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Abstract

This thesis presents methods for finding optimal trajectories for vehicles subjected to
avoidance and assignment requirements. The former include avoidance of collisions
with obstacles or other vehicles and avoidance of thruster plumes from spacecraft.
Assignment refers to the inclusion of decisions about terminal constraints in the opti-
mization, such as assignment of waypoints to UAVs and the assignment of spacecraft
to positions in a formation. These requirements lead to non-convex constraints and
difficult optimizations. However, they can be formulated as mixed-integer linear pro-
grams (MILP) that can be solved for global optimality using powerful, commercial
software.

This thesis provides several extensions to previous work using MILP. The con-
straints for avoidance are extended to prevent plume impingement, which occurs when
one spacecraft fire thrusters towards another. Methods are presented for efficient
simplifications to complex problems, allowing solutions to be obtained in practical
computation times. An approximation is developed to enable the inclusion of aircraft
dynamics in a linear optimization, and also to include a general form of waypoint as-
signment suitable for UAV problems. Finally, these optimizations are used in model
predictive control, running in real-time to incorporate feedback and compensate for
uncertainty.

Two major application areas are considered: spacecraft and aircraft. Spacecraft
problems involve minimum fuel optimizations, and include ISS rendezvous and satel-
lite cluster configuration. Aircraft problems are solved for minimum flight-time, or in
the case of UAV problems with assignment, waypoint values and vehicle capabilities
are included. Aircraft applications include air traffic management and coordination
of autonomous UAVs. The results in this thesis provide a direct route to globally-
optimal solutions of these non-convex trajectory optimizations.

Thesis Supervisor: Jonathan P. How
Title: Associate Professor
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Chapter 1

Introduction

1.1 Problem Definition

This section defines the class of problems to be considered in this thesis, and explains

the issues that make them complex. Examples are then given of real problems in

this class. All involve planning optimal trajectories for vehicles. These are there-

fore optimizations subject to dynamics constraints. The particular feature of the

problems in this thesis is the inclusion of other, non-convex constraints. These arise

from two requirements: avoidance and assignment. Avoidance is the requirement

to remain outside certain regions of the solution space, such as those which would

lead to collisions. The general term “avoidance” is used because more complicated

requirements also fall into this category, such as the avoidance of thruster plumes

from spacecraft. Assignment refers to the inclusion of variable boundary conditions

(initial or terminal), subject to logical constraints. For example, the desired layout of

a cluster of spacecraft may be specified, but the assignment of particular spacecraft

to locations is free, and therefore to be chosen for minimum fuel use. Assignment

problems involve discrete decisions, such as “go to point A or point B”, and therefore

lead to non-convex constraints.

Their non-convexity makes these problems intrinsically difficult to solve. Path-

planning in the presence of non-convex obstacles has been shown to beNP-complete [9].

Assignment problems are essentially combinatorial and therefore can lead to very
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large solution spaces. Furthermore, the combined problems of path-planning and

assignment are tightly coupled: the assignment is strongly dependent on the paths

taken, and to decouple the problems would require computing paths for all possible

assignments, which is prohibitive.

1.1.1 Spacecraft Problems

The configuration of a cluster of spacecraft leads to a problem of this class. Au-

tonomous formation flying of satellite clusters has been identified as an enabling

technology for many future NASA and U.S. Air Force missions [1, 2, 3, 4]. Fig. 1-1

shows an artist’s impression of the proposed TechSat21 mission [4, 68], using sep-

arated spacecraft for Earth observation using space-based radar. The use of fleets

of small satellites, instead of a single monolithic satellite, offers improved science re-

turn through longer baseline observations, enables faster ground track repeats, and

provides a high degree of redundancy and reconfigurability in the event of a single

vehicle failure. These benefits can only be achieved at the expense of more stringent

requirements on fleet coordination, high-level mission management, and fault de-

tection [5, 6]. In some formation flying scenarios [4, 7], the vehicles will be arranged

around a passive aperture, which are short-baseline, periodic formation configurations

that provide good, distributed Earth-imaging while reducing the tendency of the ve-

hicles to drift apart [16, 27, 28, 29]. Changing the viewing mode of the fleet could

require a change in the formation configuration, but only the relative alignment of

the spacecraft is critical. This leads to an assignment problem for the reconfiguration.

Collision avoidance is also a constraint on such maneuvers. Another concern is plume

impingement : if one spacecraft fires it thrusters at another, the plume can damage

the impinged spacecraft. The high-energy particles can cause pitting or deposition

on sensitive instruments, such as mirrors [26, 4].

Autonomous rendezvous is another spacecraft problem of significant interest. Pro-

grams are underway to develop autonomous rendezvous capability for missions to the

International Space Station (ISS) [63, 65]. Similar capabilities are required for future

on-orbit servicing systems [64, 66]. Again, collision avoidance and plume impinge-
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Figure 1-1: Artist’s Impression of the TechSat21 Mission [68]

ment are major concerns. In particular, structural loading due to plume impingement

during docking was a design driver for ISS solar panels [23].

1.1.2 Aircraft Problems

Two major applications drive this research: air traffic management and autonomous

Unmanned Aerial Vehicles (UAVs). Future air traffic concepts involve “free-flight,”

in which flight-planning and conflict resolution are performed on-board [41]. Both

areas require path-planning methods for multiple vehicles, avoiding obstacles and

each other.

UAV problems often involve the additional complexity of waypoint assignment [42,

43, 55]. Small groups of vehicles operate autonomously, with the high-level goal of

visiting a set of waypoints. The allocation of waypoints to UAVs is to be determined

according to capability and timing constraints. This assignment is required to op-

timize some metric for the mission, such as minimum time, maximum reward, or

minimum risk. All of these objectives are highly dependent on the paths taken, since
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this determines the order of events, the flight time and the risk exposure. This makes

the two problems of assignment and path-planning strongly coupled.

1.2 Solution Concepts

This thesis considers three major steps in the solution of the problems discussed in

Section 1.1. The first, discussed in Section 1.2.1 is the representation of non-convex

trajectory optimizations as integer programs. The second, discussed in Section 1.2.2,

is the development of efficient approximations to enable these optimizations to be

solved quickly. Finally, Section 1.2.3 discusses the use of the optimizations in a real-

time, Model Predictive Control scheme to compensate for uncertainty, such as noise

and disturbance.

1.2.1 Mixed-Integer Linear Programming

The approach presented in this thesis formulates the problem as a mixed-integer linear

program (MILP). This is a modification to a linear program (LP) in which some

variables are constrained to take only integer values. In particular, we use binary

variables, taking only the values 0 or 1. Constraints on such variables enable the

inclusion of discrete decisions in the optimization [10, 11], encoding the non-convexity

of the problem. Both avoidance and assignment constraints can be considered in terms

of such decisions. For collision avoidance, a vehicle must either be “left” or “right”

of an obstacle, each leading to a convex sub-problem. Assignment can be expressed

as discrete choices of destinations. Constraints on the binary variables are used to

include logical requirements on the decisions, such as compatible assignments.

In general, MILPs are also NP-complete [12], indicating that the MILP represen-

tation retains the inherent complexity of the problem. However, in many instances,

MILPs can be solved using a branch-and-bound algorithm, exploiting their relaxation

to LP form to accelerate the solution process. The MILP form of the trajectory opti-

mization problems is linear by definition, so the method is immune to issues of local

minima and globally-optimal solutions can be found. Highly-optimized, commercial

18



software is available for this process. These codes were developed to solve MILPs

in the field of operations research, such as airline scheduling [13]. The CPLEX op-

timization software [14] is used to solve the MILPs in this thesis, although various

other options exist. CPLEX implements the branch-and-bound algorithm in conjunc-

tion with many adjustable heuristics, allowing quite large problems to be solved in

practical computation times.

There are two major drawbacks to the MILP approach. The first is the intensive

nature of the computation, which is centralized and scales poorly with problem size.

The second is the restriction to linear problems. However, this thesis demonstrates

that the method can solve realistic problems. Solutions can be obtained in practical

computation times, and linear constraints provide good approximations to the systems

of interest.

1.2.2 Approximations for Solving MILP Problems

MILP representations of trajectory problems can involve many binary variables, typ-

ically thousands. Depending on the nature of the trajectory problem, various tech-

niques can be used to simplify the MILP and accelerate the solution process. In this

thesis, methods are presented for using prior knowledge of the solution to identify

redundant or inactive constraints before solving the problem.

If the solution is likely to have a “bang-off-bang” profile, plume constraints in

middle of the time interval are likely to be inactive. An iterative scheme is developed

in which plume constraints are first applied only at the start and end of the maneu-

ver. The solution is post-analyzed for plume impingement, and repeated if necessary

with additional plume constraints. It is often quicker to solve several simplified prob-

lems than the completely constrained problem. Similar iterative schemes have been

successfully applied to scheduling problems in operations research [59].

In other problems, it is likely that adjoining time steps will have the same binary

variable settings. A formulation is developed in which binary variables are ‘shared’

across adjacent time steps, reducing the complexity of the problem with very little

change to the solution.
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1.2.3 Model Predictive Control

Solving a single MILP optimization generates an optimal trajectory for the problem

seen at a particular instant. In practice, this “snapshot” will be subject to uncertainty,

and the actual problem to be solved will change as time progresses. Furthermore, the

model of the system used in the optimization will be imperfect, and the system state

will not evolve exactly as predicted. The single MILP is an open-loop solution and

cannot account for these uncertainties.

For application to real-time control, the MILP trajectory optimizations are embed-

ded within Model Predictive Control (MPC) [60]. This is a scheme in which trajectory

optimization is performed at each time step, finding a solution to complete the prob-

lem from the current position. Only the first step of the resulting control sequence

is implemented and the process is then repeated. This incorporates feedback in the

control, allowing it to compensate for uncertainties such as model error, disturbances

and noise. It also introduces new challenges into the problem: it is required to run

in real-time, and the stability of the resulting controller must be demonstrated.

1.3 Survey of Previous Work

1.3.1 Avoidance

Many approaches have been investigated for solving the problem of trajectory op-

timization with collision avoidance for dynamic systems. All techniques for solving

these problems involve some kind of simplification, aiming to capture certain key el-

ements of the problem in a form suitable for computation. Potential functions have

been employed in the fields of spacecraft [20], air traffic management [51] and UAV

planning [54, 56]. This approach involves replacing avoidance constraints with prox-

imity penalties in the objective function, allowing simpler optimization schemes, such

as steepest descent, to be used. Such schemes offer fast operation, some with provable

safety, but without optimality. Randomized searches [17, 57, 58] were developed to

rapidly find feasible paths through fields of obstacles, again neglecting optimality. In
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UAV problems, Voronoi diagrams [54, 42] have been used to find coarse paths between

radar hazards, approximating the trajectories as joined line segments. In “reactive”

schemes [18], vehicles fly a nominal trajectory and perform predetermined evasive ma-

neuvers when conflicts are detected. For some aircraft problems, path-planning can

be reduced to a single heading change decision [19, 44], which greatly simplifies the

global trajectory optimization. An indirect method [40] performs iterative searches

for solutions to necessary conditions for aircraft dynamics. Other approaches use

splines [21] and lower-dimensional representations [22] of nonlinear systems to reduce

the solution space before performing nonlinear optimization.

The MILP approach in this thesis simplifies the dynamics model to a linearized

form, while retaining the full non-convex constraints for avoidance and obtaining

globally optimal solutions.

1.3.2 Assignment

Most approaches decouple the problems of configuration selection and trajectory plan-

ning. Once the trajectory costs have been calculated for each configuration option

and the corresponding paths, the selection is a linear assignment problem, which is

readily solved using standard LP tools [31]. A method for spacecraft [7] computes

the costs for many maneuvers and then selects the one that gives the lowest overall

cost. Similar auction-based approaches [42, 52, 53] are used for UAV problems given

cost approximations for trajectories or trajectory segments. Another approach to

the spacecraft reconfiguration problem involved separating the reconfiguration into

permutation maneuvers within groups of satellites [30].

An advantage of the MILP approach in this thesis is its retention of the inherent

coupling of the assignment and path-planning sub-problems. They are solved in a

single, centralized optimization.
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1.3.3 Model Predictive Control

MPC has become popular in industry, particularly in the process industry, and has

recently received considerable attention in the controls community [60, 61, 62]. In

particular, Bemporad and Morari [47] have considered the theory for the use of MILP

in MPC, with examples in process control. In the field of aerospace, Manikonda [69]

applied MPC to spacecraft formation keeping, without considering avoidance con-

straints. Dunbar [70] used nonlinear optimization in MPC for a flight experiment.

This thesis presents the combination of MILP and MPC for spacecraft control,

enabling the inclusion of avoidance constraints in the real-time controller.

1.4 Layout of Thesis

The main body of this thesis is divided into three chapters. Chapter 2 deals with

spacecraft applications. Using these examples, the fundamentals of the MILP ap-

proach are demonstrated. This chapter includes two of the major contributions of

this work: the use of prior knowledge to develop efficient approximations for solving

trajectory optimizations; and the extension of avoidance constraints to prevent plume

impingement. Chapter 3 shows the method of including aircraft dynamics, which are

fundamentally nonlinear, in a linear optimization, another of the key developments of

this work. This chapter also includes work on forms of assignment constraints suit-

able for UAV problems. Chapter 4 presents work on MPC, returning to the context

of spacecraft rendezvous.
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Chapter 2

Spacecraft Applications

This chapter demonstrates the MILP approach with application to spacecraft maneu-

vering problems. These are typically minimum-fuel, fixed-time maneuvers, and may

include collision and plume avoidance constraints. These examples are used to in-

troduce the formulation for avoidance using mixed-integer constraints. Furthermore,

methods of simplification are introduced to deal with the large number of binary

variables that arise in avoidance problems, reducing computation time to practical

periods.

Sections 2.2 and 2.3 are reviews, of the minimum-fuel LP problem and collision

avoidance, respectively. Section 2.3 also includes an introduction to the principle

of using MILP for avoidance and the details of the solution procedure. Section 2.4

shows the extensions to prevent plume impingement. Section 2.5 discusses the com-

putational intensity of the problems and introduces methods to reduce solution times.

Finally, Section 2.6 presents modified initial and terminal constraints to include as-

signment in the problem.

2.1 Nomenclature for Spacecraft Problems

The following variable names are used in this chapter:
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x vehicle state

u control input

T Number of time-steps

V Number of vehicles

N Number of dimensions

G Number of global configurations available for end states

M Large number for logical constraints

P Plume length

W Plume width

The following subscripts are used:

i time-step

p, q vehicles

n, m axes in some orthogonal co-ordinate frame

l obstacle

g global configuration for final states

r position within final configuration

2.2 Linear Program for Minimum Fuel Spacecraft

Problems

The core of the optimization is to choose discrete state values xip for each vehicle p

and time-step i ∈ [0 . . . T ] and the corresponding input values uip. The state at the

first time point is constrained to be the specified starting conditions

x0p = xSp (2.1)

where xSp is the initial state vector for the pth vehicle. Similarly, the state at the final

time point is fixed at the specified end conditions

xTp = xFp (2.2)
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where xFp is the final state vector for the p
th vehicle. Later problems will demonstrate

more flexible terminal constraints to include higher level mission requirements. The

states at intermediate points in time must be consistent with the system dynamics

x(i+1)p = Axip +Buip (2.3)

where A and B are a discretized form of the continuous system dynamics. For simplic-

ity, the constraints show the same dynamics for all vehicles, but it is straightforward

to modify the formulation to account for heterogenous vehicles. For the problems

of interest in this chapter, in which the spacecraft are in close proximity on similar

orbits, the most common approximation for spacecraft dynamics are the linearized

Hill’s equations [15]
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where the x-coordinate is in the radial direction, the y-coordinate is in the in-track

direction and the z-component is in the out-of-plane direction [15]. The spacecraft

mass is m and the natural frequency of the reference orbit is ω. The corresponding

state and input vectors are x = [x y z ẋ ẏ ż]T and u = [ux uy uz]
T. These equations

are discretized resulting in the form in Eqn. 2.3. This can be done by assuming that

the thrust uip is applied continuously throughout the time-step or impulsively at the

beginning of each step. Also, other linearized models of the relative dynamics exist

and can also be used in this optimization framework [32].

The state and input vectors are confined to lie within specified, symmetrical limits

−xmaxn ≤ xipn ≤ xmaxn (2.5)
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−umaxn ≤ uipn ≤ umaxn (2.6)

where xipn and uipn denote the nth component of the state and thrust vectors respec-

tively for the pth vehicle at the ith time-step. The input limit is typically used to

represent the limited force available from each thruster. The velocity constraints can

represent safety limits, such as a maximum maneuvering speed in the proximity of

another spacecraft. The position limits have no such significance, but their presence

ensures that the problem is bounded.

The objective is to minimize the total fuel consumption of all vehicles in the

problem. For a total of V vehicles moving in N -dimensional space over T time-steps,

the cost function is

J =
T−1∑
i=0

V∑
p=1

N∑
n=1

|uipn| (2.7)

This piecewise linear function can be converted to a linear function using slack vari-

ables [33].

In summary, the minimum-fuel path-planning linear program, neglecting avoid-

ance so far, is

min
u,x

J =
T−1∑
i=0

V∑
p=1

N∑
n=1

|uipn| (2.8)

such that

∀p ∈ [1 . . . V ], x(i+1)p = Axip +Buip ∀i ∈ [0 . . . T − 1]

and x0p = xSp

and xTp = xFp

and −xmaxn ≤ xipn ≤ xmaxn ∀i ∈ [0 . . . T − 1] ∀n ∈ [1 . . .N ]

and −umaxn ≤ uipn ≤ umaxn ∀i ∈ [0 . . . T − 1] ∀n ∈ [1 . . .N ]

(2.9)

All of the problems considered in this chapter involve a linear program of the form

shown above, subject to additional mixed-integer constraints to enforce various forms

of avoidance.
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2.3 Collision Avoidance for Spacecraft

This section introduces the constraints for avoidance, describes the implementation

of MILP-based path-planning and shows some examples of collision avoidance ma-

neuvers. This is a review of work by Schouwenaars [35]. It is presented here as a

recap, since it forms the basis for the developments in this thesis.

2.3.1 Obstacle Avoidance Constraints

This section presents the additional constraints on the linear program to avoid static

obstacles [34, 35]. The obstacles can be modeled in this framework as convex polygons

of any number of sides, but, to simplify the presentation, the results in this thesis

only use rectangles. In spacecraft applications, “obstacle” refers to any region that

the vehicles must avoid that is not under our control. For example, when planning

a rendezvous maneuver with a space station, the station would be modeled as a

collection of fixed obstacles, rather than another vehicle. Collisions are prevented by

ensuring that the vehicle trajectories lie outside the obstacles at each of the discrete

time points. Note that it is feasible for the trajectory to cut into obstacles between

the discrete time points. It is therefore necessary to enlarge the obstacle models

and select the time-step length such that these incursions cannot intersect the real

obstacles.

For visualization, the constraints are first derived for the two dimensional case.

The location of the rectangular obstacle is defined by its lower left-hand corner

(xmin, ymin) and its upper right-hand corner (xmax, ymax). The point (x, y) must lie in

the area outside of the obstacle. This requirement can be formulated as the set of

conditions

x ≤ xmin

or x ≥ xmax

or y ≤ ymin

or y ≥ ymax

(2.10)

These constraints can be transformed into a mixed-integer form by introducing binary
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variables ak [10, 12]. Let M be an arbitrary positive number, larger than any other

distance in the problem. The constraints in Eqn. 2.10 are represented by the following

mixed-integer constraints

x ≤ xmin + Ma1

and −x ≤ −xmax + Ma2

and y ≤ ymin + Ma3

and −y ≤ −ymax + Ma4

and
4∑

k=1

ak ≤ 3.

(2.11)

Note that if ak = 0, then the kth constraint from Eqn. 2.10 is enforced. However, if

ak = 1, then that constraint is relaxed, because the M term moves the upper bound

beyond the solution space. The last and-constraint in Eqn. 2.11 ensures that no

more than three constraints from Eqn. 2.10 are relaxed, and hence at least one of the

original or -constraints is satisfied.

These constraints are then enforced at every time step, and extended to a general

number of dimensions (in practice, N = 2 or N = 3), vehicles and obstacles. The

position of vehicle p at time-step i is the vector xip = [xip1 . . . xipN]
T. The vertex

of obstacle l with the minimum value of each coordinate is at position Ll (this is

the bottom left hand corner in the 2-D case). Its vertex with the maximum of each

coordinate is at Ul. The binary variables aiplk are the switches, with k ∈ [1 . . . 2N ],

corresponding to being on one of two sides of the obstacle in each of N dimensions.

The complete formulation is

∀p, ∀l, ∀i ∈ [1 . . . T − 1] : xipn ≥ Uln −Maipln ∀n
and xipn ≤ Lln +Maipl(n+N) ∀n
and

2N∑
k=1

aiplk ≤ 2N − 1

(2.12)

These become additional constraints on the linear program in Eqs. 2.8 and 2.9. The

binary variables a become extra decision variables in the problem. The new con-
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straints in Eqn. 2.12 are linear in the decision variables, so the new problem is a

mixed-integer linear program.

2.3.2 Collision Avoidance Constraints

This section derives constraints to avoid collisions between different vehicles [34, 35].

Every pair of vehicles must be at least a specified distance apart in each direction

at each time-step. This corresponds to the enforcement of a rectangular exclusion

region around each vehicle.

As in the previous section, the constraints are first shown in two dimensions for

clarity. Let the safety distances in the X− and Y−directions be denoted by rx and

ry respectively. Denote the positions of two different vehicles p and q as ( xp , yp ) and

( xq , yq ), respectively. The constraints to ensure safe separation between vehicles p

and q are written as

xp − xq ≥ rx
or xq − xp ≥ rx
or yp − yq ≥ ry
or yq − yp ≥ ry

(2.13)

As in the previous section, these can be converted to the more useful and -constraints

by introducing binary variables, giving

xp − xq ≥ rx −Mb1
and xq − xp ≥ rx −Mb2
and yp − yq ≥ ry −Mb3
and yq − yp ≥ ry −Mb4
and

4∑
k=1

bk ≤ 3

(2.14)

where M is the same large number used in the previous section.

This is extended to the general case using the same notation as before. The safety

avoidance distance in direction n is rn. The condition q > p avoids duplication of the
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constraints on the positions of pairs of vehicles.

∀p, q|q > p : ∀i ∈ [1 . . . T − 1] : xipn − xiqn ≥ rn −Mbipqn ∀n
and xiqn − xipn ≥ rn −Mbipq(n+N) ∀n
and

2N∑
k=1

bipqk ≤ 2N − 1

(2.15)

These constraints can also be added to the linear program of Eqs. 2.8 and 2.9. The

binary variables b become additional decision variables in the optimization problem.

2.3.3 Implementation Details

The global optimization problem is solved by a MILP solver, based on the branch-

and-bound algorithm, implemented in the CPLEX software package [14]. The AMPL

language[38] is used as the interface to CPLEX. Implementing the constraints in

AMPL is straightforward, requiring minimal translation from the form shown in the

equations. The problem formulation and constraints are defined in a model file,

while the parameter values are in a separate data file. As a result, changes to the

problem can be made without rebuilding the constraint expressions. AMPL combines

the model and data files into a suitable format before invoking CPLEX to solve the

problem. A combination of Matlab and AMPL scripts enables the path-planning

problem to be initiated by a single command and then conveniently combined with

simulation and plotting utilities.

2.3.4 Example: 2-D Vehicles with Collision Avoidance

These simple examples demonstrate the effect of the avoidance constraints. The

vehicles involved are modeled as point masses, moving in 2-D with thruster actuation

in both axes. Fig. 2-1 shows an avoidance maneuver designed using the constraints in

Eqn. 2.12. A single vehicle is required to move from the start point to the end point

without hitting the obstacles between. The figure shows that the designed trajectory

is outside the obstacles at all the time points.
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Figure 2-1: Example Obstacle Avoidance Maneuver in 2-D

In the second example, three vehicles are required to move between the positions

given in Table 2.1. The start and end positions are all on the X-axis, but the order of

the vehicles is reversed. The LP solution, which would involve each vehicle following

a straight line from is start to its end point, would clearly lead to a collision between

all three vehicles at the half-way point.

Table 2.1: Start and End Positions for 2-D Collision Avoidance Example

Vehicle Start Position End Position
1 (-2,0) (8,0)
2 (0,0) (6,0)
3 (2,0) (4,0)

Fig. 2-2 shows the result of the MILP optimization that includes the collision

avoidance constraints from Eqn. 2.15 with a safety distance of one unit. Vehicles 2
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Figure 2-2: Example Collision Avoidance Maneuver in 2-D

(lower) and 3 (upper) move in the Y -direction off the X-axis to allow vehicle 1 to

follow a straight-line path. The heavy dots indicate the positions of the vehicles at

the tenth time-step, with the corresponding exclusion boxes shown dashed. Vehicles

1 and 3 are separated by exactly the safety distance in the Y -direction. At earlier

time-steps, vehicles 1 and 2 also move along the edges of the exclusion regions. This

shows that collision avoidance is efficiently implemented by this MILP formulation.

These simple examples show that the MILP constraints enforce avoidance effec-

tively and efficiently. Even in simple cases, the optimal solutions to avoidance prob-

lems are rarely obvious, but can be found directly using MILP. Also, the solutions

found use exactly the avoidance margins specified.

2.3.5 Example: ISS Remote Camera with Collision Avoid-

ance

This problem involves a micro-satellite being used for external inspection of the Inter-

national Space Station (ISS). The satellite is required to move between specified start

and end points on opposite sides of the station without colliding with the structure

or firing its thrusters at the station. The collision avoidance part of this problem was

addressed by Roger and McInnes [20] using potential functions.

The dynamics are the Hill’s equations for a 90 minute orbit, as in the previous
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Figure 2-3: ISS Remote Camera Maneuver with Collision Avoidance. All dimensions
are in meters.

example. The camera satellite is modeled as a mass of 5 kg with thrusters giving up

to 1 mN in each direction. The ISS is modeled as a collection of boxes as shown in

Fig. 2-3. The maneuver lasts for 4000 seconds and is discretized into 40 time-steps.

This problem was solved with collision avoidance constraints. The designed tra-

jectory is shown in Fig. 2-3. The total fuel use is equivalent to a ∆V of 0.236 m/s.

Section 2.4.5 extends this example to include plume avoidance constraints. The com-

putational complexity of this problem is discussed in Section 2.5.

2.4 Plume Impingement Avoidance

This section develops the formulation to prevent plume impingement by one spacecraft

upon another [36]. The plumes extend in discrete directions from the vehicle, which
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assumes that the thrusters are aligned with the axes. The inclusion of vehicle attitude

variation within this formulation would complicate it considerably, and is the subject

of ongoing research. As in the case of obstacle avoidance, the plume region could

be represented by any convex polygon, but a rectangular shape is used here for

simplicity. Two forms of plume constraints are presented: those for impingements

between vehicles under our control, and those for impingements by vehicles upon

fixed obstacles. As discussed in Section 2.3.1, vehicles not under our control and

large structures are modeled as fixed obstacles in the Hills-frame space.

2.4.1 Plume Avoidance Constraints for Vehicles

All other vehicles are required to remain outside the plume region while the cor-

responding thruster is firing. Conversely, a spacecraft cannot fire a thruster if the

resulting plume would impinge upon another vehicle. Once again, the constraints are

first developed in two dimensions to simplify the visualization. Figure 2-4 (a) shows

the modeled impingement region extending in the −X-direction. The vehicles shown

by ◦ are clear of the plume since they are outside the impingement region. The vehicle

shown by × will be impinged if the thruster is firing in the −X-direction, generating

thrust in the +X-direction, but could still escape impingement if the thruster is not

firing. Thus for the plume shown, there are five ways to avoid impingement: either

the thruster is not firing, or the target vehicle is clear of the box in any of the four

directions. These can be represented by the or -constraints

uxp ≤ 0

or xp − xq ≥ P

or xq − xp ≥ 0

or yp − yq ≥ W

or yq − yp ≥ W

(2.16)

where W is the plume half-width, P is the plume length and uxp is the thrust from

vehicle p in the X-direction. So, for the situation shown in Fig. 2-4, vehicle p is
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(b) Exclusion Region for Plume Impingement on Obstacles
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Figure 2-4: Examples of Plume Impingement Regions in 2-D

marked by the ✷ and any of the others may be vehicle q. The vehicles marked by ◦
each satisfy one of the last four constraints. The vehicle marked by × satisfies none

of the last four constraints because it is inside the plume region, but it will not be

impinged if the first constraint is satisfied.

As shown previously, these constraints can be converted to the more convenient
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and -form using binary variables

uxpi ≤ Mc0

and xp − xq ≥ P − Mc1

and xq − xp ≥ − Mc2

and yp − yq ≥ W − Mc3

and yq − yp ≥ W − Mc4

and
4∑

k=0

ck ≤ 4

(2.17)

To extend the constraints to the most general case of all time steps, dimensions and

vehicles, denote the thrust vector for vehicle p at time-step i as uip = [uip1 . . . uipN]
T.

The formulation for vehicle q to avoid the plumes from forward (positive thrust)

thrusters of vehicle p is

∀p, q|q �= p : ∀n : ∀i ∈ [0 . . . T − 1] :

−uipn ≥ −Mc+ipqn0

and xipn − xiqn ≥ P −Mc+ipqnn

and xiqn − xipn ≥ −Mc+ipqn(n+N)

and xipm − xiqm ≥ W −Mc+ipqnm ∀m|m �= n

and xiqm − xipm ≥ W −Mc+ipqn(m+N) ∀m|m �= n

and
2N∑
k=0

c+ipqnk ≤ 2N

(2.18)
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Similarly, the constraints for avoiding plumes from reverse thrusters are

∀p, q|q �= p : ∀n : ∀i ∈ [0 . . . T − 1] :

uipn ≥ −Mc−ipqn0

and xipn − xiqn ≥ −Mc−ipqnn

and xiqn − xipn ≥ P −Mc−ipqn(n+N)

and xipm − xiqm ≥ W −Mc−ipqnm ∀m|m �= n

and xiqm − xipm ≥ W −Mc−ipqn(m+N) ∀m|m �= n

and
2N∑
k=0

c−ipqnk ≤ 2N

(2.19)

When these constraints are added to the linear program in Eqs. 2.8 and 2.9, the

variables c become additional decision variables.

2.4.2 Plume Avoidance Constraints for Obstacles

This section derives the constraints to prevent vehicles from firing their thrusters

when they would impinge upon fixed obstacles. Fig. 2-4 (b) shows how vehicles may

avoid impinging on an obstacle in 2-D. The vehicles marked by ◦ are all free to fire

as shown since their plumes will not contact the obstacle. The vehicle marked by

× will impinge on the obstacle if it fires in the direction shown. It is clear from

this example that there is a region around the obstacle in which the vehicles cannot

emit plumes in the −X-direction without impinging. As before, there are five ways

to avoid impinging: to be outside the box, or not to fire. These can be written as

the following or -group using the corners of the obstacle, as shown in the obstacle
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avoidance section.

uxp ≤ 0

or xp − xmax ≥ P

or xmin − xp ≥ 0

or yp − ymax ≥ W

or ymin − yp ≥ W

(2.20)

As before, binary variables are added to convert to and -form and extend to the general

case. The constraints for forward thrust are

∀p : ∀l : ∀n : ∀i ∈ [0 . . . T − 1] :

−uipn ≥ −Md+
ipqn0

and xipn − Uln ≥ P −Md+
ipqnn

and Lln − xipn ≥ −Md+
ipqn(n+N)

and xipm − Ulm ≥ W −Md+
ipqnm ∀m|m �= n

and Llm − xipm ≥ W −Md+
ipqn(m+N) ∀m|m �= n

and
2N∑
k=0

d+
ipqnk ≤ 2N

(2.21)

and similarly for reverse thrust

∀p : ∀l : ∀n : ∀i ∈ [0 . . . T − 1] :

uipn ≥ −Md−ipqn0

and xipn − Uln ≥ −Md−ipqnn

and Lln − xipn ≥ P −Md−ipqn(n+N)

and xipm − Ulm ≥ W −Md−ipqnm ∀m|m �= n

and Llm − xipm ≥ W −Md−ipqn(m+N) ∀m|m �= n

and
2N∑
k=0

d−ipqnk ≤ 2N

(2.22)
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Again, these can be appended to the linear program Eqs. 2.8 and 2.9, the binary

variables d becoming extra decision variables in the optimization.

2.4.3 Example: 2-D Vehicles with Plume Avoidance

Fig. 2-5 shows an example of a maneuver with plume avoidance between vehicles. The

maneuver from Fig. 2-1 is redesigned with the additional constraints from Eqs. 2.18

and 2.19 to prevent plume impingement. Observe that in Fig. 2-1, the two vehicles

that move away from the X-axis do so with some velocity in the X-direction, imply-

ing that their thrusters fired to the left and impinged upon other vehicles. In the

redesigned maneuver of Fig. 2-5, the second vehicle from the left moves away in the

Y-direction only, to avoid firing upon the other two. The heavy dots (•) mark the

vehicle positions at the third time step, and the dashed line marks the plume region

due to firing at that time. Vehicle # 2 fires as soon as possible without impinging

on Vehicle # 1, which is just on the edge of the plume region, and vehicle # 3 has

remained at its starting position. It does not move until both other vehicles are out

of its plume region.

Fig. 2-6 shows a simple example involving the constraints for plume impingement

on obstacles. A vehicle has to approach and stop next to an obstacle. In Fig. 2-6(a),

the maneuver is designed without the plume constraints, and the final braking thrust

impinges upon the obstacles. In Fig. 2-6(b), the same maneuver is designed with

plume constraints in place. To avoid impinging with the braking thrust, the vehicle

diverts from the direct path, and its final approach direction is such that the braking

thrust does not impinge.

These simple examples demonstrate the effect of the plume constraints and verify

that they perform as expected.
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Figure 2-5: Example Plume Avoidance Maneuver in 2-D. The lines mark thruster
firing, with length proportional to the thrust demanded.
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(b) With plume constraints

Figure 2-6: Demonstration of Plume Constraints in 2-D Obstacle Problem
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2.4.4 Example: Multi-Satellite Plume Impingement Avoid-

ance

Section 2.4.3 showed the effect of plume constraints on simple vehicles. This section

shows their application to a spacecraft problem with relative orbital dynamics. Three

identical spacecraft of mass 30 kg are separated along a line in-track. They are

required to reconfigure onto one of the passive apertures, which in this case is a

triangle in the plane of the orbit. The maneuver must be done in 9 minutes, which is

one tenth of a 90 minute orbit. This artificially-short time scale makes in-track firing

a favorable option where available, so the effect of the plume impingement constraints

is clearly demonstrated. Each spacecraft has thrusters providing up to 0.2 N in each

direction. The plume avoidance regions for the thrusters are 50 m wide and extend

120 m from the spacecraft. Collision avoidance is also enforced with a safety distance

of 10 m. The problem was discretized into 20 time-steps.

The left-hand plot in Fig. 2-7 shows the trajectory designed without plume con-

straints. Note that the designed trajectories remain in the orbital plane, even though

the full three-dimensional model from Eqn. 2.4 was used in the problem. As expected,

substantial in-track firing is used to complete the problem in the time available. Fig. 2-

8 shows details of the start and end of the maneuver. In Fig. 2-8(a), showing the first

firing step, vehicle 1 (�) impinges on both other vehicles, while vehicle 2 (✷) fires on

vehicle 3 (©) as well. Fig. 2-8(b) shows the final firing step, at which vehicle 3 fires

upon both other vehicles.

The right-hand plot in Fig. 2-7 shows the trajectories redesigned to prevent plume

impingement, with details of key steps shown in Fig. 2-9. Considerable deviations

from the previous case are evident. Fig. 2-9(a) shows the first step, for comparison

with Fig. 2-8(a). Vehicles 1 and 2 fire only radially, avoiding impingement. Note

that vehicle 2 moves away in the opposite direction to the previous result. At time

step 3, shown in Fig 2-9(b), vehicle 2 has moved in the radial direction and is now

able to fire in-track without impinging upon vehicle 3. At step 6, shown in Fig. 2-9(c),

vehicles 2 and 3 have become separated by exactly the width of the plume region,
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Figure 2-7: Reconfiguration Maneuver without Plume Impingement Constraints
(Left) and With Plume Impingement Constraints (Right). The trajectory of Vehicle
#1 is marked by �, vehicle #2 by ✷, and vehicle #3 by ©. The lines indicate the
direction of the firing plumes. Their lengths are proportional to the thrust demanded.
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Figure 2-8: Detail of Spacecraft Maneuver without Plume Constraints. Vehicle #1 is
marked by �, vehicle #2 by ✷, and vehicle #3 by ©. The lines indicate the direction
of the firing plumes. Their lengths are proportional to the thrust demanded. The
shaded areas are the plume avoidance regions.
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and vehicle 1 fires into the space between them.

Fig. 2-9(d) shows the 13th time step, as the vehicles approach the end of the

maneuver. After significant firing in the early steps, vehicle 3 has moved ahead of

vehicle 1, and is able to fire in-track for braking without impinging. At step 15, shown

in Fig. 2-9(e), vehicle 3 makes its final in-track braking burn, just clear of vehicle 2.

Note that vehicle 1 will pass into the plume region at the very next step. Fig. 2-9(f)

shows the final firing step. Unlike the situation in Fig. 2-8(b), the approach direction

of vehicle 3 is such that it does not need to fire in-track, impinging upon the other

vehicles.

This example has shown many complicated interactions between vehicles, with

positions and firing carefully co-ordinated between the group to avoid impingement

throughout the maneuver. The MILP approach offers a direct route to these solutions.

2.4.5 Example: ISS Remote Camera with Plume Avoidance

This section demonstrates the effect of adding plume constraints to the ISS camera

example from Section 2.3.5. When solved for collision avoidance only, as shown in

Fig. 2-3, the final braking thrust impinges upon the station. Fig. 2-10 shows the

trajectory redesigned to prevent plume impingement, using a plume length P = 10m

and half-width W = 1m. The final stages of this maneuver are shown in Fig. 2-11,

seen in a larger scale from a different angle. Since the final position is in a corner

formed by two adjacent modules, the camera satellite must approach from the side

to prevent its braking thrust from impinging on the station. The figure shows the

satellite making the necessary adjustment to its course by firing while still clear of the

station, and its final approach leaves it requiring a braking thrust in the only available

direction. The total fuel use for this maneuver is equivalent to a ∆V of 0.269 m/s,

compared to 0.236 m/s for collision avoidance only. The small increase in firing is

needed to achieve the final approach direction. The computational complexity of this

problem is discussed in Section 2.5.
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Figure 2-9: Detail of Spacecraft Maneuver with Plume Constraints. Vehicle #1 is
marked by �, vehicle #2 by ✷, and vehicle #3 by ©. The lines indicate the direction
of the firing plumes. Their lengths are proportional to the thrust demanded. The
shaded areas are the plume avoidance regions.

45



Figure 2-10: ISS Remote Camera Maneuver with Plume Impingement Constraints.
Start and end positions are the same as in Fig. 2-3.

Figure 2-11: Final Stages of Maneuver from Fig. 2-10, shown in Close-Up from Below.
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2.5 Computational Issues

The constraints for collision and plume avoidance can introduce large numbers of

binary variables into a problem. The number of time steps is usually fixed by the size

of the obstacles: if the time step is too long, a vehicle might pass right through an

obstacle and still satisfy avoidance constraints on either side. This can lead to large

increases in computation time in some cases. This section describes approximations

that can be used to simplify the problems in order to reduce the solution time. The

most useful approach is to use prior knowledge to identify redundant or inactive

constraints. These can then be removed from the problem, which typically leads to

a faster solution time. Two strategies are presented for identifying these removable

constraints, each well-suited to a particular class of problems.

2.5.1 Normalization

The constraints shown so far can involve quantities of very different magnitudes. For

example, separation distances can be on the order of hundreds of meters while thrust

inputs may be a few micro-Newtons. To improve the numerical conditioning of the

problem, the variables are normalized. New normalized states x̂ and inputs û are

related to the full-scale quantities by

x = Xx̂ (2.23)

u = Uû (2.24)

where X and U are diagonal matrices of scaling factors equal to the original upper

bounds in Eqs. 2.5 and 2.6. The new state and input bounds are given by

−1 ≤ x̂ipn ≤ 1 (2.25)

−1 ≤ ûipn ≤ 1 (2.26)
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Other position quantities such as the obstacle definitions L and U and the plume

scales P andW are scaled by the same factors. As a result, all of the decision variables

are of the same order of magnitude, because the binary variables lie between 0 and

1, by definition. This modification has been found to make significant improvements

in computation time in some cases, but no difference in others. While the reason

for the improvement is not clear, it appears to be a result of an improvement in the

efficacy of the heuristics employed by the CPLEX software to select branching nodes

and directions.

2.5.2 Removal of Plume Constraints During Coast

In constrained-input, minimum-fuel problems of the type in Eqn. 2.9, the optimal

solution can be shown to consist of firing at the beginning and end of the trajectory,

separated by a coasting phase. This is more commonly known as a “bang-off-bang”

trajectory [37]. In certain problems, where the maneuvering space is large compared

to the avoidance regions, it is possible to predict that the optimal solution including

avoidance constraints will still be of a “bang-off-bang” form. Therefore, during the

coasting phase, the plume constraints would be inactive.

This prior knowledge can be exploited by omitting some of the plume constraints

during the anticipated coasting phase before solving the problem. This reduces the

number of binary variables and typically leads to a faster solution time. However, it is

then necessary to verify that no plume impingement occurred at the steps where the

constraints were removed. This can be done quickly, and if no impingement is found,

the result is also the optimal solution to the completely constrained problem. Note

that this behavior exemplifies an NP-complete problem: the feasibility of a candidate

solution can be verified in polynomial time, but the global optimum cannot necessarily

be found in polynomial time. If impingement is found to occur, it would then be

necessary to include some of the removed constraints and solve again. This leads to an

iterative solution process, but this is often still faster than solving the complete, global

problem. Similar concepts have been applied to scheduling problems in Operations

Research [59] using MILP and Constraint Programming (CP) in iterative schemes.
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2.5.3 Time-Step Grouping.

For problems where the avoidance regions are not small compared to the maneuvering

space, there is likely to be extensive interaction between vehicles, and it is not likely

that the trajectory will be of the “bang-off-bang” type. However, as vehicles and

obstacles move past each other, the interactions typically last for several time-steps

at least, due to the comparatively large avoidance regions. Consequently, the binary

variable settings are likely to be equal for sequences of time steps. To make use of

this prediction, binary variables are “shared” across small groups of adjacent time-

steps. This can be viewed as the inclusion of additional constraints, equating the

binary variables in the groups. This is expected to increase the cost of the maneuver.

However, since the binary variables were likely to be equal in the original problem,

the additional constraints are likely to be satisfied by the solution to the original

problem, hence the cost penalty is expected to be small.

Fig. 2-12 illustrates the effect of grouping time steps for obstacle avoidance. Fig. 2-

12(a) shows part of the solution to a problem with individual sets of binary variables

for each time step. The settings for the binary variables at each time step for avoiding

the obstacle, corresponding to the variables ak in Eqn. 2.11, are marked on the figure.

Notice that sequences of time steps have equal settings, since the steps are small

compared to the obstacle. Fig. 2-12(b) shows the new solution found with time step

grouping. The group marked by � had the same settings in the original solution,

and are therefore unchanged. The group marked by © runs across the join of two

sequences from the original problem. The right-most point in the group is moved,

such that it satisfies the same avoidance constraint as the other two. Since the time

step is small compared to the obstacle, this change is likely to be small in terms of

the whole maneuver. Therefore, it is possible to obtain a solution very close to the

original, ungrouped problem with a third the number of binary variables. The effect

of this reduction on computation is shown in Section 2.5.4
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(a) Without grouping (b) Groups of three

Figure 2-12: Illustration of Time Step Grouping. Time steps in the same group have
the same symbol. The binary settings (a1a2a3a4) from Eqn. 2.11 for each step or
group are shown.

2.5.4 Example: ISS Remote Camera - Computation

The ISS camera example, seen in Section 2.3.5, is extremely demanding in terms

of computation. Since some of the obstacles are thin panels, it is necessary to use a

short time-step to ensure that the vehicle cannot “jump” straight through an obstacle

between time-steps and at least 40 time-steps are needed. Although there is only

one vehicle, collision avoidance in three dimensions considering five obstacles requires

some 30 binary variables per time-step. To solve for collision avoidance alone involves

roughly 1200 binary variables, but this problem can be solved in approximately 8.0

seconds. Adding plume impingement requires a further 210 binary variable per time-

step forming a problem with 9600 binary variables. Since the binary variable search

space is so large, it is impractical to compute the global optimal solution to the full

problem.

This problem is well-suited to the “time-step grouping” technique described in

Section 2.5.3. The camera satellite moves between 0.7 and 1 units per time-step,

while the obstacles are roughly tens of units across. Table 2.2 compares the results

using groups of different sizes. The top row shows the results for the original problem

without grouping. It can be seen that using groups of three time-steps reduces the

computation time by a factor of at least 30 at the expense of only a 2% increase in

fuel use. This additional conservatism was expected, due to the more constrained

50



Table 2.2: Results for ISS Problem with Plume Constraints

Time-step Computation Fuel cost
grouping size time (seconds) as ∆V (m/s)

None 1800 0.2692
2 190 0.2727
3 54 0.2746
4 67 0.2864

nature of the problem when grouping is used. Note that increasing the group size

beyond three actually causes a slight increase in the solution time.

Further experiments have been performed to find the variation of the solution time

with the particular problem instance, and also to investigate the effect of normaliza-

tion, as discussed in Section 2.5.1. Problems were solved with 60 different, randomly-

generated start and end positions around the station, using time-step groups of length

three. Fig. 2-13 shows the cumulative distribution of computation times. It can be

seen that normalization gives a significant improvement in computation time, and

that most problems can then be solved in under 100 seconds.

2.5.5 Example: ISS Rendezvous using Iterative Scheme

This section demonstrates the technique of removing the plume constraints during the

expected coasting period, leading to an iterative solution procedure. The example

involves an autonomous supply spacecraft performing a rendezvous with the ISS.

Unlike the remote camera in the previous example, this maneuver starts much further

away from the station. Therefore, the action of the plume constraints is expected to

occur only at the end of the maneuver when the chaser spacecraft gets close to the

station. Fig. 2-14 shows the designed trajectory for approaches from a particular

point. Note that the approach is designed to avoid impinging on the final braking

thrust. The starting point is on a neighboring orbit to the station, following a closed-

form ellipse in the Hill’s frame. The trajectory is designed to reach the point marked

by the cross, at which point a different control scheme would execute the final docking
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Figure 2-13: Distribution of Solution Times for Random ISS Camera Problems

maneuver.

Fig. 2-15 compares solution times using the iterative procedure versus a single op-

timization with all the constraints in place from the start. The times for the iterative

procedure include that for checking trajectories and repeated solutions. Trajecto-

ries were designed for approach from different starting points on the ellipse shown

in Fig. 2-14. For most of the cases, the iterative procedure is much faster than the

single optimization, and the majority of problems are solved in under a second.

Further investigation was performed into those cases which proved difficult to solve

by either method. Problems starting from around 150o or 330o take up to 30 seconds

when the rest are all solved in under ten. Fig. 2-16 shows the designed trajectories

for points on either side of each of these spikes. The spikes of slow computation occur

where there is a cross-over from one approach “strategy” to another, corresponding

to different binary variable settings. For example, when approaching from 120o, the
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Figure 2-14: ISS Rendezvous Maneuver with Plume Avoidance

chaser craft always remains “in front” of the station, as seen in the plot, but from

170o, it passes behind and approaches its target in the opposite direction. Somewhere

between these two starting angles will be a point from which each strategy has the

same cost, and the branch-and-bound algorithm must fully evaluate both trajectories

before terminating. Moving away from this point, one strategy will become more

favorable, and the algorithm can discount the other option earlier, when the lower

bound of its cost shows it to be unfavorable. A similar change in strategy can be seen

between 300o and 350o.

This section includes two key demonstrations. First, that iterative schemes based

on prior knowledge offer substantial savings in computation time. Second, that some

problems with multiple solutions having similar costs are harder to solve than other

problems.
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Point. Iterative solution and single optimization technique are compared.
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(a) 120o (b) 170o

(c) 300o (d) 350o

Figure 2-16: ISS Rendezvous Maneuvers from Various Starting Angles
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2.6 Selection of Start and Finish Conditions

In this section, the boundary conditions for the maneuvers, either the terminal or

initial constraints, are modified to include some form of assignment in the problem.

Typically, the aim is to choose the boundary conditions and design the path for the

minimum-fuel maneuver. The difficulty is that the assignment and path-planning

problems are intrinsically coupled. If the costs for all possible assignments were

known, the assignment would be straightforward, but the cost computation would

be excessive. Other approaches to these problems, discussed in the Introduction

Section 1.3.2, use approximate methods to generate costs of many possible maneuvers

and then perform a simple assignment. In contrast, the method presented in this

section captures both the path-planning and assignment in a single optimization,

retaining their inherent coupling.

2.6.1 Final Configuration Selection Constraints

The constraint in Eqn. 2.2 enforces a fixed final state for each vehicle. This section

generalizes that constraint to the case where each vehicle is assigned a specific final

state from a set of possible alternatives [35]. A subset of final states, known as a

“global configuration” is selected and spacecraft are assigned to positions within that

subset. The selection and assignment are performed within the trajectory optimiza-

tion to achieve the lowest overall fuel cost. For example, it might be required that the

satellites reconfigure so that they are evenly spaced around a given ellipse, forming

a passive aperture for a particular interferometry observation [16]. If the spacecraft

are assumed to be identical, their ordering around the ellipse is not important. In

addition, the rotation of the whole formation around the ellipse is not important. In

the MILP formulation, the ellipse is discretized into a set of possible rotation angles

for the formation. Each of these is entered as a global configuration, containing the

final state for each spacecraft with the formation at that angle. When the resulting

MILP is solved, the formation angle and the assignment of spacecraft around the

formation are selected within the optimization to give the minimum fuel use in the
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reconfiguration maneuver.

The final state constraints for this formulation can be thought of as an extensive

or -expression, in which the final states of the vehicles must be one of the available

global configurations g and the vehicles can be distributed in any one of the possible

permutations across the terminal states. In more concise terms

∀p : xTp = xF
g
r for some g ∈ [1 . . . G] (2.27)

where r is the unique position within the formation assigned to vehicle p. Using

binary variables, these constraints can be expressed as

∀p : xTp =
G∑

g=1

V∑
r=1

xF
g
rfpgr (2.28)

where binary variable fpgr = 1 if vehicle p takes the rth position within the gth global

configuration and 0 otherwise. It is then necessary to place the following logical

constraints upon these variables.

∀p :
∑
g

∑
r

fpgr = 1

∀g, ∀p :
∑
r

fpgr =
∑
r

frgp

∀g :
∑
p

∑
r

fpgr = V
∑
r

f1gr

(2.29)

The first constraint ensures that every satellite p chooses exactly one position. The

second constraint ensures that different satellites move to different positions r. The

third constraint then ensures that all the chosen positions belong to the same global

configuration g. The right-hand side of this equation equals 0 or V , the number of

satellites.

2.6.2 Example: Satellite Formation Reconfiguration

In this example, a group of satellites is reconfigured to be evenly spaced around an

ellipse of a given size and inclination. In an interferometry application, this would
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correspond to a change in aperture, as discussed previously. The satellites are identi-

cal, so the assignment within the formation and the overall rotation of the ellipse can

be selected in the optimization using the terminal constraints from Eqs. 2.28 and 2.29.

This example will also be used to demonstrate the computation times involved with

various numbers of vehicles and different constraint forms. Results are shown for

cases involving two, three and four vehicles, with and without plume impingement.

The vehicles are initially arranged along a line in-track. Each satellite is modeled

as a point mass of 50 kg, with Hill’s equations as the relative dynamics using a 90

minute orbit. The final configuration selection is discretized such that the ellipse is

divided into 30 possible global configurations, each containing one position for each

spacecraft. The maneuver must be performed in 1000 seconds, equivalent to just over

15 minutes or 1/6 of an orbit. The maneuver is discretized into 25 time-steps each of

40 seconds. The plume exclusion box is 100 m long and is 20 m by 20 m square in

cross-section (P = 100,W = 10).

Fig. 2-17 shows the designed trajectories for the two-, three- and four-vehicle cases,

with and without plume constraints. The ellipse associated with the final aperture is

also shown. Note that in the three- and four-vehicle cases, the chosen assignment is

changed when plume constraints are included. This demonstrates that the inclusion

of path-planning and assignment in a single optimization can fully model the coupled

problem and offer fuel savings. Table 2.3 shows the computation time and fuel use

in each case. Adding plume constraints on all steps causes a considerable increase in

computation time, as shown in the second row of Table 2.3. While the computation

times for two- and three-vehicle cases are still shorter than the maneuver time, the

four-vehicle case now takes over half an hour to compute, which is approximately

twice as long as the maneuver itself. As in the ISS example, this complexity arises

from the number of binary variables in the problem. For example, the four-vehicle

case involves 900 binaries for collision avoidance, 480 for configuration selection, and

9000 for plume avoidance.

This issue with the computation time can be addressed by recognizing that this

problem is likely to result in a “bang-off-bang” trajectory, since the vehicle avoidance
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Table 2.3: Results for Reconfiguration Maneuver, showing computation time (in sec-
onds) and fuel (as ∆V in m/s) and V =Number of vehicles.

V = 2 V = 3 V = 4
Time Fuel Time Fuel Time Fuel

CA only 1.0 4.67 7.8 9.82 28 13.18
With PI 6.8 4.67 170 10.20 1900 13.84
PI on first ten steps 2.0 4.67 33 10.20 640 13.84
PI on all steps, groups of three 4.8 4.67 100 10.35 2500 14.41

regions are small compared to the maneuvering distances. Therefore, the removal

of plume constraints in the coast phase, as discussed in the computation section,

can be used to reduce solution time. Also, the final positions are much further

apart and not aligned with each other, so impingement is not expected to occur

at the end of the maneuver. The third row of results in Table 2.3 were obtained

by preventing plume impingement only on the first ten time-steps. A post-analysis

of the trajectories showed that plume impingement did not occur at the steps from

which the constraints had been removed. The significant reduction in solution time

with the removal of redundant constraints demonstrates the benefit of this technique,

as discussed in Section 2.5.2.

The fourth row shows the results from the application of the time-step grouping

idea to this problem. This technique is not expected to be very effective here, since the

avoidance regions are small compared to the maneuvering space and the interaction

between vehicles is short-lived. In this case, plume impingement was prevented on

all steps, but the binary variables were shared across groups of three adjacent time-

steps. The fuel costs are slightly higher than those in the second row, as expected from

the grouping method. The computation times are slightly reduced for the two- and

three-vehicle cases, but increased in the four vehicle case. This contrasts with the ISS

example, where grouping made the most complicated case solve more quickly. This

demonstrates the difference between the two approximation techniques and shows

that they are dependent on the problem characteristics. More generally, the inclusion

of prior knowledge for simplification is problem-specific.
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(a) V = 2, no PI
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(b) V = 2, with PI
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(c) V = 3, no PI
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(d) V = 3, with PI
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(e) V = 4, no PI
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(f) V = 4, with PI

Figure 2-17: Reconfiguration Maneuvers with Varying Number of Vehicles V , with
and without Plume Impingement Constraints (PI)
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Figure 2-18: ISS Rendezvous Maneuver with Starting Point chosen to Minimize Fuel
Use

2.6.3 Example: ISS Rendezvous with Variable Starting Point

This section demonstrates the use of variable starting positions. The formulation

for these is analogous to the variable finishing states in Eqs. 2.28 and 2.29. The

example is that of the ISS rendezvous spacecraft as introduced in Section 2.5.5. The

vehicle starts on a closed-form ellipse around the space-station. In this section, the

optimization may choose the starting state from a selection of points on that ellipse,

such that the following rendezvous maneuver is accomplished with minimum fuel.

This choice is equivalent to having a variable starting time for the rendezvous. The

ellipse is discretized into 100 possible starting points, and the optimal maneuver is

shown in Fig. 2-18.

Fig. 2-19 shows the variation in fuel use with starting point, found by solving

the fixed starting point problem from each of the discrete points on the ellipse. The
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Figure 2-19: Variation of Fuel Use with Starting Point for ISS Rendezvous Maneuver.
The starting point chosen by the optimization in Fig. 2-18 is marked by ∗

starting point is parameterized by the angle on the ellipse, with the zero-degree line

marked by the dash-dot line in Fig. 2-18. The star marked on Fig. 2-19 indicates

the starting point chosen by the optimization with variable initial conditions. As

expected, it has chosen the global optimum.

2.7 Summary

This chapter has shown that various spacecraft avoidance problems can be solved

for the minimum-fuel maneuvers using MILP. In particular, collision avoidance and

plume avoidance have been enforced, involving multiple spacecraft and space stations.

While the optimizations are complicated to solve, techniques have been presented to

allow solutions to be obtained in practical times. These include grouping time steps
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for avoidance enforcement and using iterative schemes to exploit prior knowledge of

the solution. The problems can be extended to include assignment, in which both

the paths and destinations are chosen for minimum fuel use.
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Chapter 3

Aircraft Applications

This chapter extends the work in Chapter 2 to solve problems involving aircraft, in

particular multiple UAVs. Two major developments are involved: the first is the

inclusion of a linear model of aircraft dynamics in the MILP; the second involves gen-

eral forms of terminal constraints to include waypoint assignment in the optimization.

These are considered in Sections 3.3 and 3.4 respectively. The final formulation is

able to solve the combined path-planning assignment problem, capturing the inherent

coupling of these two problems in a single optimization.

3.1 Nomenclature for Aircraft Problems

The following quantities define the size of problems in this Chapter

NV Number of vehicles

NW Number of waypoints

NZ Number of exclusion zones

ND Number of time dependencies

The following standard subscripts are used:
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t Time-step

p, q Aircraft

j Exclusion zone

i Waypoint

k Time dependency

The following variables are used:

(x, y) Position

(ẋ, ẏ) Velocity

s State vector

f Force vector

Table 3.1 shows the parameters used to specify the problems.

Table 3.1: Parameters of General Aircraft Problems

Parameter Size Meaning

vmax NV × 1 Maximum speeds of aircraft
ωmax NV × 1 Maximum turn rates
S NV × 4 Initial states
W NW × 2 Waypoint positions
Z NZ × 4 Exclusion zones
K NV ×NW Aircraft capabilities
∆ ND ×NW Time dependencies
tD ND × 1 Time dependency intervals

Additional Parameters for Scores and Penalties

V NV ×NW Waypoint scores (replaces K)
P NV ×NZ Exclusion zone penalties

3.2 Problem Statement

This section gives a more detailed illustration of the problem statement for the air-

craft case, motivating the formulations that follow. Fig. 3-1 illustrates a scenario for

a typical UAV problem. In all cases, it is required to plan a trajectory for each ve-

hicle, obeying its specified dynamics constraints. Three problems are solved for this

scenario.
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Figure 3-1: Example Scenario for Aircraft Problem

(A) Each vehicle has an assigned destination, e.g. vehicle 1 to point A, vehicle 2

to point B, and so on. The optimization must find the minimum-time solution for

each vehicle avoiding the obstacles and other vehicles. This problem could represent

conflict resolution in air traffic control.

(B) The vehicles are not given pre-assigned destinations. Each has specified capa-

bilities, e.g. vehicle 1 may visit waypoints A, B and D, vehicle 2 may visit waypoints

B, C and E, and so on. There may also be timing constraints, such as requiring way-

point A to be visited before D. The optimization seeks the solution for the minimum

mission completion time. In addition, extra waypoints may be added such that there

are more waypoints than vehicles, and then the optimization chooses the order of

visits for those vehicles assigned more than one waypoint. This represents a planning

problem for a fleet of UAVs.

(C) The final variation extends the assignment to include scores for each waypoint.
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For example, vehicle 1 would score 20 points for visiting point A, 30 for B, none

for C, and so on. Each ‘point’ is equivalent to the cost of flight for one time step,

since flight time is also penalized. Also, the obstacles are relaxed to become ‘penalty

zones’ representing some hazard. Vehicles incur penalties for entering the regions,

e.g. vehicle 1 would lose 20 points for entering zone P, 100 points for entering Q,

and so on. The optimization assigns the vehicles and designs the trajectories for the

highest overall score. This represents a more general form of UAV mission planning

including risks and values.

Section 3.3 develops the linear aircraft model and verifies it using examples of

problem A. Section 3.4 extends the formulation for the scenarios in B and C.

3.3 Modeling Aircraft Dynamics in MILP Form

MILP captures the non-convexity of avoidance problems while enabling globally-

optimal solutions to be computed. The expense is the necessity for the problem

to be completely linear. This section develops a linearized model of aircraft dynamics

that can be used in this framework.

This Chapter considers problems in which aircraft fly at constant altitude, result-

ing in planar motion. This is a common restriction in air traffic models, as air space

is usually structured in layers [40]. Also, in UAV problems, altitude is often deter-

mined by mission constraints, such as sensor resolution or radar visibility, resulting

in a 2-D guidance problem. The MILP formulation can readily be extended to 3-D

problems, as shown in Chapter 2, but for simplicity, this Chapter will consider only

2-D problems.

For many cases of interest, an aircraft can be modeled as moving at constant

speed. The rate of change of heading angle is limited by the maximum bank angle of

the aircraft. Writing these constraints exactly results in nonlinear expressions, which

cannot be handled in a MILP framework. Section 3.3.1 shows that the dynamics can

be approximated by a point mass with limited speed and force actuation. Section 3.3.2
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then shows the linear constraints used to include this model. Section 3.3.3 shows the

inclusion of avoidance constraints from Chapter 2. Section 3.3.4 shows how to solve

for the minimum time solution, which favors solutions remaining at the maximum

speed and therefore returns the minimum distance solution.

3.3.1 Approximation of Vehicle Dynamics

This section shows that an aircraft flying at constant altitude can be approximated

by a point mass, moving with limited speed and acted upon by a force of limited mag-

nitude. The turning rate constraint is effected by a force magnitude limit. Consider

a point mass m traveling with speed v subject to a force of magnitude f . The instan-

taneous turning rate ω will be greatest if the force is perpendicular to the velocity,

causing the vehicle to follow a circular path. It is therefore limited by

ω ≤ f

mv
(3.1)

Furthermore, if the magnitude of the force is limited to fmax and the speed is a

constant vmax, the rate is limited throughout the problem by

ω ≤ ωmax =
fmax

mvmax
(3.2)

To rigorously constrain speed to remain at vmax would require non-convex con-

straints in the velocity plane, complicating the problem considerably. In the linear

approximation, only an upper bound is included, which can be approximated by lin-

ear constraints. In this model, it is feasible for the speed to fall below vmax, allowing

tighter turns than the bound in Eqn. 3.2. However, the optimization seeks the mini-

mum time solution, making it favorable to remain at maximum speed and obey the

specified turn rate limit.

For example, consider the situation shown in Fig. 3-2, in which an aircraft must

turn through 90o from one straight line on to another. Two of the possible paths

are shown in this figure. Following the solid line, the aircraft remains at maximum
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Figure 3-2: Feasible Cornering Paths for the Aircraft Model. Rmin is the designed
minimum radius of curvature. The dashed path is allowable within the constraints,
but will always take longer than the solid path.

speed and turns at the prescribed maximum turning rate ωmax, therefore following

the prescribed minimum radius Rmin. It is also feasible to follow the dashed path,

decelerating first, then applying the maximum force to achieve a smaller radius of

curvature, before accelerating back to maximum speed and rejoining the solid path.

Although it is allowed in the linear model, this trajectory exceeds the nominal turn-

ing rate limit. Fig. 3-3 shows the variation in total maneuver time with the rate of

turn used. This was found analytically by calculating the duration of each turn, the

necessary deceleration and acceleration periods, and the adjoining periods of maxi-

mum speed travel. The figure shows that the fastest turning maneuver is achieved

by remaining at maximum speed and obeying the nominal maximum turning rate

ωmax. Using higher turning rates leads to a slower overall maneuver, due to the ad-

ditional deceleration required. This result matches intuition, because the solid path

in Fig. 3-2 is shorter in length than the dashed path and has a higher average speed.

The optimization will return the solution following the solid line, which obeys the
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Figure 3-3: Variation of Duration with Turn Rate for the Maneuver in Fig. 3-2.

nominal turning rate limit and is therefore flyable for the real aircraft.

In conclusion, the optimization will always favor a path obeying the turn limit if

such a path is available. When avoidance constraints are added, some arrangements

of obstacles could cause the model to take a tighter turn. Therefore, it is necessary

to post-analyze each trajectory to ensure it is flyable by the real aircraft. If not, the

problem can be rerun with a lower force limit until an acceptable solution is found.

3.3.2 Dynamics Constraints

This section describes the constraints used to implement the model of aircraft dynam-

ics described in Section 3.3.1. Let there be NV aircraft, each approximated as a unit

point mass moving in 2-D free space. The position of aircraft p at time-step t is given

by (xtp, ytp) and its velocity by (ẋtp, ẏtp), forming the elements of the state vector

stp = (xtp, ytp, ẋtp, ẏtp)
T. Each aircraft is assumed to be acted upon by control forces

(fxtp, fytp) in the X- and Y -directions respectively, forming the force vector ftp. The

discretized dynamics of the point mass, for all NV vehicles at up to NT time-steps,

can be written in the linear form

∀p ∈ [1 . . .NV ] ∀t ∈ [0 . . . NT − 1]

s(t+1)p = Astp +Bftp
(3.3)
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where A and B are the discretized system matrices. In all cases, the initial conditions

are specified as

s0p = s0
p (3.4)

where s0
p is the initial state of vehicle p from the 4×NV matrix S = [s0

1 . . . s
0
NV

].

As discussed in Section 3.3.1, both the velocity of the aircraft and the force acting

upon the aircraft are subject to magnitude limits. The exact representation of these

constraints would be nonlinear, but they can be approximated by linear inequalities.

The true magnitude constraints enclose a circle on the X-Y plane, as shown in Fig. 3-

4. An arbitrary number of constraints (M) is used to approximate the circle. For

both velocity and force constraints these are given by

∀t ∈ [0 . . .NT − 1] ∀p ∈ [1 . . .NV ] ∀m ∈ [1 . . .M ]

fxtp sin
(
2πm

M

)
+ fytp cos

(
2πm

M

)
≤ fmax (3.5)

∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀m ∈ [1 . . .M ]

ẋtp sin
(
2πm

M

)
+ ẏip cos

(
2πm

M

)
≤ vmax (3.6)

The sine and cosine values are passed to the optimization as a table of constants,

and Eqs. 3.5 and 3.6 form a series of linear constraints. The feasible region formed

by ten constraints (M = 10) is shown in Fig. 3-4, forming a good approximation to

the circle. While this introduces many constraints, they only involve the continuous

variables, so the computation time is not seriously affected.

3.3.3 Avoidance Constraints

Avoidance of both obstacles and other vehicles is enforced using the constraints from

Section 2.3. They are presented here in 2-D form using the nomenclature of this

Chapter.

For any pair of vehicles p and q, let the safety distance for collision avoidance be
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Figure 3-4: Approximations to Magnitude Limits for 2-D Vectors. The circle is the
feasible region for true magnitude limits. The square and polygon are two ways of
approximating these regions with linear constraints.

denoted by r, assumed to be the same in both X and Y directions for simplicity. The

constraints for collision avoidance are

∀t ∈ [1 . . . NT ] ∀p, q | q > p

xtp − xtq ≥ r − Rctpq1

and xtq − xtp ≥ r − Rctpq2

and ytp − ytq ≥ r − Rctpq3

and ytq − ytp ≥ r − Rctpq4

and
4∑

k=1

ctpqk ≤ 3

(3.7)

where ctpqk are a set of binary variables (0 or 1) and R is a positive number that

is much larger than any position or velocity to be encountered in the problem. If

ctpqk = 0, there is at least r distance between vehicles p and q in the kth direction (of

the four directions +X, -X, +Y , -Y ) at the tth time-step. If ctpqk = 1, the constraint

is relaxed. Eqn. 3.7 becomes an additional constraint on the trajectory optimization

problem. The binaries ctpqk become decision variables for the optimization.

Obstacles, or “exclusion zones” for UAV problems, are specified in the (NZ × 4)
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matrix Z, where NZ is the number of exclusion zones in the problem. (Zj1, Zj2) is the

bottom left vertex of the jth zone and (Zj3, Zj4) is the top right vertex. The avoidance

constraints can then be written as

∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀j ∈ [1 . . . NZ ]

xtp − Zj3 ≥ −Rdtpj1

and Zj1 − xtp ≥ −Rdtpj2

and ytp − Zj4 ≥ −Rdtpj3

and Zj2 − ytp ≥ −Rdtpj4

and
4∑

k=1

dtpjk ≤ 3

(3.8)

where dtpjk are a further set of binary variables and R is the same large, positive

number used in Section 3.3.3. Once again, if dtpjk = 0, the pth vehicle is beyond the jth

exclusion zone in the kth direction (of the four directions +X, -X, +Y , -Y ) at the tth

time step. Eqn. 3.8 becomes an additional constraint on the trajectory optimization

problem. The binaries dtpjk become decision variables for the optimization.

3.3.4 Solving for the Minimum Time Trajectory

This section describes the additional constraints and the cost function used to solve

for the minimum-time solution. The optimization therefore returns the shortest flight

path, and favors the solution with the widest turns, as discussed in Section 3.3.1. A

concurrent development used a similar formulation for the off-line design of minimum-

time regulators [49]. This section will deal only with problem A, as defined in Sec-

tion 3.2, in which each vehicle has a single, pre-assigned destination. Later sections

will extend this to a more general form including waypoint assignment.

In this problem, vehicle p is required to reach its destination (xFp , yFp) at some

time-step before the maximum NT . The binary variables btp are introduced, which

have a value of 1 if the pth vehicle reaches its destination at the tth time-step, and 0
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otherwise. The necessary MILP constraints are

∀p ∈ [1 . . . NV ] ∀t ∈ [1 . . . NT ]

xtp − xFp ≤ R(1− btp)
and xtp − xFp ≥ − R(1− btp)
and ytp − yFp ≤ R(1− btp)
and ytp − yFp ≥ − R(1− btp)

(3.9)

∀p ∈ [1 . . . NV ]
NT∑
t=1

btp = 1 (3.10)

where R is the same large, positive number used in Eqn. 3.7. It can be seen that

if btp = 1, Eqn. 3.9 forces the aircraft position to equal the destination position at

time-step t. However, if btp = 0, then the constraints are inactive. Eqn. 3.10 enforces

the logic that each vehicle must reach its target at one time point, but does not

require that the vehicles finish at the same time. The minimum time solution for

each aircraft is sought by minimizing the sum of the finishing times for each vehicle

min
s,f ,b,c,d

J =
T∑

t=1

N∑
p=1

tbtp (3.11)

where b are the binary variables for finishing times in Eqn. 3.9. The binary variables

for obstacles c and for collision avoidance d are also decision variables.

The cost function in Eqn. 3.11 leads to an inefficient formulation. Since time

has been discretized, there can be multiple solutions finishing at each time-step. In

addition, the states and inputs for time-steps after the selected finishing time have

no effect on the cost. These redundancies do not change the optimal cost, but results

show that they have a dramatic impact on solution time. The strength of the branch

and bound algorithm lies in its ability to “prune” regions of the search space and avoid

working through all the integer combinations. However, the ambiguities described

mean that multiple solutions achieve the global minimum cost, and the algorithm

must find them all before terminating. This problem can be remedied by adding a
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small force penalty to the cost function

min
s,f ,b,c,d

J =
N∑

p=1

(
T∑

t=1

tbtp + ε
T−1∑
t=0

(|fxtp|+ |fytp|)
)

(3.12)

where ε is a positive number, small enough to ensure that the fuel penalty never ex-

ceeds the value of one time-step. The complete problem is then to minimize Eqn. 3.12

subject to the constraints in Eqs. 3.3–3.6, 3.9 and 3.10. With the added fuel penalty,

there is a unique optimal solution, and the algorithm performs more efficiently. Due

to the complexity of the CPLEX software, the exact cause of this improvement is

unclear, but later results will show that it has a significant effect on the solution

times.

3.3.5 Example: Single Aircraft avoiding Obstacles

The example in this section demonstrates that the linear constraints form an accept-

able approximation to aircraft dynamics. It involves a single aircraft with a fixed

destination. The dynamics were discretized with a time-step of four seconds. The

aircraft has a maximum speed of 225m/s and a maximum turn rate of 5o/s. The ini-

tial position was (−9.5, 0) with a velocity (0.22, 0). The destination was (9,−1) (all

co-ordinates in kilometers). Three obstacles blocked the route as shown in Fig. 3-5,

and the designed trajectory can be seen to successfully avoid these obstacles. The

computation time was 5.22 seconds.

Avoidance is enforced at each of the discrete time-steps, but some of the lines

joining adjacent time-steps in Fig. 3-5 would ‘cut corners’ through the zone. The

exclusion zone models must therefore be slightly larger than the real zones, to ensure

that such incursions do not encroach on the real zones.

Fig. 3-6(a) shows the speed of the aircraft along this trajectory. It remains close

to, but never exceeds, its specified maximum. Fig. 3-6(b) shows the rate of turn. The

trajectory is shown to consist of straight lines joined by turns at the maximum turn

rate. This satisfies the necessary conditions derived in [40]. Note that some of the

turns exceed the nominal turning rate by a small margin. At these times, the speed
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Figure 3-5: Designed Trajectory for Aircraft avoiding Obstacles. The star marks the
destination point.

is below the maximum, hence the faster turn rate is possible.

Further experiments have been performed to investigate the variation in compu-

tation time with particular problem instance. The single aircraft example described

in this section was repeated with 100 different, randomly chosen layouts of obstacles.

Each layout consisted of ten obstacles, each a square of side two units, placed in a

square region extending seven units in each direction from the origin. Fig. 3-7 shows a

histogram of the resulting computation times. Table 3.2 compares these results with

those for the same computations done without the force penalty. It is shown that

the inclusion of the penalty leads to faster solutions: in particular, the most difficult

problems are solved much faster, leading to a substantial decrease in the maximum

computation time.
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Table 3.2: Comparison of Collision Avoidance Formulations applied to 100 Randomly-
Generated Single Aircraft Problems

Formulation Computation Time (s)
Mean Max.

Basic 8.11 26.0
Without force penalty 14.7 78.4
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Figure 3-6: Speed and Turn Rate of Aircraft along Trajectory in Fig. 3-5
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Figure 3-7: Histogram of Computation Times for 100 Randomly-Generated Single
Aircraft Problems. The force penalty was included for these experiments.
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Figure 3-8: Designed Trajectories for Multiple Aircraft with Avoidance. The stars
mark the target positions.

3.3.6 Example: Multiple Aircraft avoiding Collision

Having verified the model in the previous section, this example applies it to a collision

avoidance problem involving multiple aircraft. Three aircraft, similar to those used in

the previous example, are required to traverse different diameters of a circle, as shown

in Fig. 3-8. Their destinations are marked by stars. The straight line paths to the

destinations would clearly lead to a collision at the center. The designed trajectories

form a ‘roundabout’ maneuver and successfully avoid collision with minimal deviation.

The square exclusion region is 2.4km across. A similar result was shown in [40],

found by an iterative process involving the necessary conditions for optimal avoidance.

This example has repeated that result by direct optimization. The trajectories also

demonstrate the cooperative nature of the solutions from this optimization method.

The heavy dots mark the positions of the aircraft at the 12th time-step. The
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Table 3.3: Comparison of Computation Time Results for Different Numbers of Vehi-
cles, solving 200 Randomly-Generated Problems for Each

Number of vehicles Computation Time (s) % solved in under 10 minutes
Median Max.

2 2.6 16.2 100
3 9.5 547.1 100
4 30.9 600.0 92
5 123.7 600.0 75
6 600.0 600.0 34

exclusion regions around these positions are shown by the dotted boxes. Observe that

the vehicles are separated by exactly the safety distance in both directions, illustrating

the efficiency of the formulation and the direct physical significance of the avoidance

distance. This contrasts with penalty methods such as potential functions [50], in

which the avoidance weighting is not as obviously related to the achieved distance

and may need tuning.

Table 3.3 and Fig. 3-9 show the variation in computation times with the number

of vehicles. For each number, 200 randomly-generated problems were solved. In each

case, the vehicles started evenly spaced on the line between (−5,−5) and (−5, 5) (all

distances in kilometers), each with velocity (220, 0) m/s. The dynamics of each vehicle

were the same as in Section 3.3.5. Their destinations were chosen randomly along

the line between (5,−8) and (5, 8), leading to various combinations of interactions

between vehicles during the maneuvers. For each problem, a computation time limit

of ten minutes was applied, after which the search was terminated and the best

available solution was returned.

In all cases, a feasible solution was found. For the cases computed in under ten

minutes, this was known to be the global optimum. The majority of cases are solved

quickly, but the median solution time grows exponentially with the number of vehicles.

Meanwhile, the proportion of problems for which the global optimum can be found

and verified in ten minutes decreases sharply with the number of vehicles.
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Figure 3-9: Variation of Computation Time with Number of Vehicles for Collision
Avoidance Problem. The plot shows the median computation time, subject to a time
limit of 600s.

3.3.7 Additional Avoidance Constraints

This section investigates potential modifications to the avoidance formulation. While

the constraints in Section 3.3.3 have been shown to effectively enforce avoidance,

there are further relationships that the solution must satisfy. These are found from

the geometry of the problem, and are implicitly enforced by the existing constraints.

For example, it is impossible to be both “left” and “right” of an obstacle at the same

time. This section investigates if the inclusion of such additional constraints improves

computation efficiency. The experiments described in Section 3.3.5 are repeated with

the modified formulations to compare the solution times.
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Making the Problem Completely Well-Posed

Bemporad and Morari [47] discuss the notion of a well-posed problem in which binary

variables are completely determined by the settings of the corresponding continuous

variables. In the collision avoidance formulation in Eqn. 3.7, this is not the case.

Consider an example in which the vehicle is both above and to the left of some

obstacle at some time-step. The binary variables 2 and 3 are not uniquely defined:

the logical constraint in the final line requires that one of them be zero, but it does not

determine which. The addition of the following constraints removes this ambiguity

making a completely well-posed problem [47].

∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀j ∈ [1 . . . NZ ]

xtp − Zj3 ≤ ε+R(1− dtpj1)

and Zj1 − xtp ≤ ε+R(1− dtpj2)

and ytp − Zj4 ≤ ε+R(1− dtpj3)

and Zj2 − ytp ≤ ε+R(1− dtpj4)

(3.13)

In the original constraints, if a binary variable was set to zero, that implied that the

vehicle was on one side of a particular line. If the variable was one, the vehicle could

have been either side of the line. These additional constraints are “complements” to

the originals and enforce the opposite implication. If the binary variable is set to one,

the vehicle is on the opposite side of the line. The margin ε is necessary to prevent

ambiguity if the vehicle is exactly on the line.

Additional Logic I

This subsection and the next describe two further observations leading to additional

constraints. First, note that least two of the constraints must be in their ‘relaxed’

state, with the binary variables equal to one. For example, it is possible to be both

to the right and above of an obstacle, but not possible to be to the right, above and
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to the left. This is captured in the following constraint

∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀j ∈ [1 . . . NZ ]

and
4∑

k=1

dtpjk ≥ 2 (3.14)

Additional Logic II

A similar idea to that in the previous subsection leads to a different constraint: it

is impossible to be simultaneously above and below a particular obstacle. Therefore,

at least one of the third and fourth constraints in Eqn. 3.7 must be in its relaxed

state, and similarly with the first and second. This is enforced by the following two

constraints. ∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀j ∈ [1 . . . NZ ]

dtpj1 + dtpj2 ≥ 1

dtpj3 + dtpj4 ≥ 1

(3.15)

Timing Results

Table 3.4 compares the timing results for the different formulations. The same 100

randomly generated problems used in Section 3.3.5 were repeated, with the modi-

fications described. The results show that each modification led to an increase in

computation time. These increases are small, suggesting that they might be due to

the overhead of handling a larger number of constraints, which were effectively re-

dundant. In conclusion, there is no computation advantage to be gained from making

the problem completely well-posed or including additional logic in the formulation.

The formulation in Section 3.3.3 efficiently captures the requirements for collision

avoidance.

3.3.8 Using a Terminal Penalty

This section demonstrates the effect of relaxing the terminal constraints. In Eqn. 3.9,

the last point of the trajectory was required to lie exactly on the destination point

of the aircraft. Since the points are selected at discrete time intervals, it might be

necessary to adjust the speed of the vehicle near the end of the trajectory to align
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Table 3.4: Comparison of Collision Avoidance Formulations on 100 Randomly-
Generated Single Aircraft Problems

Formulation Computation Time (s)
Mean Max.

Original 8.11 26.0
Completely well-posed 12.0 33.5
Additional Logic I 10.3 32.5
Additional Logic II 11.5 58.0

the discrete time point and the destination. Two such speed reductions can be seen

in Fig. 3-6(a). In this section, the terminal constraint will be relaxed such that the

final point has to be within the length flown in a time-step of the destination. The

remaining distance is penalized in the cost function.

Formulation

The terminal constraints in Eqn. 3.9 are replaced with the following constraints to

find the distance of the chosen finishing point from the destination

∀p ∈ [1 . . . NV ] ∀t ∈ [1 . . . NT ]

xtp − xFp ≤ xDp R(1− btp)
and xtp − xFp ≥ − xDp − R(1− btp)
and ytp − yFp ≤ yDp R(1− btp)
and ytp − yFp ≥ − yDp − R(1− btp)

(3.16)

where xDp is a decision variable representing the distance of the terminal point from

the destination in the X-direction. The variable yDp represents the distance in the

Y -direction. If btp = 1, the terminal point for the pth vehicle is at time-step t. The

following additional constraint forces the terminal point to be within a box of size

2+ × 2+ centered on the destination, where + is a parameter representing the length

flown in a time-step.
∀p ∈ [1 . . . NV ]

xDp ≤ +

yDp ≤ +

(3.17)
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This distance is penalized in the cost function by modifying Eqn. 3.12 as follows

min
s,f ,b,c,d

J =
N∑

p=1

(
α(xDp + yDp) +

T∑
t=1

tbtp + ε
T−1∑
t=0

(|fxtp|+ |fytp|)
)

(3.18)

where α is a weighting parameter. Since the time-step index t is used as the time

variable, the unit of time measurement in the cost is equal to the time-step for the

discretized system. Therefore, the weighting should be such that a distance equiva-

lent to one time-step of flight has a value of one unit in the cost function. This is

approximately achieved by dividing by the maximum speed, but adjustment may be

made to suit the accuracy of the one-norm measure of distance.

Example

In this example, the terminal penalty formulation is applied to the problem in Sec-

tion 3.3.5. Fig. 3-10 shows the designed trajectory, which is similar to the result from

Fig. 3-5. Note that the terminal point is close to the destination point but not exactly

on it.

Fig. 3-11 shows the speed and turn rate data, for comparison with Fig. 3-6. The

speed now remains at the maximum value throughout. As a result, the turn rate

limit is exactly obeyed. In conclusion, this formulation leads to better adherence to

the desired dynamics restrictions of constant speed and limited turn rate.
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Figure 3-10: Designed Trajectory for Aircraft avoiding Obstacles using the Terminal
Penalty. The star marks the destination point.
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Figure 3-11: Speed and Turn Rate of Aircraft along Trajectory in Fig. 3-10
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3.4 Combined Assignment and Path-Planning

In this section, the constraints and cost function from Section 3.3 are extended to

include multiple waypoint assignment. Instead of each vehicle having a single, fixed

destination, a number of waypoints are specified in the problem. There can be more

waypoints than vehicles, and the ordering of the visits need not be specified. The

assignment of waypoints to vehicles, and the order in which the points are visited,

are determined within the optimization. The assignment can be performed in two

ways. The first, corresponding to problem B in Section 3.2, seeks the minimum overall

mission time subject to capability and timing constraints. The second, corresponding

to problem C, aims to maximize a ‘score’, including variable rewards for waypoints

and penalties for entering certain zones.

3.4.1 Assignment for Minimum Mission Time

Capability constraints are included such that certain waypoints must be visited by

certain vehicles. Also, time dependencies can be included to force specified waypoints

to be visited before others.

Waypoint positions are specified in the NW × 2 matrix W where (Wi1,Wi2) is the

position of the ith waypoint and the total number of waypoints is NW . The set of

constraints to detect if a vehicle visits a waypoint can be written as

∀p ∈ [1 . . .NV ] ∀t ∈ [1 . . . NT ] ∀i ∈ [1 . . . NW ]

xtp −Wi1 ≤ R(1− bipt)

and xtp −Wi1 ≥ − R(1− bipt)

and ytp −Wi2 ≤ R(1− bipt)

and ytp −Wi2 ≥ − R(1− bipt)

(3.19)

where bipt is a binary decision variable and R is the same large, positive number used

in Eqn. 3.7. This equation is a generalized form of Eqn. 3.9, allowing all vehicles to

visit all waypoints. It can be seen that bipt = 1 implies that vehicle p visits waypoint

i at time-step t. This binary variable can then be used in logical constraints for the
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assignment. Note that this formulation could easily be relaxed so that a vehicle ‘visits’

a waypoint if it passes within a specified distance of that point, using a formulation

similar to that in Section 3.3.8.

Vehicle capabilities are specified in the matrix K, in which Kpi = 1 if vehicle p

can visit the ith waypoint, and 0 otherwise. The matrix K has size NV × NW . The

following constraint enforces that each waypoint is visited exactly once by a vehicle

with suitable capabilities.

∀i ∈ [1 . . .NW ]
NT∑
t=1

NV∑
p=1

Kpibipt = 1 (3.20)

Time dependencies, forcing one waypoint to be visited after another, separated

by some interval, are included in the matrix ∆. Each row of the matrix represents

a time dependency and it has a column for each waypoint. Thus if there are ND

time dependencies, the matrix is ND × NW . A dependency is encoded by −1 in the

column corresponding to the first waypoint and +1 in the column for the second. The

corresponding element in the vector tD is the interval between the two visits. The

constraints are then written as

∀k ∈ [1 . . .ND]
NW∑
i=1

∆ki

NT∑
t=1

NV∑
p=1

t bipt ≥ tDk
(3.21)

in which the summations
NT∑
t=1

NV∑
p=1

t bipt extract the time of visit for the ith waypoint.

Note that time is measured in units of time-steps, since the index t is used as the

measure of time at each step.

A modified cost function is required for the assignment formulation. The primary

aim is to minimize the mission completion time. Small penalty weightings are included

to help the numerical conditioning and accelerate the solution process. The first step

is to extract the flight completion time tp for the pth vehicle, which is the time at
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which it visits its last waypoint

∀p ∈ [1 . . . NV ] ∀i ∈ [1 . . .NW ] tp ≥
NT∑
t=1

t bipt (3.22)

A similar set of constraints finds the overall mission completion time t̄

∀p ∈ [1 . . .NV ] t̄ ≥ tp (3.23)

The complete cost function is then

min
s,f ,b,c,d

J = t̄+ ε1

NV∑
p=1

[tp + ε2

NT−1∑
t=0

(|fxtp |+ |fytp|)] (3.24)

where the decision variables are the forces f (which determine the state vectors s), and

the binary variables b, c and d, for waypoint visit, collision avoidance and exclusion

zone logic, respectively.

The weighting factors ε1 and ε2 are small positive numbers and are included to

help the solution process. Their purpose is the same as that of the force penalty

introduced in Section 3.3.4. The first weighting ensures that the minimum time path

is chosen for all aircraft. If it were omitted, only the aircraft that finished last would

be explicitly minimized, and those finishing earlier could select multiple paths without

affecting the cost. The force weighting was discussed in Section 3.3.4. Together, the

weightings force the problem to have a unique solution. Experience has shown that

this greatly reduces the computation time.

3.4.2 Example: Assignment for Minimum Mission Time

This section shows a series of very simple examples demonstrating the effect of the

assignment logic constraints, as developed in Section 3.4.1, including heterogenous

vehicle capabilities and time dependencies. Obstacle avoidance is included where

necessary, but collision avoidance constraints have been omitted for simplicity. The

objective in these examples is to minimize the mission completion time.

90



Fig. 3-12(a) shows the designed trajectories for two vehicles visiting four way-

points. Both vehicles have the capability to visit all the waypoints, so every entry

of the capability matrix is 1. There are no timing dependencies. As expected, each

vehicle travels in a nearly straight path to the two nearest waypoints.

In Fig. 3-12(b), the scenario has been changed by removing the capability of

vehicle 1 to perform the task at waypoint B, as it does in the solution of the first

problem. Vehicle 2 is now the only vehicle with that capability, so it is required to

visit point B. It would be feasible for vehicle 2 to follow the same trajectory as in

the previous example, then visit point B at the end. However, by assigning vehicle 1

to point D, vehicle 2 can proceed straight from C to B, leading to an earlier mission

completion.

Note that, in the plan shown in Fig. 3-12(b), vehicle 1 visits point A then point

D. However, for the third problem, a timing constraint was added such that point D

must be visited before point A. Clearly the previous trajectory is no longer feasible.

In the optimal solution shown in Fig. 3-12(c), vehicle 2 goes almost directly to point

D. Point C is on the way so it is visited in passing. Vehicle 1 moves slowly in order

to arrive at point A just after vehicle 2 arrives at D. Finally, vehicle 2 is still required

to visit point B due to the lack of capability of vehicle 1.

In the final variation on this problem, an obstacle is added to block the path

from C to D taken by vehicle 2 in the previous design. Fig. 3-12(d) shows the new

assignment and trajectories. It is still necessary that vehicle 2 visits point B, due to

the lack of capability of vehicle 1, and that point D must be visited before point A.

Therefore, vehicle 1 is sent directly to point D, while point A is visited by vehicle 2

on its way from C to B.

It can be seen that the design in each case satisfies the mission requirements,

validating the formulation of the assignment constraints. The examples also demon-

strate the complexity of the problem at hand: small changes in capability, timing

constraints or obstacles can lead to completely different vehicle assignments, and a

wide selection of permutations are used in even this simple example.
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Figure 3-12: UAV Assignment Examples: (a) both vehicles have full capabilities; (b)
as (a) but vehicle 1 cannot visit waypoint B; (c) as (b) but waypoint D must be
visited before A; (d) obstacle added

3.4.3 Assignment for Maximum Score

In all the formulations shown so far, the primary objective has been to minimize

flight time. In problems involving assignment of heterogenous UAVs to targets, there

may be further considerations. In this section, the formulation will be modified to

replace capabilities with scores for each vehicle-waypoint assignment. These scores

may represent target values and probabilities of success for different vehicles. In

addition, the exclusion zone formulation will be modified such that vehicles can enter

exclusion zones, subject to penalties. These represent the risk to each vehicle of
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entering that region.

To include the scores for waypoint visits, a new variable V̄ is introduced as the total

score achieved. The following two constraints replace the capability-based constraint

in Eqn. 3.20.

V̄ =
NW∑
i=1

NT∑
t=1

NV∑
p=1

Vpibipt (3.25)

∀i ∈ [1 . . .NW ]
NT∑
t=1

NV∑
p=1

bipt ≤ 1 (3.26)

where the parameter Vpi is the score achieved if the pth vehicle visits the ith waypoint.

Eqn 3.26 prevents a waypoint being visited more than once, but allows waypoints to

be neglected if their value is deemed insufficient.

The obstacle penalties are implemented by replacing the last line of Eqn. 3.8 with

the following
∀t ∈ [1 . . .NT ] ∀p ∈ [1 . . . NV ] ∀j ∈ [1 . . . NZ ]

4∑
k=1

dtpjk ≤ 3 + gpj
(3.27)

If the additional binary variable gpj = 0, the constraints are the same as Eqn. 3.8 and

the vehicle cannot enter the zone. If gpj = 1, all four of the conditions in Eqn. 3.8

can be in the relaxed state and the vehicle can enter the zone. These incursions are

penalized to form the total penalty

P̄ =
NZ∑
j=1

NV∑
p=1

Ppjgpj (3.28)

where Ppj is the penalty incurred if the pth vehicle enters the jth zone. Finally, the

cost function from Eqn. 3.24 is modified to include the new variables and penalties.

min
s,f ,b,c,d,g

J = P̄ − V̄ +
NV∑
p=1

[tp + ε2

NT −1∑
t=0

(|fxtp |+ |fytp |)] (3.29)

The individual finishing times are still penalized, now with unit weighting. This

means that the penalties and scores are in units equivalent to the cost of one time-

step of flight. The small weighting on force inputs is still necessary for the solver to
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work efficiently.

3.4.4 Example: Assignment for Maximum Score

The examples in this section demonstrate the use of scores for waypoint visits and

penalties for exclusion zone incursions, implemented as described in Section 3.4.3. All

three examples involve a single aircraft, with identical dynamics in each case. There

are two exclusion zones and two waypoints. Only the exclusion zone penalties and

waypoint scores are varied from case to case.

For the case in Fig. 3-13(a), the score for visiting each waypoint was 50. The

penalty for the inner exclusion zone was 75 and for the outer zone 25. The vehicle

remains outside both zones and visits only the waypoint on the right. In the case in

Fig. 3-13(b), the penalty for the outer zone was reduced to 2. This was smaller than

the additional cost to go around, so the vehicle enters the outer zone. It is still not

worth entering the inner zone to visit the waypoint inside. Finally, in Fig. 3-13(c),

the score for the waypoint inside the exclusion zones was increased to 100. This is

now greater than the penalty for entering the exclusion zones, so the vehicle visits

both waypoints and goes through both zones.

These examples have demonstrated that the formulation with scores and penal-

ties performs as expected. The simplicity of these examples is intended to allow the

solutions to be predicted by intuition and compared with the results by optimiza-

tion. While more complicated examples can be solved, the arbitrary nature of the

weightings makes the results difficult to predict.
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Figure 3-13: Examples of Assignment using Scores and Penalties
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Table 3.5: Vehicle Capabilities in UAV Example

Waypoint Vehicle
1 2 3

A X X
B X X X
C X X
D X X

Table 3.6: Vehicle-Waypoint Scores in UAV Example

Waypoint Vehicle
1 2 3

A 50 50
B 10 10 10
C 50 50
D 50 50

3.4.5 Example: UAV Problem

This section demonstrates the application of both assignment methods to a more

complicated problem. It involves a fleet of three UAVs, required to visit four way-

points. It was first solved for the minimum mission time, with the vehicle capabilities

shown in Table 3.5. There are no time dependencies. Fig. 3-14 shows the designed

trajectories, found in just over eight minutes of computation. The total mission time

for the designed solution is 23 time-steps (in this case, each step is four units: the

scaling of this problem is arbitrary).

Fig. 3-15 shows the solution to a similar problem involving scores and penalties.

Waypoint scores are shown in Table 3.6. The exclusion zone on the right has a penalty

of 100, representing a mountain, while that on the left has a penalty of only 2. The

optimization has found that it is not worth sending a vehicle to waypoint B, since

its value is less than the cost for any vehicle to reach it, nor is it worth assigning

vehicle 3 to any flight. Also, vehicle 2 flies through a penalty zone, since the penalty

for entering is less than the flight time to go around.
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Figure 3-14: Solution of the UAV Example Problem for Minimum Mission Time
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Figure 3-15: Solution of the UAV Example Problem for Maximum Score
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3.5 Summary

This Chapter has shown that the MILP approach can be applied to problems in-

volving aircraft. An approximate model allows aircraft dynamics to be included as

linear constraints. A penalty is included to ensure that the optimization has a unique

solution. This has been shown to improve solution time substantially. Furthermore, a

single MILP can be used to solve the combined assignment and path-planning prob-

lems, capturing the inherent coupling between these. Assignment can be performed

for minimum mission time or for an abstract ‘score’, and can include heterogenous

vehicle capabilities and timing constraints.

The most general form of the minimum-time problem, that including waypoint

assignment, is the minimization of the cost function in Eqn. 3.24 subject to the

constraints in Eqs. 3.3–3.8, 3.19, 3.20, 3.22 and 3.23. Table 3.1 shows the list of

parameters that completely specify the problem.

Note that the problem of a single, fixed destination for each vehicle is a special

case of this formulation. In this case, the pth waypoint should be the destination of

the pth vehicle and the capability matrix should be an identity I(NW ×NW ). Then each

vehicle is required to visit its specified destination alone.

The problem with scores and penalties is solved with the cost function in Eqn. 3.29

subject to the constraints in Eqs. 3.3–3.7, 3.27, 3.28, 3.19, 3.25, and 3.26. Table 3.1

shows additional parameters for this problem.

The experimental results in this Chapter have shown that problems involving small

numbers of vehicles and obstacles can be solved using a single MILP. Larger problems

can lead to prohibitive computation times. Other research [52] suggests that effective

approximations may exist for rapidly solving problems of this type, including many

more vehicles and waypoints. The importance of this method is that it is guaranteed

to find the globally optimal solution, since MILP problems are immune to issues of

local minima. Therefore, it may be used as a “benchmark” against which approximate

methods are evaluated for performance.
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Chapter 4

Model Predictive Control

Chapter 2 showed the use of MILP to design spacecraft trajectories. The problems all

involved solving single optimizations off-line to generate complete trajectories. This is

an “open-loop” technique that cannot accommodate any uncertainty in the model or

environment. In this chapter, the same optimizations are incorporated in a real-time

scheme, solved on-line to compensate for the effect of uncertainty as the maneuver

progresses.

The MILP optimizations are embedded in Model Predictive Control (MPC) [60].

This is a feedback scheme in which an optimization is solved online at each time-

step. This optimization predicts the future behavior up to some horizon in time,

using a model of the system dynamics, and designs the trajectory to minimize some

cost functional over that period. It is also sometimes known as “receding horizon

control” due to the way the prediction horizon ‘recedes’ ahead of the current time.

Having found the optimal control series, only the first step is implemented, and the

optimization is repeated for the new initial conditions.

This chapter will demonstrate MPC for spacecraft avoidance maneuvers using the

MILP formulations from Chapter 2. Existing theoretical results are invoked to prove

nominal stability of the resulting control scheme. Examples are used to show other

aspects of MPC behavior, such as robustness and transients. This is not intended

to be a through examination of these topics, rather a demonstration of the concepts.

Related work by Bellingham [52] involves the application of the optimizations from
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Chapter 3 to receding horizon control of aircraft.

Nomenclature: the nomenclature from Section 2.1 is also used in this Chapter.

4.1 Stable MPC for Spacecraft with Avoidance

This section shows the applicability of MPC to spacecraft maneuvers. Section 4.1.1

describes the MPC method, as it would be applied to spacecraft problems. Sec-

tion 4.1.2 proves its stability using existing results. Section 4.1.3 demonstrates its

application to the ISS rendezvous example.

4.1.1 MPC Overview

The MPC algorithm to be employed is as follows:

1. Solve a trajectory optimization using a formulation from Chapter 2, starting at

current time t and current state x, and finishing at target equilibrium state xeq

at time t + H . The prediction horizon is H (the terminal point is always H

steps ahead, hence “receding horizon”).

2. Implement the first step of the control sequence found by the optimization.

3. Repeat

The requirement that the final point be an equilibrium is necessary for stability.

By implication, the horizon length must be at least long enough to complete the

problem. This contrasts with other forms of MPC [52] in which only part of the

trajectory is planned in detail, and a terminal cost is employed to represent the

remainder of the problem. However, spacecraft applications are typically confined to

proximity operations, and the requirement is therefore not overly restrictive in this

case.
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4.1.2 Stability of MPC

Bemporad and Morari [47] have shown that a general MILP optimization applied in

an MPC framework is stable, subject to certain requirements being met. Let the

system dynamics be denoted by

x(t+ 1) = f (x(t),u(t)) (4.1)

where t is the integer time-step index. Let (xeq,ueq) be an equilibrium pair such that

f(xeq,ueq) = xeq. This is the point about which the system is to be stabilized. At

each time-step, an optimization is solved for the control and state sequences u(·) and
x(·) as follows

V (t|t+H) = min
x,u

t+H∑
τ=t

+(x(τ)− xeq,u(τ)− ueq) (4.2)

where V (t|t+H) is the minimum cost starting from time t to complete the problem

at time t+H , and +(·) is a positive definite value function of both its arguments. The

optimization is solved subject to the following constraints

x(τ + 1) = f (x(τ),u(τ)) ∀τ ∈ (t . . . t+H − 1) (4.3)

[x,u](τ) ∈ A ∀τ ∈ (t . . . t+H) (4.4)

x(t+H) = xeq (4.5)

u(t+H) = ueq (4.6)

where A is the admissible set of states and controls. In our case, this set constraint

includes the impingement and avoidance constraints. The first constraint ensures the

dynamics model is satisfied and the final two constraints fix the horizon point at the

target equilibrium.

Having implemented the first step of the control found from solving Eqn. 4.2, and

assuming that the system obeys its dynamics model, it would then be feasible to

complete the problem by implementing the rest of the control sequence, finishing at
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the end of the previous horizon. The minimum cost to complete this maneuver would

be

V (t+ 1|t+H) = V (t|t+H)− +(x(t)− xeq,u(t)− ueq) (4.7)

since the cost would be the same as found at the previous step, less that due to the

step already performed. The next optimization starts from time t + 1 and has an

additional step, ending at time t + 1 + H . A feasible solution to this optimization

would be to reach the target equilibrium at t + H , using the rest of the control

sequence from the previous step and incurring the cost from Eqn. 4.7. For the last

step, up to t + 1 +H , the system remains at the target, incurring no cost since +(·)
is positive definite. This solution gives an upper bound for the second optimization

cost

V (t+ 1|t+H + 1) ≤ V (t+ 1|t+H) (4.8)

Combining this result with Eqn. 4.7 shows that the successive optimization cost results

must be monotonically decreasing.

V (t+ 1|t+H + 1)− V (t|t+H) ≤ −+(x(t)− xeq,u(t)− ueq) (4.9)

Since V is a positive function and monotonically decreasing over time, it must even-

tually converge to a constant value, hence

+(x(t)− xeq,u(t)− ueq)
t→∞−→ 0 (4.10)

and since +(·) is required to be positive definite, this implies the asymptotic stability

result

x(t)
t→∞−→ xeq

u(t)
t→∞−→ ueq

(4.11)

Two major differences exist between the optimizations solved in the Chapter 2

and the form presented in Eqs. 4.2–4.6. The first is the constraint in Eqs. 4.5 and 4.6

that the target point be an equilibrium for the system. In the examples that follow,

the target points have been chosen to be equilibria, but this may be restrictive for

102



future problems, and will be the subject of further research. This is just one form

of the proof of MPC stability, and others [61] involve more general forms of terminal

constraints.

The second difference is that the optimizations performed so far have only pe-

nalized fuel. In the context of the proof above, this implies that the value function

+(·) is only positive definite for the control, and that the result in Eqn. 4.10 implies

only that u(t) → 0. Thus, the stability guarantee is violated only if there exists

some invariant trajectory, other than the target itself, in which u(t) = 0 everywhere.

Once the system reached such a trajectory, +(·) would converge to zero and no further

control would ever be implemented. Invariant trajectories in the relative spacecraft

problem are closed-form ellipses and in-track separations [15]. Starting from an in-

track separation, the solution will always involve firing on the first time-step. From a

closed-form ellipse, it will involve firing at some point on the ellipse to move off it. As

the spacecraft moves around the ellipse, it will eventually reach a point from which

the optimal plan involves firing on the next time-step, and therefore a control will

be implemented to leave the ellipse. Minimum-fuel optimization will therefore lead

to stable operation for spacecraft dynamics. However, for a more general solution to

this issue, a small state penalty could be added. The use of such penalties is also

desirable for maneuver timing, and is discussed further in Section 4.2.

In conclusion, this section has shown that using the optimizations from the pre-

vious chapter in an MPC framework will give asymptotic stability, provided the ter-

minal point is an equilibrium. This result has not explicitly addressed the issue of

uncertainty. The stability rests on the satisfaction of Eqn. 4.9, showing that the op-

timization cost is monotonically decreasing. This is guaranteed for the nominal case,

and we expect the system to remain stable when subjected to bounded disturbances,

sufficiently small such that the decrescent property of the cost is maintained.

4.1.3 Demonstration for ISS Rendezvous

Fig. 4-1 shows the ISS rendezvous maneuver performed by MPC with a horizon of

30 time-steps. The simulation model included an in-track drag force of 10−5 N and

103



Figure 4-1: ISS Rendezvous using MPC

Gaussian white noise on each of the state measurements, with covariance 0.02 m on

each position state and 5 × 10−5 m/s on each velocity component. The prediction

model did not include either of these effects. The same maneuver was considered in

Section 2.5.5. Fig. 2-14 shows the designed trajectory from an open-loop planner,

without the disturbances.

Fig. 4-2(a) shows a close-up of the final position when open-loop control is used in

the presence of disturbances. Having solved a single optimization at the starting point,

the entire sequence of control inputs is implemented. There is no compensation for the

unmodeled effects, and the spacecraft does not reach the target. In contrast, Fig. 4-

2(b) shows the final position under MPC. As expected, the inclusion of feedback has

allowed the controller to compensate for the disturbances and the spacecraft reaches

its target. This result demonstrates the key benefit of MPC: its ability to perform in

the presence of uncertainty, making it suitable for real-world applications.
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(a) Open loop (b) MPC

Figure 4-2: Comparison of final positions under open loop planning and MPC with
small disturbance

Fig. 4-3 shows the computation times for the optimizations at each step of the

MPC simulation. All optimizations were completed in under ten seconds, much less

than the 90 second time-step of the discrete system. The sudden increase in solution

times for optimizations after the 30th time-step is due to a change in the formulation

used. Initially, when the spacecraft is far from the station, the plan is predicted to

have the “bang-off-bang” firing profile, and the iterative method from Section 2.5.2

is used. When the spacecraft is very close to the station, this prediction is no longer

valid. Therefore, the algorithm switches to the fully constrained plume impingement

optimization when a certain distance threshold is crossed. This is a heuristic method

and the threshold is currently chosen arbitrarily. In experiments using the interative

scheme throughout, the computations at the end of the maneuver were very slow.

Similarly, solving the fully-constrained problem from the beginning gave slow solution

times at the start. A further development for computation is shown in Section 4.4.

Fig. 4-4 shows the optimization costs returned at each time-step. As predicted

analytically in Eqn. 4.9, it is monotonically decreasing. Fig. 4-5 shows the position

time histories throughout the maneuver. Although the planning horizon was 30 time-

steps, it took approximately 50 time-steps to complete the maneuver. This shows that
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Figure 4-3: Optimization Solution Times for MPC

the optimization found a new solution, part way through executing the maneuver,

requiring less fuel but taking longer to reach the target. The fuel use for the MPC

maneuver was 22% lower than for the equivalent fixed horizon maneuver taking 30

time-steps. Section 4.2 discusses the issue of maneuver duration in greater detail.

Also, comparison of Figures 4-2(a) and 4-2(b) shows that the new approach strategy

passes much closer to the station than the original plan, making its final approach

to fire away from the wall instead of along it. The smaller margin for error raises

questions of robustness, discussed in Section 4.3.
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Figure 4-4: Optimization Cost Results under MPC
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Figure 4-5: Position Time Histories under MPC
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4.2 Maneuver Timing in MPC

In Section 4.1.2, it was argued that penalizing state errors in the cost function was

not essential for asymptotic stability. However, this section shows an example of the

effect that such weightings can have on the transient behavior of the system under

MPC. This is of primary interest in maneuvering problems. The example in this

section involves a 2-D rendezvous maneuver as seen in Section 2.4.3. A vehicle moves

in 2-D free-space and is required to stop at the target marked by × without impinging

upon the obstacle. MPC with a horizon of 30 time-steps was used.

Fig. 4-6 compares the trajectories and position time-histories for two different

levels of state error weighting. For the case in Fig. 4-6(a), the state error was not

penalized, and the vehicle does not reach the target in 50 seconds. Fig. 4-6(c) shows

that the vehicle position tends exponentially to the target but never actually gets

there. Since the system dynamics are those of a point mass in free space, momentum

is conserved, and the fuel use to decelerate while approaching the target is indepen-

dent of the time taken. This is the equivalent of a singular arc [37] in classical optimal

control, since the optimization does not uniquely define the control. In this case, the

optimization algorithm returns the slowest possible solution, and the vehicle deceler-

ates at every step, always planning to reach the target at the very end of the horizon.

In Fig. 4-6(b), the one-norm of the state error at each step was penalized with a

weighting of magnitude 10−4. The vehicle now reaches the target. The singularity

is removed, as the optimization now favors an early completion time in the absence

of a decision on fuel use alone. Fig. 4-6(d) shows that the maneuver is completed

in 30 steps, equal to the horizon length. However, the low weighting of the state

error means that the final fuel cost is close to the minimum fuel use for a maneuver

duration equal to the horizon length. In conclusion, the addition of a small state error

penalty in the cost function helps convergence, particularly for momentum-conserving

dynamics, with little impact on performance.
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(a) Trajectory without state penalty (b) Trajectory with state penalty
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(c) Position history without state penalty
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(d) Position history with state penalty

Figure 4-6: State histories for 2-D Vehicles with Different State Error Weightings

4.3 Including Soft Constraints for Robustness

Section 4.1.3 showed by experiment that small disturbances can be accommodated

by MPC. However, the proof of stability in Section 4.1.2 assumed that the system

behaved exactly as predicted by the model and did not explicitly address robustness.

Furthermore, the disturbances used in the previous section were artificially small.

Recent research involving differential GPS for spacecraft [6] has achieved accuracy on

the order of centimeters for position and millimeters per second for velocity. When

these levels of uncertainty are included in the simulation from the Section 4.1.3, the

spacecraft can reach states from which the optimization cannot be solved, no control
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can be found and, at worst, the spacecraft hits the station. Theoretical results exist

concerning MPC robustness [62], and future research will investigate their application

to avoidance problems. This section demonstrates a heuristic technique for improving

robustness.

In Fig. 4-2(b), the spacecraft moves very close to the station during its final

approach. Instinctively, this is bad from a robustness perspective. It occurs in part

due to the longer time available for the MPC maneuver: as the spacecraft approaches

the station, it is able to find plans using all the available time and maneuvering space.

We therefore include a soft constraint to encode the requirement that the spacecraft

should not enter a certain region around the station unless absolutely essential. Soft

constraints are often used to ensure feasibility of the optimization [60]. A similar

formulation has been discussed as a way of embedding heuristics, such that a certain

value is placed on obeying a constraint if possible [47]. It was also used for the

inclusion of penalty zones in Section 3.4.3. In this case, additional ‘softened’ obstacle

constraints are added.

∀p, ∀l, ∀i ∈ [1 . . . T − 1] : xipn ≥ Ûln −Mâipln ∀n
and xipn ≤ L̂ln +Mâipl(n+N) ∀n
and

2N∑
k=1

âiplk ≤ 2N − 1 + s

(4.12)

These are modified versions of the original obstacle constraints in Eqn. 2.12. An

enlarged set of obstacles are specified in L̂ and Û. A new set of binary variables â

are used. The crucial modification is the addition of the binary variable s to the last

line. If s = 0, these constraints are the same as those in Eqn. 2.12 and the spacecraft

remains outside the enlarged obstacles. If s = 1, the logical constraint in the last

line allows all of the other constraints to be relaxed, therefore allowing the vehicle to

enter the obstacle. Finally, the cost function from Eqn 2.7 is augmented by a penalty

for entering these regions.

J =
T−1∑
i=0

V∑
p=1

N∑
n=1

|uipn|+ Cs (4.13)
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(a) Without soft constraints (b) With soft constraints

Figure 4-7: Final Stages of Maneuvers Subject to Large Disturbance, With and With-
out Soft Constraints

where C is a positive number, larger than the maximum fuel cost that will ever be

incurred. Therefore, any feasible solution remaining outside the soft obstacles will be

favorable to a solution entering them, and the trajectory design remains outside the

soft obstacles unless absolutely necessary for a feasible solution.

Fig. 4-7 shows the effect of including soft constraints on a problem subject to

large disturbances. The velocity noise was increased to 1 mm/s and position noise to

5 cm. Fig. 4-7(a) shows the trajectory followed under MPC without soft constraints.

The optimization becomes infeasible and the spacecraft hits the station. Fig. 4-

7(b) shows the trajectory followed using MPC with soft constraints 2 m beyond the

station in all directions. The spacecraft remains much further from the station and

the optimization is feasible throughout.

4.4 LP Presolve for MPC

This section describes the inclusion of a “presolve,” in which a linear program (LP) is

solved before each MILP. In the example of Section 4.1.3, all the problems were solved

in under ten seconds, shown in Fig. 4-3. The time-step for the discretized system was

90 seconds, so the solution time seems satisfactory for real-time operation. However,

the upper bound on the computation time of the NP-hard MILP is much higher,
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so there is no absolute guarantee that the problem will be solved in the available

time. The LP presolve guarantees the availability of a solution in a short, bounded

computation time. The LP is solved by the simplex algorithm, which has been proven

to solve in polynomial time [67]. Should the MILP fail to find a satisfactory solution

before the control is required, the LP solution can be used in its place, without loss

of stability.

4.4.1 Presolve Formulation

The LP presolve is identical to the full MILP except for one key aspect. The MILP

solves for the binary variables as decision variables. The presolve takes the binary

variables as fixed parameters, chosen outside the optimization, and solves for the

continuous variables only. The binary settings satisfy two important constraints.

The first is that the continuation of the plan from the previous solution must be a

feasible solution to the LP presolve. This satisfies the requirement of the stability

proof in Section 4.1.2: the new cost should be no greater than the cost to complete

the problem using the previous plan. The use of the LP solution for the control then

leads to stable operation. The second constraint is that the binary settings satisfy

the logical constraints to prevent collision and plume impingement. This ensures that

the solution of the presolve will not violate the avoidance constraints.

The binary variables are not uniquely determined by the constraints established

above. Consider the scenario in Fig. 4-8, in which binary variables are to be deter-

mined to prevent impingement by a plume, marked by the dashed rectangle, at a

particular time-step. At the corresponding step in the previous solution, the vehicle

is at position (xi, yi) and is not firing in the direction shown. Therefore, three possible

constraints are considered, each enforced by setting a particular binary variable to

zero in the full plume constraints (Eqn. 2.17):

1. constrain the vehicle to remain to the right of line A–A

2. constrain the vehicle to remain below line B–B

3. prevent the vehicle from firing in the direction shown
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Figure 4-8: Example Scenario for Presolve

Each of these constraints is satisfied by the existing solution and each would prevent

impingement, so the inclusion of any one of them would ensure stable, impingement-

free operation. A position constraint is always preferable to a firing constraint, since

prevention of firing reduces the ability of the presolve to compensate for unmodeled

effects. An algorithm has been implemented to select the settings according to this

preference. If a position constraint can be used to prevent impingement, it is enforced,

otherwise firing is prevented. If multiple position constraints can be used, the one

that is ‘least active’ is enforced. For example, constraint 2 would be used for the

scenario in Fig. 4-8, as the vehicle is further from line B–B than from line A–A.

4.4.2 Example: ISS Rendezvous with Presolve

This technique has been applied to the example of the ISS rendezvous shown in Fig. 4-

1. The results are shown in Fig. 4-9. Figs. 4-9(a) and 4-9(b) compare the solution

times of the full MILP optimization and the LP presolve respectively. The presolve

is solved in less than a second at every step. Figs. 4-9(c) and 4-9(d) compare the cost

results from the two optimizations. At every step, the presolve is able to reproduce
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the performance of the full MILP. This exact match of cost results is not seen for all

starting points, but observations show that the LP presolve cost is usually no more

than 5% higher than the full MILP cost.

Note that the LP presolve was able to find the change in planned final approach

direction that occurred during this maneuver. The initial plan involves approaching

the target in a direction parallel to the station wall, as seen in Fig. 4-2(a). The final

approach followed under MPC is away from the station, as in Fig. 4-2(b). The algo-

rithm for selecting the binary settings was designed to give maximum firing flexibility

in the presolve problem. While the initial plan did not involve firing away from the

station at the final step, it would still have been possible to do so without impinging.

By allowing this possibility in its constraints, the presolve was able to find the revised

approach plan when it became optimal for the time available. This demonstrates that

the selection of binary settings, particularly when they are not uniquely determined

by the previous solution, has a strong impact on the performance of the controller.

These results suggest the possibility of the application of MPC in real time with

reduced computing resources. It would be possible to dispense with the MILP op-

timization at each step and solve only the LP presolve: the binary settings are de-

termined from the state and control histories, not the actual binary variables from

the previous plan. As long as the previous plan satisfies the avoidance constraints,

feasible binary settings can be found for the next presolve. In the example in Fig. 4-9,

proceeding with the LP solution alone would give the same trajectory and fuel use as

using the full MILP solution. It would still be necessary to solve the MILP for the

first step, but this could be done off-line before starting the maneuver.
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Figure 4-9: Solution Times and Costs for On-Line Optimizations
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4.5 Summary

This chapter has demonstrated the potential of MPC for application to real-time

spacecraft control subject to avoidance constraints. By repeatedly solving a MILP

trajectory optimization from Chapter 2, provably-stable control is achieved, able to

compensate for unmodeled effects. State penalty weightings are used to help con-

vergence to the target, and soft constraints can be added to ensure feasibility, and

corresponding robustness, in the presence of realistic disturbances and noise. All of

the approximation techniques developed in Section 2.5 can be employed to accelerate

the MILP solution process such that it can be employed in real-time. A LP presolve

can also be performed, providing a back-up plan to guarantee stability given the finite

computation time available.
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Chapter 5

Conclusion

5.1 Discussion

This thesis has demonstrated the potential of solving a variety of trajectory optimiza-

tion problems using Mixed-Integer Linear Programming (MILP). The problems all

have the common feature of non-convexity, arising either from avoidance constraints

in the operating space, or from the inclusion of target assignment in the problem. This

non-convexity is represented by integer variables in a linear optimization (a MILP),

which is consequently solved using powerful, commercial software.

The technique has been applied to problems involving spacecraft and aircraft.

Spacecraft problems involving proximity operations, such as formation flying and

rendezvous, have been shown to be well-suited to solution by this approach. Aircraft

problems involving fleets of autonomous UAVs are readily solved using MILP, which

can capture the inherent coupling between path-planning and assignment that makes

these problems so difficult.

The MILP approach is limited by its computational complexity. Like the original

path-planning problems, their representations in MILP form are NP-hard. While

the linearity of the problem enables globally optimal solutions to be found in many

instances, the general problem remains an intensive, centralized computation. Tech-

niques have been presented to improve the efficiency of the computation, and solution

times have been presented to evaluate the limits of the current method. It performs
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well for problems of limited size: problems involving up to five vehicles or ten obstacles

have been shown to solve in practical times.

An extension to the use of MILP for trajectory design is its incorporation in Model

Predictive Control (MPC). In this scheme, a trajectory design optimization is solved

on-line at each execution step. This technique has been demonstrated to have the

benefits of feedback control, compensating for uncertainty, for maneuvering problems

involving avoidance constraints.

5.2 Contributions

The following list summarizes the novel contributions in this thesis.

◦ Extension of the avoidance formulation to include plume impingement con-

straints for spacecraft (Section 2.4)

◦ Development of techniques for accelerating solution times, including an iterative

technique and time-step grouping (Section 2.5)

◦ Development of an approximate model of aircraft dynamics, extending the

MILP approach to aircraft problems (Section 3.3)

◦ Inclusion of a general form of vehicle assignment, including timing constraints

and heterogenous vehicle capabilities, tailoring MILP for UAV co-ordination

problems (Section 3.4)

◦ Demonstration of the use of MILP in an MPC scheme, offering compensation

for uncertainty in real-time, with provable stability (Chapter 4)

5.3 Recommendations for Future Work

Future work divides into two distinct areas: the “full-horizon” problem and MPC.

The “full-horizon” category includes extensions to the work in both Chapters 2 and 3,

since there is considerable cross-over between the spacecraft and aircraft problems in

this form.
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5.3.1 Future Work for Full-Horizon MILP

Developments in this area should begin with the pursuit of faster solutions to the

problems. The iterative scheme for plume impingement avoidance has been shown to

offer substantial reductions in computation time. Iterative approaches in operations

research [59] have shown similar benefits for scheduling problems. This principle

might extend to other constraints considered in this thesis, such as collision avoidance

and assignment.

In addition, the formulation could be extended to cover more complicated path-

planning scenarios, such as design in the presence of uncertain information. Analysis

tools could be added to assist the user in interpreting the results, such as sensitivity

analysis and identification of active constraints.

5.3.2 Future Work for MILP/MPC

The coverage of MPC in Chapter 4 has demonstrated the potential of the method, but

much remains to be examined in detail. The stability analysis should be extended to

include uncertainty in the model and environment, leading to some provable level of

robustness. General forms of robustness analysis have been developed for MPC [62],

but their application has been restricted to certain classes of systems, excluding the

non-convex constraints in this thesis. This should be extended to the non-convex

case. A further extension would consider the transient timing in the analysis. For

maneuver planning, the transient from initial condition to final state is the only

important consideration. These investigations should aim for a formulation with

provable robustness and timing properties.

MPC is also the most demanding application of MILP in terms of computation,

since it involves real-time operation. Therefore, MPC would benefit from the work

discussed in Section 5.3.1 concerning accelerated solution of MILP problems. Further

research might consider special techniques for MPC implementation to guarantee

stability and performance properties subject to the availability of limited solution

time.

119



120



Bibliography

[1] F. H. Bauer, J. Bristow, D. Folta, K. Hartman, D. Quinn, J. P. How, “Satel-

lite Formation Flying Using an Innovative Autonomous Control System (AU-

TOCON) Environment,” in the proceedings of the AIAA/AAS Astrodynamics

Specialists Conference, AIAA Paper 97-3821, AIAA, Reston, VA, 1997.

[2] F. H. Bauer, K. Hartman, E. G. Lightsey, “Spaceborne GPS: Current Status

and Future Visions,” in the proceedings of the ION-GPS Conference, Institute

of Navigation, Alexandria, VA, 1998, pp. 1493–1508.

[3] F. H. Bauer, K. Hartman, J. P. How, J. Bristow, D. Weidow, and F. Busse,

“Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced

Automation Technologies,” in the proceedings of the ION-GPS Conference, In-

stitute of Navigation, Alexandria, VA, 1999, pp. 369–384,.

[4] A. Das and R. Cobb, “TechSat21 – Space Missions Using Collaborating Constel-

lations of Satellites,” in the proceedings of the 12th Annual AIAA/USU Confer-

ence on Small Satellites, AIAA, Reston, VA, SSC98-VI-1, August 1998.

[5] A. Robertson, G. Inalhan, and J. P. How, “Spacecraft Formation Flying Con-

trol Design for the Orion Mission,” in the proceedings of the AIAA Guidance,

Navigation, and Control Conference, AIAA, Reston, VA, August 1999, pp. 1562–

1575.

[6] G. Inalhan, F. D. Busse, and J. P. How, “Precise Formation Flying Control Of

Multiple Spacecraft Using Carrier-phase Differential GPS,” in the proceedings

121



of the AAS/AIAA Spaceflight Mechanics Meeting, AIAA, Reston, VA, January

2000, pp. 151–165.

[7] M. Tillerson, G. Inalhan, and J. How, “Coordination and Control of Distributed

Spacecraft Systems Using Convex Optimization Techniques,” accepted for pub-

lication in the International Journal of Robust and Nonlinear Control, Wiley,

New York NY, Aug. 2001.

[8] M. Tillerson and J. How, “Formation Flying Control in Eccentric Orbits,” in the

proceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA

Paper 2001-4092, AIAA, Reston, VA, August 2001.

[9] J. H. Reif, “Complexity of the Mover’s Problem and Generalizations,” in the pro-

ceedings of the 20th IEEE Symposium on the Foundations of Computer Science,

IEEE, Washington DC, 1979, pp. 421-427.

[10] H. P. Williams and S. C. Brailsford, “Computational Logic and Integer Program-

ming,” in Advances in Linear and Integer Programming, Editor J. E. Beasley,

Clarendon Press, Oxford, 1996, pp. 249–281.

[11] A. Bemporad and M. Morari, “Control of Systems Integrating Logic, Dynamics,

and Constraints,” in Automatica, Pergamon / Elsevier Science, New York NY,

Vol. 35, 1999, pp. 407–427.

[12] C. A. Floudas Nonlinear and Mixed-Integer Programming – Fundamentals and

Applications, Oxford University Press, New York NY, 1995 pp. 95–107.

[13] R. Subramanian, R. Scheff, Jr., J. Quillinan, D. Wiper, and R. Marsten, “Cold-

start: Fleet assignment at Delta Air Lines,” Interfaces, Institute for Opera-

tions Research and Management Sciences, Linthicum MD, 24(1), Jan.-Feb. 1994,

pp. 104–20.

[14] ILOG AMPL CPLEX System Version 7.0 User’s Guide, ILOG, Incline Village,

NV, 2000, pp. 17–53,

122



[15] M. H. Kaplan, Modern Spacecraft Dynamics and Control, Wiley, New York NY,

1976 pp 108–115.

[16] R. Sedwick, D. Miller, and E. Kong, “Mitigation of Differential Perturbations

in Synthetic Apertures Comprised of Formation Flying Satellites,” Advances in

Astronautical Sciences: Space Flight Mechanics, Univelt, San Diego, Vol. 102,

1999, pp. 323–342.

[17] J. Barraquand, L. Kavraki, J.-C. Latombe, R. Motwani, T.-Y. Li, and P. Ragha-

van, “A Random Sampling Scheme for Path Planning,” International Journal of

Robotics Research, MIT Press, Cambridge MA, Vol. 16, No. 6, 1997, pp. 759–774.

[18] J. Krozel and M. Peters, “Strategic Conflict Detection and Resolution for Free

Flight,” in the proceedings of the 36th Conference on Decision & Control, IEEE,

Washington D.C., December 1997, pp. 1822-1828.

[19] Z.-H. Mao and E. Feron, “Stability of Intersecting Aircraft Flows under Decen-

tralized Conflict Avoidance Rules,” in the proceedings of the AIAA Guidance,

Navigation and Control Conference, AIAA, Reston, VA, August 2000, pp. 1042–

1052.

[20] A. B. Roger and C. R. McInnes, “Safety Constrained Free-Flyer Path Planning

at the International Space Station,” Journal of Guidance Control and Dynamics,

AIAA, Reston, VA, Vol. 23, No. 6, Dec. 2000, pp. 971-979.

[21] G. Singh and F.Y. Hadaegh “Collision Avoidance Guidance for Formation Flying

Applications,” in the proceedings of the AIAA Guidance Navigation and Control

Conference, AIAA Paper 2001-4088, AIAA, Reston VA, August 2001.

[22] M. B. Milam, K. Mushambi and R. M. Murray, “A New Computational Approach

to Real-Time Trajectory Generation for Constrained Mechanical Systems,” in

the proceedings of the 39th IEEE Conference on Decision and Control, IEEE,

Washington DC, 2000, pp. 845-851.

123



[23] P. T. Spehar and T. Q. Le “Automating an Orbiter Approach to Space Station

Freedom to Minimize Plume Impingement,” in NASA Automated Rendezvous

and Capture Review, NASA N93-22305, Williamsburg, VA, NASA, Washington

DC, 1993.

[24] J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer, “Orion: A low-cost

demonstration of formation flying in space using GPS,” in AIAA Astrodynamics

Specialists Conference, AIAA, Reston, VA, August 1998, pp. 276-286.

[25] P. Ferguson, F. Busse, B. Engberg, J. How, M. Tillerson, N. Pohlman,

A. Richards, and R. Twiggs, “Formation Flying Experiments on the Orion-

Emerald Mission,” presented at the AIAA Space 2001 Conference, AIAA Paper

2001-4688, AIAA, Reston, VA, August 2001.

[26] C. A. Beichman, “The Terrestrial Planet Finder: The search for life-bearing

planets around other stars,” in the proceedings of the SPIE Conference on As-

tronomical Interferometry, Society of Photo-Optical Instrumentation Engineers,

Bellingham, WA, Vol. 3350, 1998, pp. 719-723.

[27] H-.H. Yeh and A. Sparks, “Geometry and Control of Satellite Formations,” in

the proceedings of the American Control Conference, IEEE, Washington DC,

Vol. 1, June 2000, pp. 384-388.

[28] G. Inalhan, M. Tillerson, and How, J. P., “Relative Dynamics & Control of

Spacecraft Formations in Eccentric Orbits,” Journal of Guidance Control and

Dynamics, AIAA, Reston, VA, Vol. 25, No. 1, Jan. 2002, pp. 48-59.

[29] K. T. Alfriend, H. Schaub, and D.-W. Gim, “Gravitational Perturbations, Non-

linearity and Circular Orbit Assumption Effects on Formation Flying Control

Strategies,” Advances in the Astronautical Sciences, Guidance and Control, Uni-

velt, Inc., San Diego, CA, Vol. 104, 2000, pp. 139–158.

124



[30] P. K. C. Wang and F.Y. Hadaegh “Optimal Formation-Reconfiguration for Mul-

tiple Spacecraft,” in the proceedings of the AIAA Guidance Navigation and Con-

trol Conference, AIAA, Reston, VA, August, 1998, pp. 686-696.
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