Practical Course: Web Development

REST APIs with NodelS
Winter Semester 2016/17

Tobias Seitz

0900

(pWPp />
NN

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 -04 - 1

Today’s Agenda

* APIs
— What is it?
— REST
— Access Control

e APIs with NodelS

— EXxpress
— StronglLoop / Loopback
— Adding a datasource

e Hands-On

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 2

What is an API

* “Application Programming Interface”
* Interface: Allow other services to use program logic
* Goal: Allow pieces of software to talk to each other

* Characteristics of a Great API:
— Make it easy for others to use your software.
— “A Good API needs to appeal to laziness” Kevin Lackner
— Intuitive (make it trivial)
— Documented (if something is not trivial)
— Opinionated (do it the way the APl encourages you)

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 -04 - 3

REST API

* Representational State Transfer
* Provide clients access to resources

* Your app manages the states of the resources, but lets other
software access the state through the API

* Reasons for using REST APIs [5]:
— Scalability
— Generality by using HTTP
— Independence from other parts of the app
— Reduced Latency with caching
— Security with HTTP headers
— Encapsulation - APIls do not need to expose everything

 Most common format these days: JSON

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 4

A Typical APl URL

Data Model

Dedicated Path

https://www.mywebapp.com/api/vl/things/thing_id

I 1

API Version URI

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 -

REST API Quick Glance

e Go and look for a REST API

 Examples
— Spotify
— Google Maps
— Flickr
— Facebook Graph API

* (Questions:
— What do you think makes it a good / bad API?
— What kind of access control does it have?
— What kind of restrictions are there?

API Paradigm: CRUD

* (Create
=~ INSERT INTO myData VALUES (....)

* Read
=~ SELECT * FROM myData WHERE ...

* Update
=~ UPDATE myData WHERE ...

* Delete
=~ DELETE FROM myData WHERE ...

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 7

REST APIS WITH NODEJS

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 -

You should know EXDF@SS

* One of the most popular NodelS frameworks.

* Characteristics:
— minimalistic
— easy to use API
— many utility methods and middleware functionalities
— thin layer on top of NodelS
— Supports multiple template engines (Pug/Jade, Handlebars, EJS)

* Find the documentation here: http://expressjs.com/

* Package:
npm install --save express

* Express generator:
npm install -g express

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 -04 - 9

Simple Express App

basics/app.js

var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World!');
});

var server = app.listen(3000, function () {
var host = server.address().address;
var port = server.address().port;
console. log('app listening at http://%s:%s',
host, port)
});

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 10

Express Generator

v [Cleg-app

v

[
v

[bin

[www

3 public
[Jimages
[javascripts
v [Ostylesheets
li:ﬁ style.css
[routes
index.js
Eﬁi users.js
1 views

mherror.jade

fhindex.jade

Z layout.jade
[app.js
FEI] package.json

Ludwig-Maximilians-Universitat Miinchen

Goal: automatically generate the basic
structure

of an express app that includes

views, routes, common dependencies

Requirements: Install the generator globally:
npm install —g express—generator
express eg-app

Documentation:

http://expressjs.com/starter/generator.html

You still have to install the dependencies

manually:
cd eg—-app && npm install

Practical Course Web Development WS 16/17 - 04 - 11

Full Stack Solutions

mean.io

'M"EAN . | U Home Documentation Packages Release Notes Support Blog Contact

The Friendly & Fun Javascript Fullstack
for your next web application

MEAN is an opinionated fullstack javascript framework -

which simplifies and accelerates web application development. \ @

Shoes
Get MEAN by running... 5

$ sudo npm install -g mean-cli
$ mean init yourNewApp

PROFESSIONAL SERVICES HOSTING SOLUTION
(& community support) (coming soon)

LATEST RELEASE: v0.5.5 LATEST COMMIT: Aug 28, 2016 FORKS: 2849 FORK MEAN.IO ON GITHUB

MEAN stands for:

O mongoDB EXPrESS NGULARIS meade s

Express is a minimal and flexible » Google

MongoDB is the leading NoSQL node.js web application framework, AngularJs lets you extend HTML Node‘jslls a platfo-rm buﬂf on .
database, empowering businesses to providing a robust set of features for vocabulary for your application. The Ch_romes poiasciptuntimeloreasily
be more agile and scalable. building single and multi-page, and resulting environment is bunld.mg_fast, scalable network

hybrid web applications. extraordinarily expressive, readable, applications.

and quick to develop.

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 12

CRUD with Express

 Example APl that manages products.

 Create a new product:
POST /products

e Retrieve all products:
GET /products

* Retrieve a particular product:
GET /product/:id

* Replace a product:
PUT /product/:id

 Update a product
PATCH /product/:id

 Delete a product
DELETE /product/:id

Ludwig-Maximilians-Universitat Miinchen

Practical Course Web Development WS 16/17 - 04 - 13

Testing POST / PUT / DELETE

e Recommended Tool: Postman https://www.getpostman.com/

 Don’t forget the headers, e.g. Content-type: application/json
* Make sure your JSON only uses double quotes

eeeeeeeeee

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 14

Dummy database: JavaScript Object.

var products = {
'1d A" {
name: 'Product A’
price: 30
3
'1d_B" {
name: 'Product B’
price: 50
}
I3

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 15

GET /products

router.get('/', function(req, res) {
var productArray =
Object.keys(products).map(function(key) {
var entry = products[key];
entry.id = key;
return entry;

1)
var response = {
code: 200,

products: productArray

}

res.json(response);

};

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 16

Response with all products

{

"code": 200,
"products": |
{
"name": "Product A",
"price": 30,
||id||: "id_A"

"name": "Product B",
"price": 50,
||id||: "id_B"

Opinionated:
Products is an Array,
instead of an Object literal.

Ludwig-Maximilians-Universitat Miinchen

Practical Course Web Development WS 16/17 - 04 - 17

POST /products

router.post('/', function(req, res) {

var entry, 1id, response;

if (reqg.body.name && req.body.price) {

id = vuid.v1();

entry = {};
entryl[id] = {
id : id,

name: req.body.name,
price: req.body.price

products[id] = entrylid];
response = {
code: 201,
message: 'created product’,
products: [entry]

} else {
response = {
code: 1000,

message: 'missing parameter.

I3
res.json(response);

Intuitive:
Follow API standards
= POST creates objects

required: name, price.'

Ludwig-Maximilians-Universitat Miinchen

Practical Course Web Development WS 16/17 - 04 - 18

Response: Product was created

Intuitive:

{ Respond with the entire
"code": 201, created document, so
"message": "created product”, clients can update their views.
"products": [

{

"182348e0-abfd-11e6-92a7-4fdc0c2e8419": {
"id": "182348e0-abfd-11e6-92a7-4fdc0c2e84f9",
"name": "Product C",
"price": 100

}

}
]
}

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 19

What’s up with this?
* Look at the file /routes/products.js

e (Can you think of potential problems for your API?

* How would you solve them?

APl Frameworks

* Goal: Simpler, faster creation of APIs and CRUD paradigm for
resources

e Often with an abstraction layer

* Popular examples:
— loopback.io - https://loopback.io/

— hapi.js - http://hapijs.com/
— Restify - http://restify.com/

e Comparison: https://strongloop.com/strongblog/compare-
express-restify-hapi-loopback/

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 21

LoopBack

 Now part of StronglLoop Arc (IBM)

* Installation:
npm install -g strongloop

* Getting started wizard:
slc loopback
— api-server: already contains authentication methods
— empty-server: most basic setup

— hello-world: small working sample
— notes-app: full working example for a note-taking api

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 22

Step 1: Set up the project

slc loopback

| | | 1
|-——(0)—| | Let's create a LoopBack |
e ‘ | application! |

(_"u_) l :

? What's the name of your application? loopback-api
? Enter name of the directory to contain the project: loopback-api
create loopback-api/
info change the working directory to loopback-api

? Which version of LoopBack would you like to use? 2.x (stable)
? What kind of application do you have in mind? hello-world
Generating .yo-rc.json ..

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 23

Step 2: Create a model

slc loopback:model
Enter the model name: product
Select the data-source to attach product to: db (memory)
Select model's base class PersistedModel
Expose product via the REST API? Yes
Custom plural form (used to build REST URL): products
Common model or server only? common
Let's add some product properties now.

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 24

Step 3: Add properties

Enter an empty property name when done.
? Property name: name
invoke loopback:property
? Property type: string
? Required? Yes
? Default value[leave blank for none]:

Let's add another product property.

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 25

Step 4: Run the app

node .
Web server listening at: http://0.0.0.0:3000

Browse your REST API at http://0.0.0.0:3000/explorer

{l StrongLoop API Explorer

loopback-api

Message

product

User

[BASE URL: /api , aP| version: 1.0.0]

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 26

Supported Methods

loopback-api

Message

product

m /products
E /products

Response Class (Status 200)
Model Schema

[

{
“name": "string",
“price": 0,
"id": @

}

1

Response Content Type = application/json

Show/Hide List Operations = Expand Operations

Patch an existing model instance or insert a new one into the data source.

Find all instances of the model matched by filter from the data source.

Parameters
Parameter Value Description Parameter Type Data Type
filter Filter defining fields, where, query string
include, order, offset, and
limit
Try it out!
m /produds Patch an existing model instance or insert a new one into the data source.
/products Create a new instance of the model and persist it into the data source.
m /products/{id} Patch attributes for a model instance and persist it into the data source.
E /products/{id} Find a model instance by {{id}} from the data source.
m /products/{id} Check whether a model instance exists in the data source.
m /products/{id} Patch attributes for a model instance and persist it into the data source.

/products/{id}

Delete a model instance by {{id}} from the data source.

Ludwig-Maximilians-Universitat Miinchen

localhost:3000/api/products
Use Postman to add some data...

Response:

{

"name": "Product A",
"price": 10,
"id": 1

Practical Course Web Development WS 16/17 - 04 - 27

Persisting Models to a Database

* Loopback allows using “connectors” for various databases

* MySQL connector:
npm install --save loopback-datasource-
juggler loopback-connector-mysql

* QGetting started:
slc loopback:datasource

* This is not a trivial step, so you really need to try this yourself.
* Links:

— http://loopback.io/doc/en/Ib2/Connecting-to-MySQL.html

— http://loopback.io/doc/en/Ib2/MySQL-connector.html

— http://loopback.io/doc/en/Ib2/Data-source-generator.html

— https://github.com/strongloop/loopback-connector-mysq|

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 28

Add a MySQL Datasource

slc loopback:datasource
? Enter the data-source name: mysqgl
? Select the connector for mysqgl: MySQL (supported by StrongLoop)
Connector-specific configuration:
? Connection String url to override other settings (eg:
mysql://user:pass@host/db):
? host: localhost
2 port: 33006
7 user: pwp
7 password: sksksksokskokskokokskok
? database: pwp

This will add a new entry to
server/datasources.json

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 29

server/model-config.json

"product": {
"dataSource": ["mysql"”,
"public": true

}

}

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 30

Things to note at this point

e If you try to run the app now, you will get an error.

* Problem: There is no table “products” in your database
* Goal: You want LoopBack to generate this table for you.
* Solution: Automigration.

* Automigration also works, if you want to switch the database
(e.g. replace MySQL with Cloudant)

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 31

Automigration

require('path');

var path =
require(path.resolve(__

var app = dirname,
var ds = app. datasources m¥sq1
ds.automigrate(" product', function(err) {

if (err) throw err;
var products = [

name: 'Product A',

price: 10

{I
name: 'Product B',
price: 50

1;

products forEach(function(product, i) {

'../server/server'));

app.mo el§ groduct create(product, function(err, model) {

if (err) throw err;
console.log('Created: ', model);
if (i === products.length — 1) {
ds.disconnect();
F);
1)
});

Ludwig-Maximilians-Universitat Miinchen

Practical Course Web Development WS 16/17 - 04 - 32

Perform Automigration

node bin/automigrate.js

Created: { name: 'Product A', price: 10, id: 1 }
Created: { name: 'Product B', price: 50, id: 2 }

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 33

After Automigration: We have a table!

phpMyAdmin
REle0 %6
Recent Favorites
= e

[+ | information_schema
(= pwp

| New
=
+_» product

Ludwig-Maximilians-Universitat Miinchen

Ll 7 Server: 127.0.0.1 » @ Database: pwp » [Table: product

[Z] Browse % Structure [] SQL 4 Search ¥ Insert =} Export (i Import =3 Privileges ¥ More

«” Showing rows 0 - 1 (2 total, Query took 0.0005 seconds.)

SELECT * FROM "product”

[Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]

— Showall | Numberofrows: | 25 % Filter rows: ‘ Search this table ‘

Sort by key: | None

<«

+ Options
—T— v id name price
- ¢ Edit 3¢ Copy @ Delete 1 Product A 10

| ¢ Edit 3c Copy @ Delete 2 ProductB 50

1 —) Check all With selected: 7 Edit 3cCopy (@ Delete | =| Export

— Showall | Numberofrows: | 25 % Filter rows: ‘Search this table

% Query results operations }

(&) Print view =] Export gl; Display chart [5] Create view

'm/Console|

Practical Course Web Development WS 16/17 - 04 - 34

API for your project

* Think of a Resource that is going to be accessible through your
project API

* Try to model it
— properties
— datatypes

* Perform all steps with loopback

Things that we couldn’t cover

e Autodiscovery of Schemas (LoopBack)
* Securing an API

 Manual Deployment and Configuration
* Process Management and Proxies

* Dockerizing a NodelS app

eand much more.

* ==>We'll get there, when we need them during the project
phase.

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 40

Personal Experiences

* Put alot of work into designing and specifying your API. API
changes can break much of the applications using the
interface.

* You don’t want to maintain a lot of different versions of the
API, so it’s better to plan ahead.

* Make sure to bundle API calls on the front end = Only one
module contains APl information. The module then exports
methods to use the API across the entire front end.

Ludwig-Maximilians-Universitat Minchen Practical Course Web Development WS 16/17 - 04 - 41

Links ‘n’ Stuff

Must read:

1.

http://www.restapitutorial.com/

Should read:

1.

https://geemus.gitbooks.io/http-api-design/content/en/

Wouldn’t do any harm:

1.

ok wnN

https://www.toptal.com/api-developers/5-golden-rules-for-designing-a-
great-web-api

https://www.youtube.com/watch?v=heh40eB9A-c
https://www.youtube.com/watch?v=qCdpTji8nxo
https://www.youtube.com/watch?v=hdSrT4yjS1g
https://stormpath.com/blog/fundamentals-rest-api-design

http://web.archive.org/web/20151229055009/http://lcsd05.cs.tamu.edu
/slides/keynote.pdf

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 42

Links ‘n’ Stuff

* http://blog.mwaysolutions.com/2014/06/05/10-best-
practices-for-better-restful-api/

* http://www.vinaysahni.com/best-practices-for-a-pragmatic-
restful-api

* https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

* https://github.com/RestCheatSheet/api-cheat-sheet#api-
desigh-cheat-sheet

Ludwig-Maximilians-Universitat Miinchen Practical Course Web Development WS 16/17 - 04 - 43

