
1

Server Implementations
of HTTP/2 Priority

Kazu Yamamoto
@kazu_yamamoto



2

History
      h2o (in C)
           Kazuho Oku
           Array of Queue (external)
           Enqueue O(1), dequeue O(1), delete O(1)
           Deficit and delete information is managed outside

      nghttp2 (in C)
           Tatsuhiro Tsujikawa
           Binary Heap (external)
           Enqueue O(log N), dequeue O(log N), delete O(log N)
           Deficit and delete information is managed outside

      Warp (in Haskell)
           Kazu Yamamoto
           Random Skew Heap
           Enqueue O(log N), dequeue O(log N), delete O(N log N)
           No deficit and delete information

           Now using PSQ (Priority Search Queue)
           Enqueue O(log N), dequeue O(log N), delete O(log N)



3

Today’s topic
      Flat priority queue only
      Nested priority queue can be build over flat ones



4

Background
      Using weight as priority of max heap
           it’s not fair

      Example
           A for weight 10
           B for weight   5
           C for weight   1

      Result sequence
           A(10), A(9), A(8), A(7), A(6), A(5), B(5), A(4), B(4), ...



5

Random Skew Heap
      Selecting a frame based on a random value
           1 - 10 for A
           11 - 15 for B
           16 for C
      To implement O(log N) operations, skew heap is used



6

Random Skew Heap
      Pros
           No additional information

      Cons
           It is hard for me to proof fairness
           It is difficult to write test cases
           Pseudo random generators are slow for this purpose
           delete is O(N log N)



7

Weighted Fair Queueing
      Inverted weight with min heap
           New:  deficit = min_deficit_in_heap + constant / weight
           Exist: deficit = last_deficit + constant / weight

      Deficit examples (constant is 65536)
           A for weight 10, deficit = 6553
           B for weight   5, deficit = 13107
           C for weight   1, deficit = 65536

      Result sequence
           A (6553)
           A (13106)
           B (13107)
           A (19659)
           A (26212)
           B (26214)
           ...



8

Weighted Fair Queueing
      Pros
           Fairness is proved already though I don’t understand
           It’s easy to write test cases
           All operations could be O(log N)

      Cons
           Need to memorize deficit for each entry
           Deficit could be overflowed (but it is unlikely)



9

Min Heap
      Binary heap
           Many people knows
           Perfect balance in arrays
           O(log N) for enqueue, dequeue and delete
           The array must be glow if the concurrency is increased

      Okasaki heap
           Immutable data
           O(log N) for enqueue and dequeue
           O(N) for delete

      Priority search queue
           Immutable data
           Blend of search tree and heap
           O(log N) for enqueue, dequeue and delete



10

Array of Queue
      Emulating heap with an array of queues
           Behavior is a little bit different
      Deficit and offset
           Exist: deficit = (last_deficit + constant / weight) % constant2
           Exist: offset  = (last_deficit + constant / weight) / constant2
      An element is queued according to its offset
           "Find first bit set" in O(1) can be used to find a non empty queue

     



11

Array of Queue
      Pros
           It’s easy to write test cases
           All operations could be O(1)
           Deficit is not overflowed

      Cons
           Implementation is a little bit complicated



12

Comparison
      13 implementations
           Random Skew Heap                       <- old Warp
           Okasaki Heap (internal)
           Okasaki Heap (external)
           Priority Search Queue (internal)    <- new Warp
           Priority Search Queue (external)
           Binary Heap (internal)
           Binary Heap (external)                    <- nghttp2
           Binary Heap STM(Software Transactional Memory) (internal)
           Binary Heap STM  (external)
           Array of Queue (internal)
           Array of Queue (external)                <- h2o
           Array of Queue STM (internal)
           Array of Queue STM (external)

      Information managed internally or externally
           Deficit
           Deletion hints

      "internal" means abstract data type



13

Benchmark on enqueue & dequeue
      Repeating 10000 enqueue & dequeue with 100 streams



14

Benchmark of delete
      Deleting 100 streams



15

Conclusion
      Binary Heap would be the first choice
        for most programming language
           nghttp2

      Array of Queue would be the next choice
        if you are not satisfied with the performance
           h2o

      Priority Search Queue is recommended
        for highly concurrent programming language
           Warp


