
Modular Architecture for a Toolset Supporting

OCL

Heinrich Hussmann, Birgit Demuth, and Frank Finger

Dresden University of Technology, Department of Computer Science

Abstract. The practical application of the Object Constraint Language,
which is part of the UML speci�cation since version 1.1, depends cru-
cially on the existence of adequate tool support. This paper discusses
general design issues for OCL tools. It is argued that the nature of OCL
will lead to a large variety of tools, applied in combination with a variety
of di�erent UML tools. Therefore, a
exible modular architecture for a
UML/OCL toolset is proposed. The paper reports on the �rst results of
an ongoing project which aims at the provision of such an OCL toolset
for the public domain.

1 Introduction

Since version 1.1, the UML standard comprises a formal annotation language for
UML models, the Object Constraint Language (OCL) [19]. This language is used
in the UML standard for precisely de�ning the well-formedness rules of UML
models on the metamodel level. Moreover, OCL is currently gaining popularity
in the de�nition of other OMG standards. Besides this usage on a meta-level
there is also high potential in using OCL in the actual development process of
software to improve software quality.

{ In the analysis phase, business rules can be expressed precisely. Usually,
OCL invariants are attached to class diagrams and enable the speci�cation of
constraints which go far beyond the possibilities of \plain" UML (i.e. UML
without OCL). Some of the most useful constructs of plain UML for the
analysis phase can be seen just as abbreviations for simple OCL invariants
(e.g. the construct of association multiplicities), and as soon as more complex
constraints appear, OCL is the language of choice.

{ In the design phase (mainly), constraints can be used to precisely specify pre-
and postconditions for operations, and therefore provide a precise contract
[13] for the implementor and user of the operations.

{ In development tools, OCL can be used as a simple query and navigation
language.

{ At various other places in UML models, object constraints can be used for
preciseness, e.g. in guards of statechart diagrams.

An example for a full UML-based development method which incorporates OCL
usage is Catalysis [10].

Recently, at several places experiments have been started to introduce OCL
into the practical object-oriented software development process (e.g. [2]). How-
ever, all such attempts are facing the problem that there is a de�nite lack of tool
support for OCL. With a few exceptions [5], the tool industry seems to ignore
OCL. There are at least two good reasons for this lack of commercial support:
First, it has still to be proven that the theoretical potential of OCL leads to
practical improvements in real software projects. Second, the needed functional-
ity of OCL support tools is still rather unclear. So there is a need for signi�cant
further research before OCL can achieve a status of broad market acceptance
and commercial tool support.

In this paper, we report on an attempt to enable serious practical experi-
ments with OCL. We describe a software platform for OCL tool support which
is designed for openness and modularity, and which is provided as OpenSource.
The goal of this platform is to enable practical experiments with various variants
of OCL tool support. In this paper, we analyze the requirements for this tool
platform and describe the key design decisions.

This paper is structured as follows: In section 2, an overview of the full range
of possibilities for OCL tool support is given, setting the scene for the analysis of
the requirements for the tool platform. Section 3 describes the actual architecture
chosen, based on key requirements derived from section 2. Several examples for
possible con�gurations of the tool platform are given, and the current status of
the implementation is described. Section 4, �nally, summarizes our results and
gives ideas for further investigations and projects.

2 Potential for OCL Tool Support

The speci�cation of OCL constraints enhancing a UMLmodel causes a signi�cant
amount of additional e�ort, so the crucial question is an economic one: How can
we ensure that the additional development e�ort spent on adding all this detailed
information really pays back? From this perspective, several kinds of tools are
required:

{ Tools that use the high precision present in OCL-based speci�cations for a
thorough analysis of the UML/OCL model.

{ Tools that help the modeler to ensure that the actual constraints together
with other UML diagrams make up a sensible model of the problem domain.

{ Tools that reduce the development, testing and maintenance e�ort by making
use of the information given in OCL.

{ Tools that enable a higher level of trust in the implementation of an OCL
speci�cation, and therefore are suitable e.g. for development of safety-critical
applications.

When discussing tool support for OCL, an important di�erence between OCL
and many other formal speci�cation languages has to be pointed out: OCL con-
straints are executable in the sense that they can be evaluated mechanically for a
given snapshot of a universe of objects. Nevertheless, OCL contains all language

constructs of classical �rst-order logic, like the classical quanti�ers \forAll" and
\exists", and these quanti�ers can be applied in arbitrary nesting. In contrast to
general predicate logic, however, OCL always ensures that these constructs are
applied only to a �nite set, so they can be checked mechanically by enumeration
of the set. This property of OCL was less clear in early versions of the UML spec-
i�cation (due to constructs like Integer.allInstances). However, for UML 1.3
several changes have been applied which prohibit the usage of in�nite sets, and
which even ensure that the evaluation of a constraint on a snapshot always ter-
minates. The executability of OCL is a key feature for e�ective and simple tool
support.

Let us brie
y discuss the most important kinds of tools supporting OCL.

Syntactical analysis The simplest form of support is of course parsing OCL
expressions. This form of tool support, however, is able to �nd only very
basic OCL errors.

Typechecking After some amendments to the standard, there is now a rel-
atively stable type system for OCL which enables mechanical static type-
checking of OCL constraints, much in the same way as typechecking of a
typed programming language. However, OCL constraints always make refer-
ence to an underlying class model. So an OCL typechecker has to have access
to the underlying UML model information. Practical experience shows that
this relatively simple tool feature already signi�cantly improves the quality
of OCL speci�cations.

Logical consistency checking Since OCL is a logic language, it is possible
to write down sets of constraints which are contradictory in themselves. Al-
though it would be very helpful to have a tool checking statically for such
inconsistencies, there are many open questions still to be solved before such
tools can be built. In general, it is even likely that consistency is undecid-
able, so one may want to develop appropriate criteria for decidable subcases.
Moreover, links to recent research prototypes for symbolic constraint solving
(e.g. [9]) may lead to interesting results.

Dynamic invariant validation From the point of view of the tool builder, an
invariant is a Boolean-valued function which can be evaluated on a given
snapshot of the system. So it makes sense to provide tools which actually do
this evaluation during the evolution of a system. There are several approaches
to such a dynamic veri�cation: To integrate assertion tests into standard
generation of code (fragments); to generate speci�c code doing automatic
invariant checking, as it is possible for database integrity constraints [6]; or
to provide a simulation tool for construction of sample system states [5], [17].

Dynamic pre/postcondition validation In a very similar way to the treat-
ment of invariants, pre- and postconditions can be evaluated at runtime of a
system constructed from the speci�cation. In this case, the most appropriate
approach seems to be to integrate assertion statements into the generation
of code (fragments).

Test automation An automated test tool may make use of the OCL pre- and
postconditions to achieve an automatic check of test results against the spec-
i�cation. Moreover, it may be possible to derive test cases from an analysis

of the functional speci�cation written in OCL. This class of tools may be the
most interesting one from an economic point of view, since it helps to save
some of the usually high costs for quality assurance. Also maintenance costs
can be reduced by such tools since automatic regression testing against the
formal speci�cation is enabled, and the semantic consistency of speci�cation
and code is enforced.

Code veri�cation and synthesis In the long run, OCL may also form a basis
for code veri�cation and synthesis. First projects in this direction have been
started (e.g. the Karlsruhe KeY project [8]), but this is clearly the most
ambitious kind of tool which may be appropriate only for special, safety-
critical development projects.

From the list above, it becomes obvious that there is a large variety of dif-
ferent tools, all of which rely on a rather small common functionality. This
observation is re
ected in the toolset architecture described below.

3 Toolset Architecture

3.1 Requirements

From an analysis of potential OCL tools, as summarized above, a number of
requirements can be derived:

Requirement 1: The architecture shall enable interworking with various CASE
tools and repositories, regarding the access to model information for type-
checking. A simple and
exible interface is required which supports the con-
struction of stand-alone experimental tools (working e.g. on a �le represen-
tation of the model) as well as a tight integration into CASE tools, for more
user-friendly versions of tools.

Requirement 2: Syntax analysis and type checking of OCL constraints is the
functionality which is common to all tool variants. So a simple interface to
this functionality is needed in order to enable integration into various OCL
tools.

Requirement 3: The tool platform has to provide a simple and easily reusable
interface for accessing the actual constraint information (the abstract syn-
tax of the constraints) from di�erent kinds of tools. Ultimately, the solution
should be compliant with an OCL metamodel [16], which is still under dis-
cussion.

Requirement 4: Di�erent tools want di�erent levels of abstraction in access-
ing the representation of OCL constraints. For example, a tool generating
programming language code may want to expand automatically all select
operations into the generic iterate mechanism. In contrast, a tool generat-
ing SQL integrity conditions may want to keep the select operations since
they can be mapped easily and directly to SQL [6].

3.2 Key Design Decisions

In the following, a modular architecture for an OCL toolset satisfying the above
listed requirements is presented. The architecture is designed based on our ex-
perience with a prototype implementation [14]. We decided to develop the OCL
toolset in Java because of the high popularity of Java as implementation lan-
guage in the Open Source Community and therewith the availability of useful
tools like parser generators and the possibility to integrate the OCL toolset with
free CASE tools such as Argo/UML.

A further decision was that an OCL toolset should be fully compliant to the
UML/OCL speci�cation version 1.3 [15]. Unfortunately, this speci�cation con-
tains some ambiguities and contradictions. These have to be solved in a sensible
way, and aspects where the implementation deviates from the speci�cation have
to be documented in detail.

The �rst requirement from above means that a toolset should be adaptable to
di�erent environments. This adaptability can be achieved if all external interfaces
are designed and documented carefully. Dependencies between the OCL toolset
and the environment have to be minimized.

With the adaptibility comes the extensibility of the design. As discussed in
section 2, a large variety of OCL tools is imaginable that the toolset architecture
should support. While it is very hard or even impossible to achieve this fully
for very sophisticated tools like consistency checkers, the architecture should at
least o�er the possibility to use the toolset as the �rst stage of such a tool. As a
result, the new tool can bene�t from the adaptability of the toolset to di�erent
environments, and reuses existing functionality.

The reuse of functionality can be achieved by the design of small, con�gurable
modules with clearly de�ned responsibilities. Information can be passed between
modules using a blackboard strategy [3] with each module being implemented as a
separate traversal of the abstract syntax tree of the OCL expression. Additional
dependencies, such as type information o�ered by the type checker module, are
restricted to Java interfaces to allow di�erent implementations (strategy pattern
[7]).

3.3 Modules and the Abstract Syntax Tree

According to the above listed requirements and design decisions as well as com-
mon compiler implementation principles, the toolset architecture consists of the
modules presented below. Figure 1 gives an overview of the basic modules of the
OCL toolset. Following classical techniques from compiler design, the essential
internal interface of the OCL toolset is the abstract syntax tree.

Abstract Syntax Tree Abstract syntax tree classes are created out of a grammar
description using the the parser generator SableCC [18]. The parser generator
creates abstract classes for productions and a concrete subclass for each of the
alternatives of the production. These classes, generated for a straightforward
translation of the OCL grammar in [15] into the speci�cation format of SableCC,

Fig. 1. Modules of the OCL toolset

are used as the primary information exchange data structure between modules.
Figure 2 shows a screenshot displaying the abstract syntax tree of the prototype
implementation. The current user interface is more targeted towards test and
demonstration of the core functionality of the toolset. It is easy to replace this
user interface by other interfaces, which are for instance more integrated with
other UML tools.

The decision to use an abstract syntax tree as internal storage form of the
OCL toolset was taken for very pragmatic reasons. The SableCC system pro-
vides quite a number of helpful mechanisms to deal with abstract syntax trees
e�ectively, which could be reused. Moreover, in the current situation, the evolv-
ing OCL metamodel [16] is not yet an alternative since it is not fully stabilized
(and will probably not become stable before UML 2.0). The current decision
allows a very loose coupling between the OCL toolset and its environment and
is based on current standards. As soon as the metamodel is stable, it will be eas-
ily possible to introduce an additional layer of abstraction on top of the syntax
tree, which will be based on an OCL metamodel. In fact, a metamodel view was
already used in some of the typechecking algorithms (see below).

Parser The parser transforms the input OCL expression into an abstract syntax
tree. Of course it is straightforward to use a SableCC-generated parser for this
task, but it can be ful�lled by an arbitrary parser that creates the appropriate
instances of the SableCC-generated abstract syntax tree classes.

Semantical Analysis The abstract syntax tree classes can be seen as a represen-
tation of a static UML metamodel1. By formulating invariants that constrain
this model, consistency rules (well-formedness rules) on the abstract syntax tree

1 This metamodel is not the one proposed in [16], but the UML model corresponding
to the classes generated by SableCC.

Fig. 2. User interface of the OCL toolset prototype

can be de�ned. The Java code generator of the OCL toolset can be used to auto-
matically transform these constraints into Java code which can then be used as
a part of semantical analysis. In fact, part of the typechecking in the prototype
was \bootstrapped" already this way.

Type checking is implemented as a module that, in addition to checking
semantical correctness with reference to the OCL type system, o�ers type in-
formation about syntax tree nodes and variables towards other modules. To
minimize inter-module dependencies, this information is made available through
a clean Java interface. It is important to note that OCL type checking is not
possible without information about the UML model the OCL constraint is part
of. Such information is not available within the OCL toolset, but has to be ex-
tracted from the toolset's environment. An external interface for this purpose is
described in subsection 3.4.

Normalisation In order to be able to support a variety of tools, it is desirable
to avoid that every tool has to implement the execution of any OCL expression
completely. This can be achieved by de�ning a normal form of OCL terms, such
that all terms can be mapped into a simpler subset of the OCL language. Such
a normal form could for example disallow multiple iterators for the collection
property forAll, since they can be replaced by nested iteration.

As it was mentioned in requirement 4 above, di�erent normal forms are
preferable for di�erent purposes: For consistency checking it might be helpful
to normalise collection properties like forAll and exists to iterate, but a

Java code generator might produce less eÆcient code after this modi�cation.
Customized normalisation is made possible in our tool architecture by de�ning
and implementing small normalisation steps, like \remove multiple iterators"
or \expand shorthand for collect". The implementors of OCL tools based on
our platform are free to combine these steps as desired, or even to add further
normalisation steps.

While the normalisation module does not de�ne an additional internal inter-
face, other modules depend on properties of the abstract syntax tree achieved
by normalisation. These dependencies can be made explicit by managing a list
of asserted invariants for the syntax tree. Normalisation steps can add invariants
to this list, and modules dependent on certain invariants can assure that these
have been asserted before.

Code Generation Code generator modules transform the normalised syntax tree
into a target language. How this is done is to a large extent dependent on the tar-
get language. For the implementation of a Java code generator, a combination of
a class library and a comparatively simple syntax-directed translation has proven
to be suÆcient. The class library o�ers Java-representations for the prede�ned
OCL types, and the code generator can make straightforward translations of
OCL property accesses into Java method calls for most cases.

Fig. 3. Model information source interfaces

3.4 Interfaces of Tool Modules to the Environment

An OCL toolset needs at least two interfaces for communication with its envi-
ronment, as stated above in requirements 1 and 2.

The �rst interface allows the environment to pass OCL expressions into the
toolset. Constraints are here represented as simple String objects.

Fig. 4. Communication between type checker and model information source

Fig. 5. Model for example constraints

The second external interface is used by the type checker of the toolset to
access model information. Since OCL expressions are dependent only on a small
part of the UML meta model (classi�ers, behavioural and static features, asso-
ciations, and states), the necessary queries can be restricted to the small and
elegant interfaces ModelFacade and Any shown in �gure 3. These have to be
implemented for a toolset environment. Figure 4 shows how the type checker
and implementations of these interfaces cooperate to examine the following con-
straint:

context Person inv:

managedCompanies->forAll(employees->includes(self))

All example constraints refer to the model in �gure 5.
Several experimental implementations of the ModelFacade interface have

been realised already. For instance, there is an implementation which reads the
model information out of a �le in the XML-based UML exchange format XMI
(compatible with the XMI export facility of Rational Rose), and an implemen-
tation which takes the model information directly from the repository of the
OpenSource CASE tool Argo/UML. Another implementation extracts model
information from Java classes that are enriched with Javadoc comments which
show the element type of collections.

Additional external interfaces may be added by other modules. For example,
for a code generator it makes sense to o�er an interface where produced code
can be queried. Such an interface should not only make the generated code itself
available, but also o�er information such as the constrained class and operation
or, for procedural target languages, the variable that holds the result of the
evaluation.

3.5 Java Assertion Generation

As a �rst complete con�guration of the modules of the described toolset, a
compiler has been realised which translates OCL constraints into Java assertion
code [14]. According to the classi�cation given in section 2, this OCL tool has the
functionalities of dynamic invariant validation and dynamic pre/postcondition
validation. It can also be used for test automatisation. The approach to generate
code which is executed at runtime as part of an actual implementation of the
UML model is less straightforward that e.g. an OCL interpreter and model
animator [5]. However, we believe that for the application of OCL in larger
projects, the compilation into assertions is much more important, whereas the
interpretative approach is more suited to education in OCL.

The prototype compiler uses the XMI-based implementation of the Model-

Facade interface. Therefore it can be used to generate Java assertion code out of
two �les: a text �le containing OCL constraints and a UML/XMI �le (containing
the class diagram), which is created by export from standard UML CASE tools.
Internally to the compiler, the normalisation module is used to transform the
input constraint into a sublanguage of OCL that avoids the use of multiple iter-
ators, iterating properties without declarator, multiple use of the same variable

name, and use of the default navigation context2. Figure 6 shows a normalisation
example.

input expression
context Company inv:

employees->forAll(e1, e2 | e1 <> e2 implies e1.name <> e2.name)

normalised expression
context Company inv tudOclInv0:

let tudOclLet0 : Set(Person) = self.employees in

tudOclLet0 -> forAll (

e1 : Person | tudOclLet0 -> forAll (

e2 : Person | e1 <> e2 implies e1.name <> e2.name

)

)

Fig. 6. Example for normalisation

The Java code generator module then follows syntax-driven rules to produce
Java code, a sample of which is shown in �gure 7. The classes used in this code,
like OclAnyImpl or OclSet, are de�ned in a class library, which de�nes among
other things implementations for the standard collection data types of OCL. As
usual with compilers, the generated code is not meant for human readers but
for execution by machine. It uses a number of auxiliary variables to break down
the code in relatively small pieces (a standard compiler construction technique).
After executing this code, the result variable (tudOclNode8) contains a value
which indicates whether the examined object ful�lls the constraint. In order to
access the actual snapshot of the model at runtime, again a simple and elegant
Java interface has been de�ned (using the Factory Method design pattern) that
makes it easy to adapt the assertion code to any chosen representation of UML
constructs in Java. This feature is particularly important for the representation
of associations, where many signi�cantly di�erent design choices exist.

In order to make practical use of our prototype OCL compiler, a separate
tool is required which takes this code and inserts it as the body of a new method
assertOcl() into a Java source code �le. Figure 8 shows the e�ect of this tool
for the �le Company.java from the running example. Using such generated tests,
component testing can be greatly simpli�ed. For instance, in the JUnit testing
framework [11], assertions are made that usually compare the result of a method
call with the desired result. Using the automatic generation of assertions, it is
suÆcient to just make calls to the methods that are being tested. The validation
of the result is automatised based on an OCL post-condition for the method
which was formulated during modelling.

Figure 9 gives an overview of the interaction of client and compiler modules
for Java assertion generation.
2 Not using the default navigation context means that every navigation expression has
to begin with a bound name, like self or an iterator name, or a literal.

final OclAnyImpl tudOclNode0=Ocl.toOclAnyImpl(Ocl.getFor(this));

final OclSet tudOclNode1=

Ocl.toOclSet(tudOclNode0.getFeature("employees"));

final OclIterator tudOclIter0=tudOclNode1.getIterator();

final OclBooleanEvaluatable tudOclEval0=new OclBooleanEvaluatable() {

public OclBoolean evaluate() {

final OclIterator tudOclIter1=tudOclNode1.getIterator();

final OclBooleanEvaluatable tudOclEval1=new OclBooleanEvaluatable(){

public OclBoolean evaluate() {

final OclBoolean tudOclNode2=

Ocl.toOclAnyImpl(tudOclIter0.getValue()).

isNotEqualTo(Ocl.toOclAnyImpl(tudOclIter1.getValue()));

final OclString tudOclNode3=

Ocl.toOclString(Ocl.toOclAnyImpl(tudOclIter0.getValue()).

getFeature("name"));

final OclString tudOclNode4=

Ocl.toOclString(Ocl.toOclAnyImpl(tudOclIter1.getValue()).

getFeature("name"));

final OclBoolean tudOclNode5=

tudOclNode3.isNotEqualTo(tudOclNode4);

final OclBoolean tudOclNode6=tudOclNode2.implies(tudOclNode5);

return tudOclNode6;

}

};

final OclBoolean tudOclNode7=

tudOclNode1.forAll(tudOclIter1, tudOclEval1);

return tudOclNode7;

}

};

final OclBoolean tudOclNode8=tudOclNode1.forAll(tudOclIter0,tudOclEval0);

Fig. 7. Generated Java code for the example of �gure 6

import tudresden.ocl.lib.*;

import java.util.*;

public class Company {

public int numberOfEmployees;

protected Person manager;

protected Vector employees;

public void assertOcl() {

tudOclAssert0();

}

private void tudOclAssert0() {

// generated Java code is inserted here

if (! tudOclNode8.isTrue()) {

throw new RuntimeException("constraint violated");

}

}

}

Fig. 8. Java class with assert method (generated code is omitted)

3.6 SQL Integrity Constraint Generation

Another con�guration of the modules of the presented OCL toolset architec-
ture is currently under development, which aims towards an integration with
database schema generation tools. The intention is to automatically generate
SQL integrity constraints [12] as part of a relational database schema. The in-
tegrity constraints are derived from OCL expressions that are speci�ed in form
of business rules on UML models. Basic mappings from OCL invariants to SQL
constraints (create assertion et al.) are given in [6]. For this purpose, the
parser and type checker can be reused without change. However, SQL as declar-
ative language requires in contrast to Java other properties of the abstract syntax
tree. For example, it makes no sense to normalise the above given example (see
�gure 6) in the same way as presented above. In this case, it would be better
to normalise the OCL expression into an abstract syntax tree representing the
equivalent OCL constraint:

context Company inv: employees->isUnique(name)

This expression can be easily transformed into a SQL unique key constraint.
Therefore, speci�c normalisation steps have to be developed and added to the
normalisation module. A further development step is then the implementation
of the code generation interface for the generation of SQL statements. Because
of the large number of relational database system vendors that o�er di�erent

Fig. 9. Inter-module communication for Java code generation

implementations of the SQL standard, a
exible approach for code generation
is needed. One way to achieve this is the separation of the SQL code generator
from the mapping rules by their description in XML. The structure of such a
document is prede�ned by a document type de�nition (DTD) and can be seen
as a catalog that contains SQL code templates related to the grammar rules of
the OCL speci�cation. Using this approach, the generated SQL code is to a large
extent independent of the compiled code and can easily be adapted to di�erent
SQL dialects using XML-Editors. The current OCL prototype toolset supports
both SQL-92 [12] and Oracle/SQL code generation. Although this development is
not yet completed, the design of it already gives some proof for the adequateness
of the chosen modular structure of our OCL toolset.

4 Summary and Outlook

The purpose of this paper was not just to describe a particular implementation of
an OCL tool. Instead, a rather general discussion of the potential tool support for
OCL has been given, and the described design contains a number of ideas which
may be transferable also to other tool environments. Moreover, the described
tool platform may be interesting for a wide audience, since the full source code
is freely available under GNU Library General Public License [14].

The current status of realisation comprises a complete and stable implemen-
tation of all the modules which were mentioned in �gure 1. The compiler from
OCL constraints to Java assertions is available and thoroughly tested. The com-
piler from OCL to SQL integrity constraints is currently under development.
There are already several other (academic) projects which have decided to take
the tool platform described here as the basis for their development of OCL tools.

The design of the toolset is oriented towards an easy integration into all kinds
of other (Java-based) environments. It was an encouraging experience regarding
the toolset design that a �rst prototype of the integration into the OpenSource
UML tool Argo/UML was produced within just a few hours of development time
(as could be observed \live" by the participants of an OCL workshop taking place
in Canterbury/UK in March 2000). The core parts of our OCL toolset will be
fully integrated into future releases of Argo/UML. Moreover, experiments for
integration with other Java-based CASE tools, e.g. Together, are going on in
cooperation with other research institutions.

Further work from our side will concentrate on additional modules for the
toolset which enable practical experimentation with fully automatic tool sup-
port for OCL. Among the future plans is to develop an OCL interpreter based
on our toolset and to connect it with a CASE tool in order to automatically
check meta-level OCL constraints on UML models. Such a tool may provide sig-
ni�cant help in stabilizing the formal OCL parts of the current OMG standard
for UML. Another goal for the near future is to provide adequate tool support
for automatic testing based on OCL, and to carry out pilot studies for the use
of such tools in small but realistic development projects.

From the viewpoint of tool developers, we can summarize that e�ective sup-
port for the OCL part of UML is possible, and that the language is in principle
well designed to achieve a high level of automatisation within such tools.

Acknowledgment: The authors would like to thank Ralf Wiebicke and Sten
Loecher for their contributions to the prototype implementation.

References

1. Argo/UML Page, http://www.ArgoUML.com
2. Baar, Th.: Experiences with the UML/OCL-Approach to Precise Soft-

ware Modeling: A Report from Practice, Unpublished report 2000, see
http://i12www.ira.uka.de/~projekt/publicat.htm

3. Buschmann, F. et al.: Pattern-Oriented Software Architecture - A System of Pat-
terns. John Wiley and Sons Ltd, Chichester, UK, 1996

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Uni�ed Modeling Language User Guide.
Addison-Wesley, 1999

5. BoldSoft, Object Constraint Language Support Information,
http://www.boldsoft.com/products/bold/ocl.htm

6. Demuth, B., Hussmann, H.: Using OCL Constraints for Relational Database Design.
in: UML'99 The Uni�ed Modeling Language, Second Int. Conference Fort Collins,
CO, USA, October 1999, Springer, 1999

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
1995

8. Haehnle, R., Menzel, W., Schmitt, P.H. KeY - Integrated Deductive Software De-
sign, see http://i12www.ira.uka.de/~key

9. Jackson, D. et al. (MIT Software Design Group): Alcoa.
http://sdg.lcs.mit.edu/alcoa/

10. D'Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML -
The Catalysis Approach, Addison-Wesley 1999.

11. JUnit, http://www.xprogramming.com/software.htm
12. Melton, J., Simon, A.: Understanding the New SQL: A Complete Guide. Morgan

Kaufmann, 1993
13. Meyer, N.: Applying \Design by Contract", IEEE Computer, 25(10), Oktober 1992,

pp. 40-51.
14. OCL Page, Dresden University of Technology, http://dresden-ocl.sourceforge.net/
15. OMG UML v. 1.3 speci�cation, http://www.omg.org/cgi-bin/doc?ad/99-06-08
16. Richters, M., Gogolla, M.: A Metamodel for the UML Object Constraint Language

OCL. in: UML'99 The Uni�ed Modeling Language, Second Int. Conference Fort
Collins, CO, USA, October 1999, Springer, 1999

17. Richters, M., Gogolla, M.: Validating UML Models and OCL Constraints. in:
UML2000 The Uni�ed Modeling Language, contained in this proceedings, Springer,
2000

18. SableCC Homepage, http://www.sable.mcgill.ca/sablecc/
19. Warmer, J., Kleppe, A.: The Object Constraint Language. Precise Modeling with

UML. Addison-Wesley, 1999

