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1 Introduction

Physiological signals are dynamic; they exhibit time-varying statistics (such as value of the
mean and variance over a given temporal window) in both the time and frequency domain.
Physiological signals also exhibit activity that spans a range of time scales. For instance
the cycles of an electrocardiogram (ECG) signal contain three components with different
time-scales: atrial depolarization represented by the P wave has a duration of 0.1 to 0,15
seconds; ventricular depolarization represented by the QRS complex has a duration around
0.1 seconds; and ventricular repolarization represented by the T-wave has a duration of about
0.2 to 0.4 seconds. However, the inter-beat timing (which when averaged gives the heart rate),
changes over much longer time scales; from minutes to hours, to days. Short term variations
(activity on the order of seconds and minutes above 0.01 Hz) are due to changes in the
sympathetic (fight-and-flight) and parasympathetic (rest-and-digest) activity of the central
nervous system acting on the heart. Longer term variations can be partially attributed to
changes in activity and intrinsic circadian controls (that lead to sleep for example). The
changes in the heart rate over many scales can provide diagnostic information [12].

The spike-and-slow-wave complex observed in the electroencephalogram (EEG) during the
evolution of some epileptic seizures is another example of a physiological signal with mul-
tiscale activity [8]. In this case the spike component of the waveform represents the short
time-scale event, and the slow-wave component of the waveform represents the long time-
scale event.

Classical signal processing tools such as the Fourier transform are not suited for analyzing
dynamic, non-stationary signals because implicit in their formulation is an assumption of
signal stationarity. Generalizations of the Fourier transform, such as the Short-Time Fourier
transform, can be used to analyze signals with time-varying spectral and temporal character-
istics. However, the Short-Time Fourier transform cannot be used to simultaneously resolve
activity at different time-scale because implicit in its formulation is a selection of a time-
scale. This chapter introduces the wavelet transform, a generalization of the Short-Time
Fourier transform that can be used to perform multi-scale signal analysis.
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ECG Cycle EEG Spike-Wave

Figure 1: Physiological Signals with Multiscale Activity: Each cycle of an ECG signal
contains three components: The P-wave, QRS complex, and the T-wave. The spike-and-
slow wave complex observed in epileptic EEG has two components with different time-scales:
A spike, and a slow wave.

2 Short-Time Fourier Transform

The Fourier transform is well suited for analyzing stationary signals; these are signals with
time-invariant spectral content. The sum of N sinusoids is an example of a stationary signal
because at every point it has the same N frequency components. The chirp signal, which is a
sinusoid with linearly or quadratically varying frequency, is an example of a non-stationary
signal. The Fourier transform cannot capture the spectral evolution of a non-stationary signal
for two reasons that are apparent in the Fourier transform analysis/synthesis equation:

F (Ω) =
∫
∞

−∞
x(t)e−jωt x(t) =

∫
∞

−∞
F (Ω)ejωt (1)

1. The Fourier Transform synthesizes x(t) from a linear combination of stationary signals;
in particular, the sum of time-invariant, ever-lasting sinusoids. A non-stationary signal
cannot be accurately represented using a sum of stationary signals. For example, a
chirp signal with a frequency that increases linearly from 0-2 Hz over a two second
interval cannot be accurately represented using a linear combination of fixed frequency
sinusoids.

2. The Fourier Transform of a signal is a mapping from a function of time x(t) to a
function of frequency F (Ω). The function F (Ω) tells us the extent to which a signal
component with frequency Ω is present in the analyzed signal. It does not indicate
how that signal component evolves with time t. For that we need a transform that
returns a bivariate function of the form F (t, Ω).

Figure 2 shows the time and frequency domain plots of a signal composed from the summing
of a 10 Hz, 30 Hz, and 50 Hz frequency sinusoids. The Fourier transform reveals the presence
of this stationary signal’s three frequency components.
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Figure 2: Fourier Analysis of Stationary Signals: The Fourier transform is well-suited for
the analysis of stationary signals such as the sum of three sinusoids. In this case, the Fourier
transform is used to reveal the presence of three frequency components (10 Hz, 30 Hz, 50
Hz) in the signal.

Figure 3 shows the time and frequency domain representations of a chirp signal with a
frequency that increases linearly from 0 to 250 Hz. The Fourier transform of the chirp signal
implies the presence of frequencies between 0-250 Hz for the entirety of the signal. In reality,
each of these frequency components is only present for a short duration of the chirp signal.

The generalization of the Fourier transform that allows one to study non-stationary signals
is the Short-Time Fourier Transform (STFT). The STFT maps x(t) into a bivariate function
F (t, Ω). This function can be used to determine the extent to which a signal component
with frequency Ω is present at time t = t0. The construction of F (t, Ω) involves:

1. A segment of the signal x(t) that begins at time t = t0 is extracted using a window
w(t) with duration L. The segment is given by s(t) = x(t)w(t− t0) and has a duration
L.

2. The Fourier Transform of the segment s(t) is computed to give S(Ω) = F (t = t0, Ω).
The function F (t = t0, Ω) reveals the spectral content of the signal segment in an
interval of time beginning at t = t0 and ending at t = t0 + L.

3. The window w(t) is shifted so that it can be used to extract a new signal segment
s(t) = x(t)w(t− t0 −∆t). As in the previous step, the Fourier Transform is again used
to reveal the spectral content of the new segment.

A plot of the magnitude of the signal segment spectra is known as a Spectrogram. The
spectrogram has time on the x-axis; frequency on the y-axis; and magnitude of the spectra
on the z-axis. The spectrogram illustrates visually how different frequency components
evolve over the duration of a signal. Figure 4 is graphical illustration of the process leading
to the construction of a Spectrogram.
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Figure 3: Time and Frequency Plots of Chirp Signal: The Fourier Transform is not well-
suited for the analysis of non-stationary signals like the chirp signal. The Fourier Transform
in the case of this chirp signal demonstrates the presence of its frequency components for all
time, when in actuality each component is present for only a brief duration of time.
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Figure 4: Graphical Construction of the Spectrogram: A spectrogram is constructed by
aligning the spectra of adjacent, overlapping signal segments in the time-frequency plane.
The spectrogram can be used to study the evolution of a signal’s frequency components.

4



The mathematical expressions for the continuous and discrete short-time Fourier transforms
mirror the graphical construction outlined above in Figure 4.

F (t, Ω) =
∫

x(τ)w(t − τ)e−jΩτ F (n, ω) =
∑

x(k)w(n − k)e−jωk (2)

As an example, consider constructing the spectrograms of two chirp signals. The chirp signal
c1 has linearly increasing frequency, while the chirp signal c2 has quadratically increasing
frequency.

c(t)1 = sin(2π(α + βt)t); (3)

c(t)2 = sin(2π(α + βt + γt2)t); (4)

As expected, the spectrogram of c1 shows that as time progresses the frequency present
in signal segments increases linearly. The spectrogram of c2 shows a quadratic increase in
frequency with time.
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Figure 5: Spectrogram of Chirp Signals With Linearly and Quadratically Increasing Fre-
quency

The window w(t) determines the spectral and temporal resolution of the Short-Time Fourier
Transform. Temporal resolution refers to the smallest time-separation below which two
temporal events cannot be distinguished on the Spectrogram. Similarly, spectral resolution
refers to the smallest frequency-separation below which two spectral events cannot be dis-
tinguished on the Spectrogram. A long window w(t) results in poor temporal resolution
and good frequency resolution. Conversely, a short window w(t) results in good temporal
resolution and poor spectral resolution. Time and frequency resolution can only be traded
for one another, they cannot both be improved simultaneously. Figure 6 demonstrates how

5



−0.4 −0.2 0 0.2 0.4

1

2

3

4

5
5 Point Rectangular Window Spectrum

−0.4 −0.2 0 0.2 0.4

2

4

6

8

10

12

14

15 Point Rectangular Window Spectrum

−0.4 −0.2 0 0.2 0.4

5

10

15

20

25

 % of π 

25 Point Rectangular Window Spectrum

−0.4 −0.2 0 0.2 0.4

10

20

30

40

50

 % of π 

35 Point Rectangluar Window Spectrum

Figure 6: Spectral and Temporal Resolution of the Short-Time Fourier Transform: A short
analysis window results in good temporal resolution and poor spectral resolution. As the
analysis window length increases its frequency resolution increases and its temporal resolu-
tion decreases.

the frequency resolution of a window improves as the window’s length increases (temporal
resolution decreases).

From the perspective of the time-frequency plane, the analysis window length limits our
knowledge of signal activity to a two-dimensional cell. The dimension of the cell along the
time axis indicates the limits of temporal resolution; temporal events with time-separation
smaller than this dimension cannot be differentiated using a spectrogram. The dimension
of the cell along the frequency axis indicates the limits of frequency resolution; spectral
events with frequency-separation smaller than this dimension cannot be distinguished using
a spectrogram. The dimensions of the cell can be altered so as to favor either temporal or
spectral resolution, but the area of the cell remains constant.

As an example of trading between temporal and spectral resolution, consider computing two
spectrograms for a sinusoid with a sudden change in frequency. The spectrogram in the
second panel of Figure 8 emphasizes temporal resolution over frequency resolution, which is
why the break in the signal is evident, but frequencies on each side of the break are poorly
resolved. The spectrogram in the third panel of Figure 8 emphasizes spectral resolution over
temporal resolution, which is why we can resolve the signal frequencies but cannot determine
when the transition from one frequency to the other occurs.

The trade-off between spectral and temporal resolution forced by the Short-Time Fourier
Transform makes it unsuitable for the analysis of signals with multiscale activity. Consider
the spike-and-slow wave signal in Figure 9. If we analyze this signal using an STFT biased
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High Temporal Resolution High Spectral Resolution

Figure 7: Time-Frequency Plane Division using the Short-Time Fourier Transform: The
Short-Time Fourier Transform limits our knowledge of signal activity to a two-dimensional
cell in the time-frequency plane. The dimensions of the cell can be changed to favor either
spectral or temporal resolution. The same temporal and spectral resolution applies to low
and high frequency activity.

towards temporal resolution, the onset of the spike component emerges clearly, but resolution
of the frequency of the sinusoidal component is lost. In the spectrogram, the spike component
is represented by a periodic columnar band with energy across all frequencies. Each of
these columns is a result of shifting the analysis window so that it is centered over a single
spike(an impulse-like signal), and then applying the Fourier transform. Recall that the
Fourier transform of an impulse (a single spike) has equal energy across all frequencies. In
summary, the STFT with high temporal resolution clearly demonstrates the onset of the
spike component (short time-scale event), but poorly resolves the sinusoidal component of
the signal (long time-scale events).

If we analyze the same signal using an STFT biased towards spectral resolution, the frequency
of each sinusoidal component in the signal is resolved clearly. In the spectrogram, the
sinusoidal components are represented by rows with energy across time. The darkest row
near 2 Hz represents the visible sinusoidal component in the spike-and-slow wave signal. The
remaining rows (sinusoidal components) arise from Fourier transformation of the multiple
spikes that fall within each long analysis window (a signal resembling a periodic impulse
train). Recall that a periodic impulse train is equivalent to an infinite sum of harmonically
related sinusoids; each of these sinusoids is represented by a row in the spectrogram. In
summary, the STFT with high spectral resolution clearly resolves the spectral components
(long time-scale event) present in the signal, but poorly resolves the onset of the spike
components (short time-scale event).
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Figure 8: Spectrograms of Sinusoid with Frequency Break: A spectrogram biased towards
temporal resolution accurately shows the time at which the sinusoid’s frequency changes; it
does not clearly show the value of the frequency components on either side of the break-
down. A spectrogram biased towards spectral resolution accurately shows the sinusoid’s two
frequency components; it does not clearly show the termination of one component and the
onset of the second.
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Figure 9: Spectrograms of Spike-And-Slow Wave Signal: A spectrogram biased towards
temporal resolution accurately shows the onset of the spike component (short time-scale
event); it does not clearly resolve the frequency of the sinusoidal component (long time-scale
event). A spectrogram biased towards spectral resolution accurately shows the frequency of
the sinusoidal component; it does not clearly show the onset of spike component.
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3 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is a generalization of the Short-Time Fourier
Transform that allows for the analysis of non-stationary signals at multiple scales. Similar
to the STFT, the CWT makes use of an analysis window to extract signal segments; in this
case the window is called a wavelet. Unlike the STFT, the analysis window or wavelet is not
only translated, but dilated and contracted depending on the scale of activity under study.
Wavelet dilation increases the CWT’s sensitivity to long time-scale events, and wavelet
contraction increases its sensitivity to short time-scale events.

C(a, τ) =
∫ 1√

a
Ψ(

t − τ

a
)x(t)dt (5)

The mathematical expression for the continuous wavelet transform is shown above. The
equation shows that a wavelet Ψ(t) is shifted by τ and dilated or contracted by a factor a
prior to computing its correlation with the signal x(t). The correlation between the signal
and the wavelet is defined as the integral of their product. The CWT maps x(t) into a
bivariate function C(a, τ) that can be used to determine the similarity between x(t) and a
wavelet scaled by a at given time τ . The correlation is localized in time, it is computed
over an interval beginning at t = tau and ending t = τ + L where L is the duration of the
wavelet. A time plot of the correlation between the signal and the scaled wavelets is called
a Scalogram. The steps for constructing a scalogram are visualized in figure 10.

Signal

Scale 1
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TimeTime

Scale

Correlation

Correlation

Correlation

Figure 10: Constructing a Scalogram: A scalogram illustrates how signal activity within
a range of time-scales evolves over time. The scalogram is constructed by evaluating the
correlation between a signal and wavelets with different scales, and then plotting how the
correlation with each wavelet varies over time.
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Figure 11: Time-Frequency Plane Tiling of the Continuous Wavelet Transform: The Contin-
uous Wavelet Transform automatically adjusts its time and frequency resolution depending
on the scale of activity of interest by dilating or contracting the analysis window. This allows
the transform divide the time-frequency plane into regions that highlight either short or long
time-scale events.

When the wavelet is contracted (a < 1), the wavelet offers high temporal resolution and
is well-suited for determining the onset of short-time events such as a spikes and tran-
sients. When the wavelet is dilated (a > 1) the wavelet offers high spectral resolution and
is well-suited for determining the frequency of sustained, long-term events such as baseline
oscillations. This time-frequency trade-off is practical since we are often more interested
in knowing with accuracy the onset of impulse-like transients as opposed to details of their
broad frequency structure. Similarly, knowing the frequency of long-term, sustained activity
is often more important than knowledge of the exact onset of the change since it is gradual.

Figure 11 illustrates how wavelet analysis limits our knowledge of signal activity to variable
size, two-dimensional cells. For small values of a (upper portion of scale axis) we see that
we have high temporal resolution (short dimension along time-axis of the time-frequency
cell) and poor frequency resolution (large dimension along scale axis of the time-frequency
cell). It is in this portion of the time-frequency plane that spike and transients in the signal
are highlighted. For large values of a (lower portion of scale axis) we have high spectral
resolution (short dimension along the scale axis of the time frequency cell). It is in this
portion of the time-frequency plane that sustained oscillations and other long-term events
are highlighted. The ability of the continuous wavelet transform to separate short time-scale
events into one portion of the time-frequency plane and long time-scale events into another
allows one to simultaneously study signal activity at multiple scale. Recall that this was not
possible using the STFT since an implicit selection of a single scale was made through the
choice of the the analysis window length.

We will now examine the scalogram of several signals, including a spike-and-slow wave signal
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to illustrate the ability of the CWT to simultaneously reveal activity at various scales.
Figure 12 shows the scalogram of a stationary sine wave. The scalogram demonstrates that
energy (bright columnar bands) predominates in the higher scales; there is a bright band for
each peak and trough of the sine wave. The dark bands between the brighter bands are a
result of the correlation integral evaluating to a small value due to overlap of the wavelet
with both positive and negative portions of the sine wave. The distance between the bright
bands can be used to determine the sine wave frequency.
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Figure 12: CWT of Sinusoid with Fixed Frequency

Figure 13 shows the scalogram of a sine wave with an abrupt change in frequency. We
noted that that the STFT can be biased to emphasize the frequency break using a short
window, or the constant oscillations on each side of the break using a long window. The
wavelet transform accomplishes both simultaneously. Note that for small scales (small a) the
frequency break is very clearly defined in time. Furthermore, the range of available scales
allow us to determine with accuracy the frequency of the sinusoids by noting the periodicity
of the bright bands.

The scalogram of a sinusoid with linearly increasing frequency is shown in Figure 14. The
scalogram highlights the signal’s increasing frequency content by the presence of energy in
increasingly smaller scales.

Finally we examine the scalogram of the spike-and-slow wave signal. At the lower scales
(1− 17) the scalogram shows narrow, bright columnar bands that lie in between the thicker
columnar bands; these narrow bands represent the spikes in the signal. At the higher scales
(17− 81) the scalogram shows thick, bright columnar bands which represent the wave com-
ponent of the signals. The CWT is able to simultaneously capture the multiscale activity
within this signal.

The continuous wavelet transform is redundant because it varies the wavelet scaling param-
eter a continuously. Typically, not much more information is gained by analyzing a signal
at a = 20 and a = 20.5; in practice a discrete set of scales is chosen. The most commonly
chosen set of scales is known as the dyadic scale, it includes all scales such that a = 2i for
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Figure 13: CWT of Sinusoid With Frequency Breakdown
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Figure 14: CWT of Sinusoid With Linearly Increasing Frequency
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Figure 15: CWT of Spike-And-Slow-Wave Signal
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i = 1, . . . , N . There is no loss of information in this process of subsampling the parameter a,
the signal can be perfectly reconstructed from knowledge of the continuous wavelet transform
over the dyadic scale. Even better is that computing the continuous wavelet transform over
the dyadic scales leads to an efficient filterbank implementation of this transform. When
the continuous wavelet transform is computed over the the dyadic scale it is more commonly
called the Discrete Wavelet Transform (DWT); the word discrete refers to the discrete nature
of the scale parameter a.

4 Filterbanks

A filter bank is a collection of filters that decomposes a signal into a set of frequency bands.
This decomposition allows one to selectively examine or modify the content of a signal within
the chosen bands for the purpose of compression, filtering, or signal classification. The Short-
Time Fourier Transform and the Continuous Wavelet Transform can be computed efficiently
using filterbanks. Furthermore, the filterbank formulation makes the application of the
STFT and CWT in the setting of signal compression, filtering, or classification very natural.

The Short-Time Fourier Transform can be computed using a filterbank known as an M-
channel filterbank. An M-channel filterbank is shown in Figure 16; it consists of M parallel
filters all with equal bandwidths but different center frequencies.

H0
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HM

x(n)

X(n,f0)

X(n,f1)

X(n,fM)

f0

f1

fM

e-j 2πf0 n

e-j 2πf1 n

e-j 2πfM n

Figure 16: Short-Time Fourier Transform Filter Bank: The Short-Time Fourier Transform
at times n and frequencies fk can be computed using and M-channel filterbank. The filters
in this structure have a frequency response consisting of the spectrum of the analysis window
w(n) modulated to the frequency of interest fk.

To see this note the following manipulation of the STFT analysis equation
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X(n, fk) =
∑m=+∞

m=−∞
x(m)w(n − m)e−j2πfkm

X(n, fk) = e−j2πfkn(
∑m=+∞

m=−∞
x(m)w(n − m)ej2πfk(n−m))

X(n, fk) = e−j2πfkn(x(n) ∗ w(n)ej2πfkn)

(6)

The equation and figure show that the value of the input signal’s transform at time n and
frequencies in a band centered around fk is given by filtering x(n) using filters with impulse
responses w(n)ej2πfkn. These filters have frequency responses with the spectrum of the
analysis window w(n) modulated to the center frequency fk. Typically the frequencies fk

are uniformly sampled over the range 0to1, so fk = k/N for k = 0, · · · , N − 1.

Perfect reconstruction of the input signal is possible following analysis by an M-channel
filterbank. The process involves reconstituting the signal’s spectrum by adding the frequency
content extracted into channel as shown in Figure 17
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HM

x(n)

X(n,f0)

X(n,f1)

X(n,fM)

f0

f1

fM

e-j 2πf0 n

e-j 2πf1 n

e-j 2πfM n

ej 2πf0 n

ej 2πf1 n

ej 2πfM n

x(n)

Analysis Stage Synthesis Stage
Figure 17: Signal Reconstruction From Short-Time Fourier Transform: The input signal
can be reconstructed following analysis by an M-channel filterbank. The process involves
addition of the frequency content extracted into each channel by the analysis stage of the
filter.

The structure of the M-channel filterbank offers another perspective on the time-frequency
plane tiling associated with the Short-time Fourier Transform. For any given time n0, which
corresponds to a column in the time-frequency plane, the impulse response of all channels
are of equal length. This implies that the STFT offers the same temporal resolution across
all frequencies. Similarly the bandwidth of all the channels are equal, which implies the
STFT offers the same spectral resolution across all frequencies. Fixed spectral and temporal
resolution across all frequencies leads to the uniform tiling of the time-frequency plane.
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The tree-structured filter bank in Figure 18, can be used to compute the wavelet coefficients
C(a, τ) of the continuous wavelet transform; however, only over a dyadic scale of dilations
and contractions. A tree-structured filterbank splits an incoming signal into a low-pass
channel using the filter H0(z), and a high-pass channel using the filter H1(z). The low-
pass channel can be recursively split N times using the same two filters. Signals extracted
from the filterbank at higher iteration levels contain increasingly longer time-scale activity,
while those extracted from lower levels contain shorter time-scale activity. The mathematical
derivation linking the tree-structured filterbank to the CWT is presented in the appendix. We
motivate the connection by showing a qualitative equivalence between their time-frequency
decomposition of the signal.

x(n)

Figure 18: Tree-Structured Filterbank: This filterbank architecture can be used to compute
the coefficients of the continuous wavelet transform. The coefficients are only computed over
the dyadic scale.

Consider deriving the input to output transfer functions of the 3-level filterbank shown in
Figure 19; to do this we make use of the Noble Identity :↓ 2 H(z) = H(z2) ↓ 2. Outputs
extracted from the third-level (large scale a) are generated using a transfer function with a
narrow bandwidth, which implies good frequency resolution but poor temporal resolution. At
the other extreme, the output extracted form the first-level (small scale a) is generated using
a transfer function that has a large bandwidth, which suggests poor frequency resolution but
good temporal resolution. A decrease in frequency resolution and an increase in temporal
resolution as the scale a decreases (activity in signal is at higher frequency, or shorter time-
scale) is similar to the time-frequency trade-off offered by the CWT. Note that the bandwidth
of the transfer function increases by a factor of two for each level of the filterbank. This is
a consequence of each level of the filterbank extracting wavelet coefficients that are greater
than those of the previous level by a factor of two.

Using only a dyadic scale of wavelet coefficients one can perfectly reconstruct the input signal;
this possibility highlights the redundancy of varying the scale parameter a continuously in the
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Figure 19: Tree-Structured Filterbank: The filterbank uses high-frequency resolution and
poor temporal resolution to extract long time-scale activity. On the other hand, the fil-
terbank uses poor-frequency resolution and high temporal resolution to extract short time-
scale activity. This time-frequency trade-off mirrors that offered by the Continuous Wavelet
Transform.

H0(z) � 2
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Figure 20: Iterated Filterbank Inverse Filter: The filter that reconstructs the input signal
from the outputs of an iterated filterbank is the mirror image of the analysis filter. The
reconstruction filter uses upsampling as opposed to the the downsampling found in the
analysis filter.
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Continuous Wavelet Transform. The reconstruction, or synthesis filterbank is a mirror image
of the analysis filterbank as shown in Figure 20. The analysis filters H0(z) and H1(z) and
the reconstruction filters F0(z) and F1(z) must be carefully chosen such that the decomposed
signal can be perfectly reconstructed. The analysis and reconstruction filters have to satisfy
an anti-alias and zero-distortion conditions that we will derive below.

Consider the two-channel iterated filterbank in Figure 21. We will trace the signal through
the filterbank channels, and then note which conditions on the analysis and reconstruction
filters guarantee perfect reconstruction. Since the analysis and reconstruction filters are
causal, we expect the output to be a delayed version of the input in the case of perfect
reconstruction. First we derive an expression for the intermediate signals w0 and w1.

H0(z) � 2

H1(z) � 2

�
2 F0(z)

�
2 F1(z)

x(n-n0)x(n)

q0(n)w0(n)

w1(n) q1(n)

Figure 21: Two Channel Analysis and Synthesis Filterbanks.

(↓ M)H(ejw) = 1
M

∑M−1
i=0 H(ej(w/M−2πi/M))

W0(e
jw) = 1

2
(X(ejw/2)H0(e

jw/2) + X(ej(w/2−π))H0(e
j(w/2−π)))

W1(e
jw) = 1

2
(X(ejw/2)H1(j

jw/2) + X(ej(w/2−π)H1(e
j(w/2−π))))

(7)

The terms containing X(ej(w/2−π) are aliased copies of the original signal spectrum; they
are introduced by downsampling the output of each filterbank channel. To achieve perfect
reconstruction these terms will have to be eliminated by the synthesis filter. The terms
containing X(ejw/2) are distorted versions of the original spectrum; distortion is introduced
by frequency-axis scaling (downsampling) and magnitude scaling (H0(z) and H1(z)). To
achieve perfect reconstruction the synthesis filterbank must correct for this distortion by
upsampling and filtering (F0(z) and F1(z)). Now we derive an expression for the intermediate
signals q0 and q1.

(↑ M)H(ejw) = H(ejwM)

Q0(e
jw) = W0(e

j2w)F0(e
jw) = 1

2
(X(ejw)H0(e

jw)F0(e
jw) + X(ej(w−π))H0(e

j(w−π))F0(e
jw))

Q1(e
jw) = W1(e

j2w)F1(e
jw) = 1

2
(X(ejw)H1(e

jw)F1(e
jw) + X(ej(w−π))H1(e

j(w−π))F1(e
jw))

(8)
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For perfect reconstruction we would like the reconstructed signal to be a delayed version of
the original.

q0(n) + q1(n) = x(n − n0)

Q0(e
jw) + Q1(e

jw) = e−jwn0X(ejw)
(9)

Collect the terms with X(ejw) into one set and the terms with X(ej(w−π)) into another set.
The collection of terms with X(ejw) are the only ones that can give rise to an equality with
the term e−jwn0X(ejw). The collection of terms with X(ej(w−π)), which are aliased copies of
the original spectra, must be annihilated. When these two conditions are met by the four
filters H0(z) H1(z) F0(z) F1(z) perfect reconstruction is achieved.

Zero-Distortion Condition:

1
2
X(ejw)(H0(e

jw)F0(e
jw) + H1(e

jw)F1(e
jw) = e−jwn0X(ejw)

H0(e
jw)F0(e

jw) + H1(e
jw)F1(e

jw = 2e−jwn0

Anti-Alias Condition:

X(ej(w−π))(H0(e
j(w−π))F0(e

jw) + H1(e
j(w−π))F1(e

jw)) = 0

H0(e
j(w−π))F0(e

jw) + H1(e
j(w−π))F1(e

jw) = 0

(10)

The discrete-time analysis and synthesis filters that satisfy the above conditions are not
equivalent to the wavelet functions Ψ(t) used in the Continuous Wavelet Transform; they
are derived from the wavelet function. The link is established in the appendix. In summary,
performing wavelet analysis involves:

1. Select a wavelet appropriate for analyzing the signal of interest. The wavelet should
have morphological features that match those to be extracted, highlighted, or detected
in the input signal.

2. Derive the filters H0(z) H1(z) so that an efficient filterbank implementation can be
used to compute the wavelet coefficients.

3. Derive the filters F0(z) F1(z) so that an efficient inverse filterbank can be used to
reconstruct a new version of the signal from the modified wavelet coefficients.

4. Fortunately, the filters H0(z) H1(z) F0(z) F1 have already been computed for a large
number of wavelet functions. The filters can be immediately used to study signals of
interest.
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If all the wavelet coefficients produced by the analysis filterbank are preserved and the signal
is reconstructed, the synthesized signal will exactly equal the input signal. If some coefficients
are selectively preserved, then we are effectively filtering in the scale-domain as opposed to
the conventional frequency-domain.

5 Biomedical signal processing examples

Transient (nonstationary) changes in a signal may be isolated by combining the time-domain
and frequency-domain analysis of a signal. In this way we can take advantage of both these
paradigms and allow filtering of both persistent signal sources within the observation, and
short transient sources of noise. Joint time-frequency analysis (JTFA) is then essentially a
transformation of an N -point M -dimensional signal (usually where M = 1 for the ECG)
into a M + 1-dimensional signal.

Consider the noisy sine wave below and its 5-level decomposition. If we zero out the details
d1 d2 d3 d4, and save the approximation a5 we will be eliminating the coefficients that are
most sensitive to the noise. If we reconstruct only using the coefficients a5, we obtain the
result in figure 22.

Now consider using a wavelet decomposition to separate components in a signal occurring
over different time scales. For example, suppose we would like to separate the spike and
wave components of the signal shown below. The wave component of the signal is primarily
contained in the approximation coefficients a5, and the spike is mostly contained in the detail
coefficients d1−4. If we reconstruct the signal only using the approximation coefficients we
will recover the wave component. If we reconstruct the signal only using the detail coefficients
we will recover the spike component. (See figure 23.)

Another example of visualizing a nonstationary signal is given in Fig. 24. Here we can see
one beat from a normal an ECG (upper plot) and the corresponding scalogram (lower plot)
produced by the CWT of this segment. Note that the lighter regions of the scalogram which
correspond to the higher energy regions such as the QRS complex and the T-wave, and are
more defined at shorter scales.

In practice, the CWT provides a vast amount of redundancy in the representation (with
more than an order of magnitude more wavelet values than original signal components) and
therefore effects a decompression rather than a data reduction. In order to extract infor-
mation from a wavelet decomposition and remove much of the redundancy, we can consider
only the local maxima and minima of the transform. These include wavelet ridges and the
wavelet modulus maxima. Wavelet ridges are used to determine instantaneous frequencies
and amplitudes and are define by

dS(a, τ)

da
= 0 (11)

where S(a, τ) = |C(a, τ)|2/a is the rescaled scalogram. The wavelet modulus maxima are
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Figure 22: Wavelet Noise Suppression: Filtering using the wavelet transform involves zeroing
coefficients at scales sensitive to the noise, and then reconstructing a signal from only using
coefficients insensitive to the noise.

used for locating and characterizing singularities in the signal and are given by

dS(a, τ)

dτ
= 0. (12)

Another effective way to produce a data reduction is through the Discrete Wavelet Transform
(DWT).

5.0.1 An ECG denoising example; wavelet choice

Fig. 25 illustrates a selection of biorthogonal wavelets denoted biorJ.K, where J and K
refer to the number of vanishing moments in the LP and HP filters respectively. Note that
in most literature, J refers to the length of the lowpass filter for and K to the length of the
highpass filter, therefore Matlab’s bior4.4 has 4 vanishing moments1, with 9 LP and 7 HP
coefficients (or ’taps’) in each of the filters.

Fig. 26 illustrates the effect of using different mother wavelets to filter a section of clean
(‘zero-noise’) ECG, using only the first approximation of each wavelet decomposition. The
clean (upper) ECG is created by averaging 1228 R-peak aligned, 1s long segments of a
healthy ECG. Gaussian pink noise is then added with an SNR of 20dB. The RMS error

1If the Fourier transform of the wavelet is J continuously differentiable, then the wavelet has J vanishing
moments. Type waveinfo(′bior′) at theMatlab prompt for more information. Viewing the filters using
[lpdecon, hpdecon, lprecon, hprecon] = wfilters(′bior4.4′) in Matlab reveals one zero coefficient in each of
the LP decomposition and HP reconstruction filters, and three zeros in the LP reconstruction and HP
decomposition filters. Note that these zeros are simply padded, and do not count when calculating the filter
size.
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Figure 23: Wavelet Separation of Activity at Different Scales: Wavelets are effective tools
for separating activity at different time scales. To recover short time-scale activity a signal
is reconstructed only using wavelet coefficients sensitive to the short time-scale activity. To
recover long time-scale activity a signal is reconstructed only using coefficients sensitive to
long time-scale activity. The definition of short and long time-scale activity is application
and signal dependent.
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Figure 24: A relatively clean 0.75s segment of lead V5 ECG recorded at 256 Hz and its
corresponding scalogram form the CWT for scales 0 < a ≤ 50.

Wavelet Family Family member RMS error
Original ECG N/A 0

ECG with pink noise N/A 0.3190
Biorthogonal ’bior’ bior3.3 0.0296

Discrete Meyer ’dmey’ dmey 0.0296
Coiflets ’coif ’ coif2 0.0297
Symlets ’sym’ sym3 0.0312
Symlets ’sym’ sym2 0.0312
Daubechies ’db’ db2 0.0312

Reverse biorthogonal ’rbio’ rbio3.3 0.0322
Reverse biorthogonal ’rbio’ rbio2.2 0.0356

Haar ’haar’ harr 0.0462
Biorthogonal ’bior’ bior1.3 0.0472

Table 1: Signals displayed in Fig. 26 (from top to bottom) with RMS error between clean
and wavelet filtered ECG with 20dB additive Gaussian pink noise. N/A indicates ‘not
applicable’.
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Figure 25: Biorthogonal Wavelets labeled by their Matlab nomenclature. for each filter,
two wavelets are shown; one for signal decomposition (on the left side) and one for signal
reconstruction (on the right side). Type waveinfo(’bior’) in Matlab for more information.
Note how increasing the order of the filter leads to increasing similarity between the mother
wavelet and typical ECG morphologies.
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Figure 26: The effect of a selection of different wavelets for filtering a section of ECG (using
the first approximation only) contaminated by Gaussian pink noise (SNR=20dB). From top
to bottom; original (clean) ECG, noisy ECG, biorthogonal (8,4) filtered, discrete Meyer
filtered, Coiflet filtered, symlet (6,6) filtered, symlet filtered (4,4), Daubechies (4,4) filtered,
reverse biorthogonal (3,5), reverse biorthogonal (4,8), Haar filtered and finally, biorthogonal
(6,2) filtered. The ’zero-noise’ clean ECG is created by averaging 1228 R-peak aligned, 1s
long segments of a healthy ECG. RMS error performance of each filter is listed in table 1.
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between the filtered waveform and the original clean ECG for each wavelet is given in table
1. Note that the biorthogonal wavelets with J ,K ≥ 8, 4, the discrete Meyer wavelet and the
Coiflets appear to produce the best filtering performance in this circumstance. The RMS
results agree with visual inspection, where significant morphological distortions can be seen
for the other filtered signals. In general, increasing the number of taps in the filter produces
a lower error filter.

The wavelet transform can be considered either as a spectral filtering over many time scales
or viewed as a linear time filter Ψ[(t−τ)/a] centered at a time τ with scale a that is convolved
with the time series, x(t). Therefore convolving the filters with a shape more commensurate
with that of the ECG produces a better filter. Fig. 25 illustrates this point. Note that as we
increase the number of taps in the filter, the mother wavelet begins to resemble the ECG’s
P-QRS-T morphology more closely.
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Figure 27: Raw ECG with 50 Hz mains noise, IIR 50 Hz notch filtered ECG, 0.1-45 Hz FIR
band-pass filtered ECG and bior3.3 wavelet filtered ECG. The left-most arrow indicates the
low amplitude P-wave. Central arrows indicate Gibbs oscillations in the FIR filter causing
a distortion larger then the P-wave.
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The biorthogonal wavelet family are FIR filters and therefore possess a linear phase re-
sponse, which is an important characteristic for signal and image reconstruction. In general,
biorthogonal spline wavelets allow exact reconstruction of the decomposed signal. This is
not possible using orthogonal wavelets (except for the Haar wavelet). Therefore, bior3.3 is
a good choice for a general ECG filter. It should be noted that the filtering performance of
each wavelet will be different for different types of noise, and an adaptive wavelet-switching
procedure may be appropriate. As with all filters, the wavelet performance may also be
application specific, and a sensitivity analysis on the ECG feature of interest is appropriate
(e.g. QT-interval or ST-level) before selecting a particular wavelet.

As a practical example of comparing different common filtering types to the ECG, observe
Fig. 27. The upper trace illustrates an unfiltered recording of a V5 ECG lead from a
healthy adult in his 30s undergoing an exercise test. Note the high amplitude 50 Hz (mains)
noise2. A 3-tap IIR 50 Hz notch-filter is then applied to reveal the underlying ECG. Note
some baseline wander disturbance from electrode motion around t=467s, and the difficult
in discerning the P-wave (indicated by a large arrow at the far left). The third trace is a
band-pass (0.1-45 Hz) FIR filtered version of the upper trace. Note the baseline wander is
reduced significantly, but a Gibbs3 ringing phenomena is introduced into the Q- and S-waves
(illustrated by the small arrows), which manifests as distortions with an amplitude larger
than the P-wave itself. A good demonstration of the Gibbs phenomenon can be found at
[6] and [11]. This ringing can lead to significant problems for a QRS detector (looking for
Q-wave onset) or any technique for analyzing at QT intervals or ST changes. The lower
trace is the first approximation of a biorthogonal wavelet decomposition (bior3.3) of the
notch-filtered ECG. Note that the P-wave is now discernible from the background noise and
the Gibbs oscillations are not present.

6 Postscript

The wavelet transform (WT) is a popular technique for performing joint time-frequency
analysis (JTFA) and belongs to a family of JTFA techniques that include the STFT, the
Wigner Ville transform (WVT), the Zhao-Atlas-Marks distribution and the Hilbert-Huang
transform4. Unfortunately, all but the WT suffer from significant cross-terms which reduce
their ability to locate events in the time-frequency plane. Reduced Interference Distribution
(RID) techniques such as the exponential or Choi-Williams distribution, the (pseudo) WVT,
and the Margenau-Hill distribution, have been developed to suppress the cross terms to some
extent, but in general, they do not provide the same degree of (time or frequency) resolution
as the WT [13]. Furthermore, the WT, unlike other fixed resolution JTFA techniques allows

260 Hz mains noise is encountered in North and Central America, Western Japan, South Korea, Taiwan,
Liberia, Saudi Arabia, and parts of the Carribean, South America and some South Pacific Islands

3The existence of the ripples with amplitudes independent of the filter length. Increasing the filter length
narrows the transition width but does not affect the ripple. One technique to reduce the ripples is to multiply
the impulse response of an ideal filter by a tapered window.

4All the JTFA techniques have been unified by Cohen [4]
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a variable resolution and facilitates better time resolution of high frequencies and better
frequency resolution of lower frequencies. It should be noted that although wavelet analysis
has often been quoted as the panacea for analyzing nonstationary signals (and thereby over-
coming the problem of the Fourier transform, which assumes stationarity), it is sometimes
important to segment data at non-stationarities because model assumptions may no longer
hold. Of course, JTFA may help with this segmentation.

The number of articles concerning wavelets applied to biomedical signals, and the ECG in
particular, is enormous and an excellent overview of many of the key publications concerning
multiscale ECG analysis can be found in Addison [1]. Chapter 4 in Akay et al. [5] on late
potentials and relevant publications by Pablo Laguna [10, 9]. It should be noted however,
that there has been much discussion of the use of wavelets in heart rate variability (HRV)
analysis since long range beat-to-beat fluctuations are obviously non-stationary. Unfortu-
nately, very little attention has been paid to the unevenly-sampled nature of the RR-interval
time series and this can lead to serious errors (see Chapter 3 in [3]). Techniques for wavelet
analysis of unevenly sampled data do exist [2, 7], but it is not clear how a discrete filter
bank formulation with up-down sampling could avoid the inherent problems of resampling
an unevenly sampled signal.

It should also be noted that wavelet filtering is a lossless supervised filtering method where the
basis functions are chosen a priori, much like the case of a Fourier-based filter (although some
of the wavelets do not have orthogonal basis functions). Unfortunately, because the CWT
and DWT are signal separation methods that effectively occur in the frequency domain5,
it is difficult to remove in-band noise (biomedical signals and associated noises often have
a significant overlap in the frequency domain). In later chapters we will look at techniques
which discover the basis functions in the data, based either on the statistics of the signal’s
distributions, or with reference to a known signal model. The basis functions may overlap
in the frequency domain and therefore we may separate out in-band noise.

7 Appendix

The appendix will contain the following derivations

1. Derivation linking Continuous Wavelet Transform to iterated filterbank

2. Derivation linking wavelet function to the iterated filterbank filters H0(z) H1(z) F0(z) F1(z)
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