations for the unknown vectors z € R™ and
AER™,

If J and e are more regular, we can formulate necessary and sufficient second-
order optimality conditions.
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THEOREM D.5 (Second-order necessary optimality conditions). Suppose that J
and e are twice continuously differentiable. Moreover, let T be a local solution to
(P) and a regular point for e(x) = 0. Then, the n x n matric

V2L(Z ) =V2I(Z)+ > AiV7ei(1)
i=1

is positive semidefinite on the set ker Ve(Z) C R"™, i.e.
v V2, L(Z, v >0 for allv € ker Ve(z).

Here, X = (M,...,A\n) " € R™ denotes the unique Lagrange multiplier introduced
in Theorem D.4.

For a proof of Theorem D.5 we refer the reader to [18]. To ensure that a point
Z € F(P) is a solution to (P) we have to guarantee sufficient optimality conditions.
A proof of the following second-order condition can be found in [18], for instance.

THEOREM D.6 (Second-order sufficient optimality conditions). Suppose that J
and e are twice continuously differentiable. Moreover, let the pair (T, \) € R™ x R™
satisfy the necessary optimality conditions (D.2). Further, T is a regular point for
e(z) = 0. Then the matriz V2, L(Z, \) is positive definite on the set ker Ve(z) C R",
i.e.

v V2 L(z,\)v >0 for all v € ker Ve(Z) \ {0}.
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